Rodrigo1771's picture
End of training
38325c1 verified
metadata
library_name: transformers
license: apache-2.0
base_model: michiyasunaga/BioLinkBERT-base
tags:
  - token-classification
  - generated_from_trainer
datasets:
  - Rodrigo1771/drugtemist-en-85-ner
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: output
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: Rodrigo1771/drugtemist-en-85-ner
          type: Rodrigo1771/drugtemist-en-85-ner
          config: DrugTEMIST English NER
          split: validation
          args: DrugTEMIST English NER
        metrics:
          - name: Precision
            type: precision
            value: 0.9302325581395349
          - name: Recall
            type: recall
            value: 0.9319664492078286
          - name: F1
            type: f1
            value: 0.931098696461825
          - name: Accuracy
            type: accuracy
            value: 0.9986534758462869

output

This model is a fine-tuned version of michiyasunaga/BioLinkBERT-base on the Rodrigo1771/drugtemist-en-85-ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0083
  • Precision: 0.9302
  • Recall: 0.9320
  • F1: 0.9311
  • Accuracy: 0.9987

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.9989 457 0.0056 0.8730 0.9292 0.9002 0.9983
0.0158 2.0 915 0.0066 0.8625 0.9357 0.8976 0.9981
0.0037 2.9989 1372 0.0056 0.9247 0.9161 0.9204 0.9986
0.0025 4.0 1830 0.0064 0.9234 0.9096 0.9164 0.9985
0.0015 4.9989 2287 0.0061 0.9193 0.9236 0.9214 0.9985
0.0008 6.0 2745 0.0074 0.9282 0.9273 0.9277 0.9986
0.0006 6.9989 3202 0.0077 0.9305 0.9226 0.9265 0.9986
0.0003 8.0 3660 0.0082 0.9282 0.9282 0.9282 0.9986
0.0004 8.9989 4117 0.0083 0.9290 0.9264 0.9277 0.9986
0.0002 9.9891 4570 0.0083 0.9302 0.9320 0.9311 0.9987

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1