|
import os |
|
import cv2 |
|
import argparse |
|
import glob |
|
import torch |
|
from torchvision.transforms.functional import normalize |
|
from basicsr.utils import imwrite, img2tensor, tensor2img |
|
from basicsr.utils.download_util import load_file_from_url |
|
from basicsr.utils.misc import gpu_is_available, get_device |
|
from facelib.utils.face_restoration_helper import FaceRestoreHelper |
|
from facelib.utils.misc import is_gray |
|
|
|
from basicsr.utils.registry import ARCH_REGISTRY |
|
|
|
pretrain_model_url = { |
|
'restoration': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth', |
|
} |
|
|
|
def set_realesrgan(): |
|
from basicsr.archs.rrdbnet_arch import RRDBNet |
|
from basicsr.utils.realesrgan_utils import RealESRGANer |
|
|
|
use_half = False |
|
if torch.cuda.is_available(): |
|
no_half_gpu_list = ['1650', '1660'] |
|
if not True in [gpu in torch.cuda.get_device_name(0) for gpu in no_half_gpu_list]: |
|
use_half = True |
|
|
|
model = RRDBNet( |
|
num_in_ch=3, |
|
num_out_ch=3, |
|
num_feat=64, |
|
num_block=23, |
|
num_grow_ch=32, |
|
scale=2, |
|
) |
|
upsampler = RealESRGANer( |
|
scale=2, |
|
model_path="https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth", |
|
model=model, |
|
tile=args.bg_tile, |
|
tile_pad=40, |
|
pre_pad=0, |
|
half=use_half |
|
) |
|
|
|
if not gpu_is_available(): |
|
import warnings |
|
warnings.warn('Running on CPU now! Make sure your PyTorch version matches your CUDA.' |
|
'The unoptimized RealESRGAN is slow on CPU. ' |
|
'If you want to disable it, please remove `--bg_upsampler` and `--face_upsample` in command.', |
|
category=RuntimeWarning) |
|
return upsampler |
|
|
|
if __name__ == '__main__': |
|
|
|
device = get_device() |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('-i', '--input_path', type=str, default='./inputs/whole_imgs', |
|
help='Input image, video or folder. Default: inputs/whole_imgs') |
|
parser.add_argument('-o', '--output_path', type=str, default=None, |
|
help='Output folder. Default: results/<input_name>_<w>') |
|
parser.add_argument('-w', '--fidelity_weight', type=float, default=0.5, |
|
help='Balance the quality and fidelity. Default: 0.5') |
|
parser.add_argument('-s', '--upscale', type=int, default=2, |
|
help='The final upsampling scale of the image. Default: 2') |
|
parser.add_argument('--has_aligned', action='store_true', help='Input are cropped and aligned faces. Default: False') |
|
parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face. Default: False') |
|
parser.add_argument('--draw_box', action='store_true', help='Draw the bounding box for the detected faces. Default: False') |
|
|
|
|
|
parser.add_argument('--detection_model', type=str, default='retinaface_resnet50', |
|
help='Face detector. Optional: retinaface_resnet50, retinaface_mobile0.25, YOLOv5l, YOLOv5n, dlib. \ |
|
Default: retinaface_resnet50') |
|
parser.add_argument('--bg_upsampler', type=str, default='None', help='Background upsampler. Optional: realesrgan') |
|
parser.add_argument('--face_upsample', action='store_true', help='Face upsampler after enhancement. Default: False') |
|
parser.add_argument('--bg_tile', type=int, default=400, help='Tile size for background sampler. Default: 400') |
|
parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces. Default: None') |
|
parser.add_argument('--save_video_fps', type=float, default=None, help='Frame rate for saving video. Default: None') |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
w = args.fidelity_weight |
|
input_video = False |
|
if args.input_path.endswith(('jpg', 'jpeg', 'png', 'JPG', 'JPEG', 'PNG')): |
|
input_img_list = [args.input_path] |
|
result_root = f'results/test_img_{w}' |
|
elif args.input_path.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): |
|
from basicsr.utils.video_util import VideoReader, VideoWriter |
|
input_img_list = [] |
|
vidreader = VideoReader(args.input_path) |
|
image = vidreader.get_frame() |
|
while image is not None: |
|
input_img_list.append(image) |
|
image = vidreader.get_frame() |
|
audio = vidreader.get_audio() |
|
fps = vidreader.get_fps() if args.save_video_fps is None else args.save_video_fps |
|
video_name = os.path.basename(args.input_path)[:-4] |
|
result_root = f'results/{video_name}_{w}' |
|
input_video = True |
|
vidreader.close() |
|
else: |
|
if args.input_path.endswith('/'): |
|
args.input_path = args.input_path[:-1] |
|
|
|
input_img_list = sorted(glob.glob(os.path.join(args.input_path, '*.[jpJP][pnPN]*[gG]'))) |
|
result_root = f'results/{os.path.basename(args.input_path)}_{w}' |
|
|
|
if not args.output_path is None: |
|
result_root = args.output_path |
|
|
|
test_img_num = len(input_img_list) |
|
if test_img_num == 0: |
|
raise FileNotFoundError('No input image/video is found...\n' |
|
'\tNote that --input_path for video should end with .mp4|.mov|.avi') |
|
|
|
|
|
if args.bg_upsampler == 'realesrgan': |
|
bg_upsampler = set_realesrgan() |
|
else: |
|
bg_upsampler = None |
|
|
|
|
|
if args.face_upsample: |
|
if bg_upsampler is not None: |
|
face_upsampler = bg_upsampler |
|
else: |
|
face_upsampler = set_realesrgan() |
|
else: |
|
face_upsampler = None |
|
|
|
|
|
net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, |
|
connect_list=['32', '64', '128', '256']).to(device) |
|
|
|
|
|
ckpt_path = load_file_from_url(url=pretrain_model_url['restoration'], |
|
model_dir='weights/CodeFormer', progress=True, file_name=None) |
|
checkpoint = torch.load(ckpt_path)['params_ema'] |
|
net.load_state_dict(checkpoint) |
|
net.eval() |
|
|
|
|
|
|
|
|
|
if not args.has_aligned: |
|
print(f'Face detection model: {args.detection_model}') |
|
if bg_upsampler is not None: |
|
print(f'Background upsampling: True, Face upsampling: {args.face_upsample}') |
|
else: |
|
print(f'Background upsampling: False, Face upsampling: {args.face_upsample}') |
|
|
|
face_helper = FaceRestoreHelper( |
|
args.upscale, |
|
face_size=512, |
|
crop_ratio=(1, 1), |
|
det_model = args.detection_model, |
|
save_ext='png', |
|
use_parse=True, |
|
device=device) |
|
|
|
|
|
for i, img_path in enumerate(input_img_list): |
|
|
|
face_helper.clean_all() |
|
|
|
if isinstance(img_path, str): |
|
img_name = os.path.basename(img_path) |
|
basename, ext = os.path.splitext(img_name) |
|
print(f'[{i+1}/{test_img_num}] Processing: {img_name}') |
|
img = cv2.imread(img_path, cv2.IMREAD_COLOR) |
|
else: |
|
basename = str(i).zfill(6) |
|
img_name = f'{video_name}_{basename}' if input_video else basename |
|
print(f'[{i+1}/{test_img_num}] Processing: {img_name}') |
|
img = img_path |
|
|
|
if args.has_aligned: |
|
|
|
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) |
|
face_helper.is_gray = is_gray(img, threshold=10) |
|
if face_helper.is_gray: |
|
print('Grayscale input: True') |
|
face_helper.cropped_faces = [img] |
|
else: |
|
face_helper.read_image(img) |
|
|
|
num_det_faces = face_helper.get_face_landmarks_5( |
|
only_center_face=args.only_center_face, resize=640, eye_dist_threshold=5) |
|
print(f'\tdetect {num_det_faces} faces') |
|
|
|
face_helper.align_warp_face() |
|
|
|
|
|
for idx, cropped_face in enumerate(face_helper.cropped_faces): |
|
|
|
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) |
|
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) |
|
cropped_face_t = cropped_face_t.unsqueeze(0).to(device) |
|
|
|
try: |
|
with torch.no_grad(): |
|
output = net(cropped_face_t, w=w, adain=True)[0] |
|
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) |
|
del output |
|
torch.cuda.empty_cache() |
|
except Exception as error: |
|
print(f'\tFailed inference for CodeFormer: {error}') |
|
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) |
|
|
|
restored_face = restored_face.astype('uint8') |
|
face_helper.add_restored_face(restored_face, cropped_face) |
|
|
|
|
|
if not args.has_aligned: |
|
|
|
if bg_upsampler is not None: |
|
|
|
bg_img = bg_upsampler.enhance(img, outscale=args.upscale)[0] |
|
else: |
|
bg_img = None |
|
face_helper.get_inverse_affine(None) |
|
|
|
if args.face_upsample and face_upsampler is not None: |
|
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box, face_upsampler=face_upsampler) |
|
else: |
|
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box) |
|
|
|
|
|
for idx, (cropped_face, restored_face) in enumerate(zip(face_helper.cropped_faces, face_helper.restored_faces)): |
|
|
|
if not args.has_aligned: |
|
save_crop_path = os.path.join(result_root, 'cropped_faces', f'{basename}_{idx:02d}.png') |
|
imwrite(cropped_face, save_crop_path) |
|
|
|
if args.has_aligned: |
|
save_face_name = f'{basename}.png' |
|
else: |
|
save_face_name = f'{basename}_{idx:02d}.png' |
|
if args.suffix is not None: |
|
save_face_name = f'{save_face_name[:-4]}_{args.suffix}.png' |
|
save_restore_path = os.path.join(result_root, 'restored_faces', save_face_name) |
|
imwrite(restored_face, save_restore_path) |
|
|
|
|
|
if not args.has_aligned and restored_img is not None: |
|
if args.suffix is not None: |
|
basename = f'{basename}_{args.suffix}' |
|
save_restore_path = os.path.join(result_root, 'final_results', f'{basename}.png') |
|
imwrite(restored_img, save_restore_path) |
|
|
|
|
|
if input_video: |
|
print('Video Saving...') |
|
|
|
video_frames = [] |
|
img_list = sorted(glob.glob(os.path.join(result_root, 'final_results', '*.[jp][pn]g'))) |
|
for img_path in img_list: |
|
img = cv2.imread(img_path) |
|
video_frames.append(img) |
|
|
|
height, width = video_frames[0].shape[:2] |
|
if args.suffix is not None: |
|
video_name = f'{video_name}_{args.suffix}.png' |
|
save_restore_path = os.path.join(result_root, f'{video_name}.mp4') |
|
vidwriter = VideoWriter(save_restore_path, height, width, fps, audio) |
|
|
|
for f in video_frames: |
|
vidwriter.write_frame(f) |
|
vidwriter.close() |
|
|
|
print(f'\nAll results are saved in {result_root}') |
|
|