ValentinaKim's picture
Add new SentenceTransformer model.
60c8205 verified
metadata
base_model: intfloat/multilingual-e5-small
language:
  - multilingual
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:2320
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: |-
      MVGO; medium vacuum
      gas oil
    sentences:
      - 과분해
      - Medium Vacuum Gas Oil(MVGO) ;
      - |-
        선적 전 또는 양하 후에 화물창에 잔존하는 소량의 액체화물 양을 결정하는 수학
        적인 계산 수식
  - source_sentence: PLE; plain large end
    sentences:
      - Plain Large End ;
      - |-
        부하중 변압기 Tap 변환기 ;
        변압기 권선의 Tap을 무정전으로 변경하는 장치
      - Cone Roof Tank에서 Tank내의 Vapor가 외부로 나갈  있도록 만들어 놓은 구멍
  - source_sentence: Fluidization
    sentences:
      - |-
        핵심성과지표;
        어떤 계획이나 목표가 성공하였는지 또는 성공하고 있는지를 확인하려면 그 성공
        을 구성하는 요소들을 측정하는 지표를 찾아 측정하여야 하는데, 이들 지표 중 성
        공을 확인할 수 있는 가장 결정적인 지표를 KPI라고 부릅니다.
      - |-
        전압변동에 영향을 주는 무효전력을 줄이기 위한 조상설비의 일종으로 정지형 무
        효전력 보상장치
      - 고체층을 액체나 기체로 확대시키거나 현탁시켜 유통하도록 하는 
  - source_sentence: |-
      SH; surface hardened
      steel body
    sentences:
      - Surface Hardened Steel Body ;
      - 분산제 ; 슬러지 생성을 방지하기 위하여 Oil에 넣어주는 약품
      - |-
        작업위험성평가;
        현장에서 수행되는 작업을 포함한 전반적인 직무 활동에 대하여 위험요인을 분석
        하여 현재 안전조치를 검토하고 안전대책을 마련하는 기법
  - source_sentence: U-205200
    sentences:
      - 물속의 (-)ion을 OH-로 치환해 주는 이온교환수지탑
      - 차단기, 스위치류 , 스위치
      - 올레핀 송유/동력 Nitrogen Section
model-index:
  - name: Multilingual base soil embedding model (quantized)
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.2441860465116279
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.31007751937984496
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.3643410852713178
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.4108527131782946
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.2441860465116279
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.10335917312661498
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.07286821705426358
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.041085271317829464
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.2441860465116279
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.31007751937984496
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.3643410852713178
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.4108527131782946
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.3172493867293268
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.28840746893072483
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.3003133446683658
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.2054263565891473
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.28294573643410853
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.3178294573643411
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.38372093023255816
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.2054263565891473
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.09431524547803617
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.06356589147286822
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.03837209302325582
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.2054263565891473
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.28294573643410853
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.3178294573643411
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.38372093023255816
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.2850988708112555
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.25465270087363123
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.26532412971784447
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.1937984496124031
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.2713178294573643
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.29844961240310075
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.3488372093023256
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.1937984496124031
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.0904392764857881
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.059689922480620154
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.03488372093023256
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.1937984496124031
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.2713178294573643
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.29844961240310075
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.3488372093023256
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.26467320016495083
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.2385474344776671
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.2482312240959752
            name: Cosine Map@100

Multilingual base soil embedding model (quantized)

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-small
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Language: multilingual
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ValentinaKim/Multilingual-base-soil-embedding")
# Run inference
sentences = [
    'U-205200',
    '올레핀 송유/동력 Nitrogen Section',
    '차단기, 스위치류 , 스위치',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.2442
cosine_accuracy@3 0.3101
cosine_accuracy@5 0.3643
cosine_accuracy@10 0.4109
cosine_precision@1 0.2442
cosine_precision@3 0.1034
cosine_precision@5 0.0729
cosine_precision@10 0.0411
cosine_recall@1 0.2442
cosine_recall@3 0.3101
cosine_recall@5 0.3643
cosine_recall@10 0.4109
cosine_ndcg@10 0.3172
cosine_mrr@10 0.2884
cosine_map@100 0.3003

Information Retrieval

Metric Value
cosine_accuracy@1 0.2054
cosine_accuracy@3 0.2829
cosine_accuracy@5 0.3178
cosine_accuracy@10 0.3837
cosine_precision@1 0.2054
cosine_precision@3 0.0943
cosine_precision@5 0.0636
cosine_precision@10 0.0384
cosine_recall@1 0.2054
cosine_recall@3 0.2829
cosine_recall@5 0.3178
cosine_recall@10 0.3837
cosine_ndcg@10 0.2851
cosine_mrr@10 0.2547
cosine_map@100 0.2653

Information Retrieval

Metric Value
cosine_accuracy@1 0.1938
cosine_accuracy@3 0.2713
cosine_accuracy@5 0.2984
cosine_accuracy@10 0.3488
cosine_precision@1 0.1938
cosine_precision@3 0.0904
cosine_precision@5 0.0597
cosine_precision@10 0.0349
cosine_recall@1 0.1938
cosine_recall@3 0.2713
cosine_recall@5 0.2984
cosine_recall@10 0.3488
cosine_ndcg@10 0.2647
cosine_mrr@10 0.2385
cosine_map@100 0.2482

Training Details

Training Dataset

Unnamed Dataset

  • Size: 2,320 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 6.72 tokens
    • max: 16 tokens
    • min: 3 tokens
    • mean: 35.77 tokens
    • max: 408 tokens
  • Samples:
    anchor positive
    Deionizer 탈이온장치 ; Demineralizer와 동일
    Sub-CC; sub-contracting
    committee
    외주 계약의 투명성과 공정성을 확보하기 위한 Sub-계약위원회로서 위원 및 위원
    장은 CEO가 임명한다. CC이원원 부문장 이상 임원으로 하고 간사는 구매관리팀
    장이 한다.
    In-line Sampler 원유 속의 물과 침전물의 함량을 측정하기 위하여 원유하역 Line에 설치해 놓은
    시료채취기
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 10
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • tf32: False
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_64_cosine_map@100
0.8767 4 - 0.2156 0.2448 0.1831
1.9726 9 - 0.2511 0.2765 0.2154
2.1918 10 7.6309 - - -
2.8493 13 - 0.2531 0.2852 0.2345
3.9452 18 - 0.2617 0.2914 0.2353
4.3836 20 5.3042 - - -
4.8219 22 - 0.2626 0.2946 0.2422
5.9178 27 - 0.2629 0.2987 0.2481
6.5753 30 4.2433 - - -
6.7945 31 - 0.2684 0.2988 0.2495
7.8904 36 - 0.2652 0.3003 0.2488
8.7671 40 3.9117 0.2653 0.3003 0.2482

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 1.0.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}