|
--- |
|
license: mit |
|
base_model: microsoft/deberta-v3-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: fine_tuned_deberta |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fine_tuned_deberta |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2283 |
|
- Accuracy: 0.9331 |
|
- F1: 0.9272 |
|
- Precision: 1.0 |
|
- Recall: 0.8643 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.7017 | 0.96 | 17 | 0.6835 | 0.5352 | 0.1081 | 1.0 | 0.0571 | |
|
| 0.6085 | 1.97 | 35 | 0.5872 | 0.6866 | 0.5822 | 0.8493 | 0.4429 | |
|
| 0.518 | 2.99 | 53 | 0.4436 | 0.7958 | 0.8141 | 0.7384 | 0.9071 | |
|
| 0.2366 | 4.0 | 71 | 0.2283 | 0.9331 | 0.9272 | 1.0 | 0.8643 | |
|
| 0.1579 | 4.96 | 88 | 0.2696 | 0.9331 | 0.9294 | 0.9690 | 0.8929 | |
|
| 0.1626 | 5.97 | 106 | 0.2726 | 0.9225 | 0.9179 | 0.9609 | 0.8786 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|