|
--- |
|
license: other |
|
base_model: google/mobilenet_v2_1.4_224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: MobileNet-V2-Retinopathy |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9306930693069307 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# MobileNet-V2-Retinopathy |
|
|
|
This model is a fine-tuned version of [google/mobilenet_v2_1.4_224](https://huggingface.co/google/mobilenet_v2_1.4_224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2044 |
|
- Accuracy: 0.9307 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.4403 | 1.0 | 113 | 0.5330 | 0.7079 | |
|
| 0.5538 | 2.0 | 227 | 0.4312 | 0.7723 | |
|
| 0.542 | 3.0 | 340 | 0.5137 | 0.7426 | |
|
| 0.4776 | 4.0 | 454 | 0.4656 | 0.7723 | |
|
| 0.4244 | 5.0 | 567 | 1.0400 | 0.5990 | |
|
| 0.4694 | 6.0 | 681 | 0.5936 | 0.7228 | |
|
| 0.4494 | 7.0 | 794 | 0.4667 | 0.7822 | |
|
| 0.4647 | 8.0 | 908 | 0.2629 | 0.8960 | |
|
| 0.3646 | 9.0 | 1021 | 0.2287 | 0.8861 | |
|
| 0.4827 | 10.0 | 1135 | 1.7967 | 0.5149 | |
|
| 0.3679 | 11.0 | 1248 | 0.4184 | 0.8267 | |
|
| 0.3454 | 12.0 | 1362 | 0.1885 | 0.9406 | |
|
| 0.3562 | 13.0 | 1475 | 0.2798 | 0.9059 | |
|
| 0.3397 | 14.0 | 1589 | 1.6444 | 0.5891 | |
|
| 0.4047 | 14.93 | 1695 | 0.2044 | 0.9307 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|