Leotrim's picture
End of training
2e149ad verified
|
raw
history blame
3.17 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: distilhubert-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7733333333333333
          - name: Precision
            type: precision
            value: 0.775454513809777
          - name: Recall
            type: recall
            value: 0.7733333333333333
          - name: F1
            type: f1
            value: 0.7708532203254443

Visualize in Weights & Biases

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7448
  • Accuracy: 0.7733
  • Precision: 0.7755
  • Recall: 0.7733
  • F1: 0.7709

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
2.0182 1.0 88 2.0020 0.3333 0.3990 0.3333 0.2547
1.6019 2.0 176 1.4794 0.5333 0.6597 0.5333 0.4789
1.0733 3.0 264 1.2329 0.6133 0.6930 0.6133 0.5993
0.9451 4.0 352 1.1227 0.64 0.7214 0.64 0.6289
0.9232 5.0 440 0.9426 0.7133 0.7398 0.7133 0.7071
0.6552 6.0 528 0.8132 0.78 0.7795 0.78 0.7768
0.4019 7.0 616 0.8478 0.7333 0.7428 0.7333 0.7285
0.2836 8.0 704 0.7369 0.7933 0.8025 0.7933 0.7915
0.207 9.0 792 0.7440 0.7933 0.7926 0.7933 0.7879
0.3091 10.0 880 0.7448 0.7733 0.7755 0.7733 0.7709

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1