fine_tuned_deberta / README.md
Bugsec's picture
End of training
ec9aef6 verified
metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: fine_tuned_deberta
    results: []

fine_tuned_deberta

This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2283
  • Accuracy: 0.9331
  • F1: 0.9272
  • Precision: 1.0
  • Recall: 0.8643

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.7017 0.96 17 0.6835 0.5352 0.1081 1.0 0.0571
0.6085 1.97 35 0.5872 0.6866 0.5822 0.8493 0.4429
0.518 2.99 53 0.4436 0.7958 0.8141 0.7384 0.9071
0.2366 4.0 71 0.2283 0.9331 0.9272 1.0 0.8643
0.1579 4.96 88 0.2696 0.9331 0.9294 0.9690 0.8929
0.1626 5.97 106 0.2726 0.9225 0.9179 0.9609 0.8786

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2