Rodrigo1771's picture
End of training
38325c1 verified
---
library_name: transformers
license: apache-2.0
base_model: michiyasunaga/BioLinkBERT-base
tags:
- token-classification
- generated_from_trainer
datasets:
- Rodrigo1771/drugtemist-en-85-ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: output
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: Rodrigo1771/drugtemist-en-85-ner
type: Rodrigo1771/drugtemist-en-85-ner
config: DrugTEMIST English NER
split: validation
args: DrugTEMIST English NER
metrics:
- name: Precision
type: precision
value: 0.9302325581395349
- name: Recall
type: recall
value: 0.9319664492078286
- name: F1
type: f1
value: 0.931098696461825
- name: Accuracy
type: accuracy
value: 0.9986534758462869
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# output
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the Rodrigo1771/drugtemist-en-85-ner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0083
- Precision: 0.9302
- Recall: 0.9320
- F1: 0.9311
- Accuracy: 0.9987
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 0.9989 | 457 | 0.0056 | 0.8730 | 0.9292 | 0.9002 | 0.9983 |
| 0.0158 | 2.0 | 915 | 0.0066 | 0.8625 | 0.9357 | 0.8976 | 0.9981 |
| 0.0037 | 2.9989 | 1372 | 0.0056 | 0.9247 | 0.9161 | 0.9204 | 0.9986 |
| 0.0025 | 4.0 | 1830 | 0.0064 | 0.9234 | 0.9096 | 0.9164 | 0.9985 |
| 0.0015 | 4.9989 | 2287 | 0.0061 | 0.9193 | 0.9236 | 0.9214 | 0.9985 |
| 0.0008 | 6.0 | 2745 | 0.0074 | 0.9282 | 0.9273 | 0.9277 | 0.9986 |
| 0.0006 | 6.9989 | 3202 | 0.0077 | 0.9305 | 0.9226 | 0.9265 | 0.9986 |
| 0.0003 | 8.0 | 3660 | 0.0082 | 0.9282 | 0.9282 | 0.9282 | 0.9986 |
| 0.0004 | 8.9989 | 4117 | 0.0083 | 0.9290 | 0.9264 | 0.9277 | 0.9986 |
| 0.0002 | 9.9891 | 4570 | 0.0083 | 0.9302 | 0.9320 | 0.9311 | 0.9987 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1