Leotrim's picture
End of training
2e149ad verified
|
raw
history blame
3.17 kB
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.7733333333333333
- name: Precision
type: precision
value: 0.775454513809777
- name: Recall
type: recall
value: 0.7733333333333333
- name: F1
type: f1
value: 0.7708532203254443
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/raspuntinov_ai/huggingface/runs/xti2wn9w)
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7448
- Accuracy: 0.7733
- Precision: 0.7755
- Recall: 0.7733
- F1: 0.7709
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 2.0182 | 1.0 | 88 | 2.0020 | 0.3333 | 0.3990 | 0.3333 | 0.2547 |
| 1.6019 | 2.0 | 176 | 1.4794 | 0.5333 | 0.6597 | 0.5333 | 0.4789 |
| 1.0733 | 3.0 | 264 | 1.2329 | 0.6133 | 0.6930 | 0.6133 | 0.5993 |
| 0.9451 | 4.0 | 352 | 1.1227 | 0.64 | 0.7214 | 0.64 | 0.6289 |
| 0.9232 | 5.0 | 440 | 0.9426 | 0.7133 | 0.7398 | 0.7133 | 0.7071 |
| 0.6552 | 6.0 | 528 | 0.8132 | 0.78 | 0.7795 | 0.78 | 0.7768 |
| 0.4019 | 7.0 | 616 | 0.8478 | 0.7333 | 0.7428 | 0.7333 | 0.7285 |
| 0.2836 | 8.0 | 704 | 0.7369 | 0.7933 | 0.8025 | 0.7933 | 0.7915 |
| 0.207 | 9.0 | 792 | 0.7440 | 0.7933 | 0.7926 | 0.7933 | 0.7879 |
| 0.3091 | 10.0 | 880 | 0.7448 | 0.7733 | 0.7755 | 0.7733 | 0.7709 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1