Aubi0ne's picture
update model card README.md
4d8cce6
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - cord
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-cord_100
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: cord
          type: cord
          args: cord
        metrics:
          - name: Precision
            type: precision
            value: 0.9174649963154016
          - name: Recall
            type: recall
            value: 0.9318862275449101
          - name: F1
            type: f1
            value: 0.9246193835870776
          - name: Accuracy
            type: accuracy
            value: 0.9405772495755518

layoutlmv3-finetuned-cord_100

This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2834
  • Precision: 0.9175
  • Recall: 0.9319
  • F1: 0.9246
  • Accuracy: 0.9406

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 4.17 250 1.0175 0.7358 0.7882 0.7611 0.8014
1.406 8.33 500 0.5646 0.8444 0.8735 0.8587 0.8671
1.406 12.5 750 0.3943 0.8950 0.9184 0.9065 0.9189
0.3467 16.67 1000 0.3379 0.9138 0.9289 0.9213 0.9291
0.3467 20.83 1250 0.2842 0.9189 0.9334 0.9261 0.9419
0.1484 25.0 1500 0.2822 0.9233 0.9371 0.9302 0.9427
0.1484 29.17 1750 0.2906 0.9168 0.9319 0.9243 0.9372
0.0825 33.33 2000 0.2922 0.9183 0.9334 0.9258 0.9410
0.0825 37.5 2250 0.2842 0.9154 0.9319 0.9236 0.9397
0.0596 41.67 2500 0.2834 0.9175 0.9319 0.9246 0.9406

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1