bert-emotion / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
cf90079
|
raw
history blame
2 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - tweet_eval
metrics:
  - precision
  - recall
base_model: distilbert-base-cased
model-index:
  - name: bert-emotion
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: tweet_eval
          type: tweet_eval
          config: emotion
          split: validation
          args: emotion
        metrics:
          - type: precision
            value: 0.7505623807659564
            name: Precision
          - type: recall
            value: 0.7243031825553111
            name: Recall

bert-emotion

This model is a fine-tuned version of distilbert-base-cased on the tweet_eval dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1413
  • Precision: 0.7506
  • Recall: 0.7243
  • Fscore: 0.7340

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall Fscore
0.8556 1.0 815 0.7854 0.7461 0.5929 0.6088
0.5369 2.0 1630 0.9014 0.7549 0.7278 0.7359
0.2571 3.0 2445 1.1413 0.7506 0.7243 0.7340

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3