Niki548's picture
End of training
06e1946 verified
metadata
base_model: Rostlab/prot_bert
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: prot_bert-fine-tuned-toxicity_3
    results: []

prot_bert-fine-tuned-toxicity_3

This model is a fine-tuned version of Rostlab/prot_bert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0450
  • Accuracy: 0.7419
  • Precision: 0.7530
  • Recall: 0.7419
  • F1: 0.7340

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5735 1.0 16 0.5968 0.8065 0.8093 0.8065 0.8044
0.4855 2.0 32 0.4939 0.8387 0.8391 0.8387 0.8380
0.3499 3.0 48 0.5234 0.8065 0.8093 0.8065 0.8044
0.3094 4.0 64 0.4639 0.8387 0.8391 0.8387 0.8380
0.235 5.0 80 0.5654 0.8387 0.8391 0.8387 0.8380
0.1608 6.0 96 0.6409 0.8387 0.8391 0.8387 0.8380
0.1147 7.0 112 0.6271 0.8387 0.8391 0.8387 0.8380
0.171 8.0 128 0.7704 0.8065 0.8093 0.8065 0.8044
0.1762 9.0 144 0.7978 0.8065 0.8093 0.8065 0.8044
0.1438 10.0 160 0.9561 0.7419 0.7530 0.7419 0.7340
0.0953 11.0 176 1.0074 0.7419 0.7530 0.7419 0.7340
0.0394 12.0 192 1.0037 0.7419 0.7530 0.7419 0.7340
0.0896 13.0 208 1.0128 0.7419 0.7530 0.7419 0.7340
0.0849 14.0 224 1.0404 0.7419 0.7530 0.7419 0.7340
0.0207 15.0 240 1.0450 0.7419 0.7530 0.7419 0.7340

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1