ViT_breastmnist / README.md
TaLong's picture
End of training
40ad81d verified
---
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- medmnist-v2
metrics:
- accuracy
- f1
model-index:
- name: ViT_breastmnist
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: medmnist-v2
type: medmnist-v2
config: breastmnist
split: validation
args: breastmnist
metrics:
- name: Accuracy
type: accuracy
value: 0.8653846153846154
- name: F1
type: f1
value: 0.8156962025316457
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ViT_breastmnist
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the medmnist-v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3570
- Accuracy: 0.8654
- F1: 0.8157
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
| 0.5391 | 0.5556 | 10 | 0.4007 | 0.7949 | 0.6698 |
| 0.3685 | 1.1111 | 20 | 0.3650 | 0.8718 | 0.8120 |
| 0.2275 | 1.6667 | 30 | 0.3601 | 0.8462 | 0.8101 |
| 0.1604 | 2.2222 | 40 | 0.2938 | 0.8718 | 0.8319 |
| 0.0624 | 2.7778 | 50 | 0.2966 | 0.8846 | 0.8511 |
| 0.0597 | 3.3333 | 60 | 0.4313 | 0.8974 | 0.8556 |
| 0.029 | 3.8889 | 70 | 0.4105 | 0.8718 | 0.8194 |
| 0.0094 | 4.4444 | 80 | 0.3746 | 0.9103 | 0.8803 |
| 0.0077 | 5.0 | 90 | 0.4098 | 0.8974 | 0.8655 |
| 0.0082 | 5.5556 | 100 | 0.4451 | 0.9103 | 0.8803 |
| 0.0024 | 6.1111 | 110 | 0.4599 | 0.8974 | 0.8655 |
| 0.0028 | 6.6667 | 120 | 0.4739 | 0.8974 | 0.8608 |
| 0.0013 | 7.2222 | 130 | 0.4653 | 0.8974 | 0.8655 |
| 0.0016 | 7.7778 | 140 | 0.4927 | 0.8974 | 0.8608 |
| 0.0011 | 8.3333 | 150 | 0.5115 | 0.8974 | 0.8608 |
| 0.0015 | 8.8889 | 160 | 0.5055 | 0.8974 | 0.8608 |
| 0.0007 | 9.4444 | 170 | 0.4982 | 0.8974 | 0.8608 |
| 0.0011 | 10.0 | 180 | 0.4975 | 0.8974 | 0.8608 |
### Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0