|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- medmnist-v2 |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: ViT_breastmnist |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: medmnist-v2 |
|
type: medmnist-v2 |
|
config: breastmnist |
|
split: validation |
|
args: breastmnist |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8653846153846154 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8156962025316457 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ViT_breastmnist |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the medmnist-v2 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3570 |
|
- Accuracy: 0.8654 |
|
- F1: 0.8157 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:| |
|
| 0.5391 | 0.5556 | 10 | 0.4007 | 0.7949 | 0.6698 | |
|
| 0.3685 | 1.1111 | 20 | 0.3650 | 0.8718 | 0.8120 | |
|
| 0.2275 | 1.6667 | 30 | 0.3601 | 0.8462 | 0.8101 | |
|
| 0.1604 | 2.2222 | 40 | 0.2938 | 0.8718 | 0.8319 | |
|
| 0.0624 | 2.7778 | 50 | 0.2966 | 0.8846 | 0.8511 | |
|
| 0.0597 | 3.3333 | 60 | 0.4313 | 0.8974 | 0.8556 | |
|
| 0.029 | 3.8889 | 70 | 0.4105 | 0.8718 | 0.8194 | |
|
| 0.0094 | 4.4444 | 80 | 0.3746 | 0.9103 | 0.8803 | |
|
| 0.0077 | 5.0 | 90 | 0.4098 | 0.8974 | 0.8655 | |
|
| 0.0082 | 5.5556 | 100 | 0.4451 | 0.9103 | 0.8803 | |
|
| 0.0024 | 6.1111 | 110 | 0.4599 | 0.8974 | 0.8655 | |
|
| 0.0028 | 6.6667 | 120 | 0.4739 | 0.8974 | 0.8608 | |
|
| 0.0013 | 7.2222 | 130 | 0.4653 | 0.8974 | 0.8655 | |
|
| 0.0016 | 7.7778 | 140 | 0.4927 | 0.8974 | 0.8608 | |
|
| 0.0011 | 8.3333 | 150 | 0.5115 | 0.8974 | 0.8608 | |
|
| 0.0015 | 8.8889 | 160 | 0.5055 | 0.8974 | 0.8608 | |
|
| 0.0007 | 9.4444 | 170 | 0.4982 | 0.8974 | 0.8608 | |
|
| 0.0011 | 10.0 | 180 | 0.4975 | 0.8974 | 0.8608 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|