|
import argparse |
|
import glob |
|
import numpy as np |
|
import os |
|
import cv2 |
|
import torch |
|
from torchvision.transforms.functional import normalize |
|
from basicsr.utils import imwrite, img2tensor, tensor2img |
|
|
|
from basicsr.utils.registry import ARCH_REGISTRY |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('-i', '--test_path', type=str, default='datasets/ffhq/ffhq_512') |
|
parser.add_argument('-o', '--save_root', type=str, default='./experiments/pretrained_models/vqgan') |
|
parser.add_argument('--codebook_size', type=int, default=1024) |
|
parser.add_argument('--ckpt_path', type=str, default='./experiments/pretrained_models/vqgan/net_g.pth') |
|
args = parser.parse_args() |
|
|
|
if args.save_root.endswith('/'): |
|
args.save_root = args.save_root[:-1] |
|
dir_name = os.path.abspath(args.save_root) |
|
os.makedirs(dir_name, exist_ok=True) |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
test_path = args.test_path |
|
save_root = args.save_root |
|
ckpt_path = args.ckpt_path |
|
codebook_size = args.codebook_size |
|
|
|
vqgan = ARCH_REGISTRY.get('VQAutoEncoder')(512, 64, [1, 2, 2, 4, 4, 8], 'nearest', |
|
codebook_size=codebook_size).to(device) |
|
checkpoint = torch.load(ckpt_path)['params_ema'] |
|
|
|
vqgan.load_state_dict(checkpoint) |
|
vqgan.eval() |
|
|
|
sum_latent = np.zeros((codebook_size)).astype('float64') |
|
size_latent = 16 |
|
latent = {} |
|
latent['orig'] = {} |
|
latent['hflip'] = {} |
|
for i in ['orig', 'hflip']: |
|
|
|
for img_path in sorted(glob.glob(os.path.join(test_path, '*.[jp][pn]g'))): |
|
img_name = os.path.basename(img_path) |
|
img = cv2.imread(img_path) |
|
if i == 'hflip': |
|
cv2.flip(img, 1, img) |
|
img = img2tensor(img / 255., bgr2rgb=True, float32=True) |
|
normalize(img, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) |
|
img = img.unsqueeze(0).to(device) |
|
with torch.no_grad(): |
|
|
|
x, feat_dict = vqgan.encoder(img, True) |
|
x, _, log = vqgan.quantize(x) |
|
|
|
torch.cuda.empty_cache() |
|
|
|
min_encoding_indices = log['min_encoding_indices'] |
|
min_encoding_indices = min_encoding_indices.view(size_latent,size_latent) |
|
latent[i][img_name[:-4]] = min_encoding_indices.cpu().numpy() |
|
print(img_name, latent[i][img_name[:-4]].shape) |
|
|
|
latent_save_path = os.path.join(save_root, f'latent_gt_code{codebook_size}.pth') |
|
torch.save(latent, latent_save_path) |
|
print(f'\nLatent GT code are saved in {save_root}') |
|
|