EscvNcl's picture
Model save
ad4092a
metadata
license: other
base_model: google/mobilenet_v2_1.4_224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: MobileNet-V2-Retinopathy
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9306930693069307

MobileNet-V2-Retinopathy

This model is a fine-tuned version of google/mobilenet_v2_1.4_224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2044
  • Accuracy: 0.9307

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4403 1.0 113 0.5330 0.7079
0.5538 2.0 227 0.4312 0.7723
0.542 3.0 340 0.5137 0.7426
0.4776 4.0 454 0.4656 0.7723
0.4244 5.0 567 1.0400 0.5990
0.4694 6.0 681 0.5936 0.7228
0.4494 7.0 794 0.4667 0.7822
0.4647 8.0 908 0.2629 0.8960
0.3646 9.0 1021 0.2287 0.8861
0.4827 10.0 1135 1.7967 0.5149
0.3679 11.0 1248 0.4184 0.8267
0.3454 12.0 1362 0.1885 0.9406
0.3562 13.0 1475 0.2798 0.9059
0.3397 14.0 1589 1.6444 0.5891
0.4047 14.93 1695 0.2044 0.9307

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1