|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- marsyas/gtzan |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: distilhubert-finetuned-gtzan |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: GTZAN |
|
type: marsyas/gtzan |
|
config: all |
|
split: train |
|
args: all |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.84 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilhubert-finetuned-gtzan |
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5916 |
|
- Accuracy: 0.84 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2.5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.2746 | 1.0 | 57 | 2.2507 | 0.28 | |
|
| 2.0451 | 2.0 | 114 | 1.9551 | 0.5 | |
|
| 1.6461 | 3.0 | 171 | 1.5926 | 0.68 | |
|
| 1.5045 | 4.0 | 228 | 1.3429 | 0.75 | |
|
| 1.2469 | 5.0 | 285 | 1.1902 | 0.75 | |
|
| 1.12 | 6.0 | 342 | 1.1030 | 0.74 | |
|
| 1.0061 | 7.0 | 399 | 0.9923 | 0.77 | |
|
| 0.9674 | 8.0 | 456 | 0.8894 | 0.81 | |
|
| 0.8545 | 9.0 | 513 | 0.8524 | 0.82 | |
|
| 0.6644 | 10.0 | 570 | 0.8045 | 0.81 | |
|
| 0.5531 | 11.0 | 627 | 0.8388 | 0.8 | |
|
| 0.5411 | 12.0 | 684 | 0.6921 | 0.83 | |
|
| 0.4759 | 13.0 | 741 | 0.7136 | 0.83 | |
|
| 0.4236 | 14.0 | 798 | 0.6716 | 0.83 | |
|
| 0.4235 | 15.0 | 855 | 0.6322 | 0.82 | |
|
| 0.4098 | 16.0 | 912 | 0.6108 | 0.83 | |
|
| 0.3988 | 17.0 | 969 | 0.6296 | 0.85 | |
|
| 0.3493 | 18.0 | 1026 | 0.5921 | 0.83 | |
|
| 0.3143 | 19.0 | 1083 | 0.5948 | 0.84 | |
|
| 0.3036 | 20.0 | 1140 | 0.5916 | 0.84 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0.dev0 |
|
- Pytorch 1.13.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.13.3 |
|
|