ViT_breastmnist / README.md
TaLong's picture
End of training
40ad81d verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - medmnist-v2
metrics:
  - accuracy
  - f1
model-index:
  - name: ViT_breastmnist
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: medmnist-v2
          type: medmnist-v2
          config: breastmnist
          split: validation
          args: breastmnist
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8653846153846154
          - name: F1
            type: f1
            value: 0.8156962025316457

ViT_breastmnist

This model is a fine-tuned version of google/vit-base-patch16-224 on the medmnist-v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3570
  • Accuracy: 0.8654
  • F1: 0.8157

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.5391 0.5556 10 0.4007 0.7949 0.6698
0.3685 1.1111 20 0.3650 0.8718 0.8120
0.2275 1.6667 30 0.3601 0.8462 0.8101
0.1604 2.2222 40 0.2938 0.8718 0.8319
0.0624 2.7778 50 0.2966 0.8846 0.8511
0.0597 3.3333 60 0.4313 0.8974 0.8556
0.029 3.8889 70 0.4105 0.8718 0.8194
0.0094 4.4444 80 0.3746 0.9103 0.8803
0.0077 5.0 90 0.4098 0.8974 0.8655
0.0082 5.5556 100 0.4451 0.9103 0.8803
0.0024 6.1111 110 0.4599 0.8974 0.8655
0.0028 6.6667 120 0.4739 0.8974 0.8608
0.0013 7.2222 130 0.4653 0.8974 0.8655
0.0016 7.7778 140 0.4927 0.8974 0.8608
0.0011 8.3333 150 0.5115 0.8974 0.8608
0.0015 8.8889 160 0.5055 0.8974 0.8608
0.0007 9.4444 170 0.4982 0.8974 0.8608
0.0011 10.0 180 0.4975 0.8974 0.8608

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0