metadata
base_model: intfloat/multilingual-e5-small
language:
- multilingual
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2320
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: |-
MVGO; medium vacuum
gas oil
sentences:
- 과분해
- Medium Vacuum Gas Oil(MVGO) ;
- |-
선적 전 또는 양하 후에 화물창에 잔존하는 소량의 액체화물 양을 결정하는 수학
적인 계산 수식
- source_sentence: PLE; plain large end
sentences:
- Plain Large End ;
- |-
부하중 변압기 Tap 변환기 ;
변압기 권선의 Tap을 무정전으로 변경하는 장치
- Cone Roof Tank에서 Tank내의 Vapor가 외부로 나갈 수 있도록 만들어 놓은 구멍
- source_sentence: Fluidization
sentences:
- |-
핵심성과지표;
어떤 계획이나 목표가 성공하였는지 또는 성공하고 있는지를 확인하려면 그 성공
을 구성하는 요소들을 측정하는 지표를 찾아 측정하여야 하는데, 이들 지표 중 성
공을 확인할 수 있는 가장 결정적인 지표를 KPI라고 부릅니다.
- |-
전압변동에 영향을 주는 무효전력을 줄이기 위한 조상설비의 일종으로 정지형 무
효전력 보상장치
- 고체층을 액체나 기체로 확대시키거나 현탁시켜 유통하도록 하는 것
- source_sentence: |-
SH; surface hardened
steel body
sentences:
- Surface Hardened Steel Body ;
- 분산제 ; 슬러지 생성을 방지하기 위하여 Oil에 넣어주는 약품
- |-
작업위험성평가;
현장에서 수행되는 작업을 포함한 전반적인 직무 활동에 대하여 위험요인을 분석
하여 현재 안전조치를 검토하고 안전대책을 마련하는 기법
- source_sentence: U-205200
sentences:
- 물속의 (-)ion을 OH-로 치환해 주는 이온교환수지탑
- 차단기, 스위치류 , 스위치
- 올레핀 송유/동력 Nitrogen Section
model-index:
- name: Multilingual base soil embedding model (quantized)
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.2441860465116279
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.31007751937984496
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3643410852713178
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.4108527131782946
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2441860465116279
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.10335917312661498
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.07286821705426358
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.041085271317829464
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.2441860465116279
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.31007751937984496
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3643410852713178
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.4108527131782946
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3172493867293268
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.28840746893072483
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3003133446683658
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.2054263565891473
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.28294573643410853
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3178294573643411
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.38372093023255816
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2054263565891473
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.09431524547803617
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06356589147286822
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03837209302325582
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.2054263565891473
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.28294573643410853
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3178294573643411
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.38372093023255816
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2850988708112555
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.25465270087363123
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.26532412971784447
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.1937984496124031
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2713178294573643
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.29844961240310075
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.3488372093023256
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1937984496124031
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0904392764857881
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.059689922480620154
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03488372093023256
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1937984496124031
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2713178294573643
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.29844961240310075
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.3488372093023256
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.26467320016495083
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2385474344776671
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2482312240959752
name: Cosine Map@100
Multilingual base soil embedding model (quantized)
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: multilingual
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ValentinaKim/Multilingual-base-soil-embedding")
# Run inference
sentences = [
'U-205200',
'올레핀 송유/동력 Nitrogen Section',
'차단기, 스위치류 , 스위치',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.2442 |
cosine_accuracy@3 | 0.3101 |
cosine_accuracy@5 | 0.3643 |
cosine_accuracy@10 | 0.4109 |
cosine_precision@1 | 0.2442 |
cosine_precision@3 | 0.1034 |
cosine_precision@5 | 0.0729 |
cosine_precision@10 | 0.0411 |
cosine_recall@1 | 0.2442 |
cosine_recall@3 | 0.3101 |
cosine_recall@5 | 0.3643 |
cosine_recall@10 | 0.4109 |
cosine_ndcg@10 | 0.3172 |
cosine_mrr@10 | 0.2884 |
cosine_map@100 | 0.3003 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.2054 |
cosine_accuracy@3 | 0.2829 |
cosine_accuracy@5 | 0.3178 |
cosine_accuracy@10 | 0.3837 |
cosine_precision@1 | 0.2054 |
cosine_precision@3 | 0.0943 |
cosine_precision@5 | 0.0636 |
cosine_precision@10 | 0.0384 |
cosine_recall@1 | 0.2054 |
cosine_recall@3 | 0.2829 |
cosine_recall@5 | 0.3178 |
cosine_recall@10 | 0.3837 |
cosine_ndcg@10 | 0.2851 |
cosine_mrr@10 | 0.2547 |
cosine_map@100 | 0.2653 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1938 |
cosine_accuracy@3 | 0.2713 |
cosine_accuracy@5 | 0.2984 |
cosine_accuracy@10 | 0.3488 |
cosine_precision@1 | 0.1938 |
cosine_precision@3 | 0.0904 |
cosine_precision@5 | 0.0597 |
cosine_precision@10 | 0.0349 |
cosine_recall@1 | 0.1938 |
cosine_recall@3 | 0.2713 |
cosine_recall@5 | 0.2984 |
cosine_recall@10 | 0.3488 |
cosine_ndcg@10 | 0.2647 |
cosine_mrr@10 | 0.2385 |
cosine_map@100 | 0.2482 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,320 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 6.72 tokens
- max: 16 tokens
- min: 3 tokens
- mean: 35.77 tokens
- max: 408 tokens
- Samples:
anchor positive Deionizer
탈이온장치 ; Demineralizer와 동일
Sub-CC; sub-contracting
committee외주 계약의 투명성과 공정성을 확보하기 위한 Sub-계약위원회로서 위원 및 위원
장은 CEO가 임명한다. CC이원원 부문장 이상 임원으로 하고 간사는 구매관리팀
장이 한다.In-line Sampler
원유 속의 물과 침전물의 함량을 측정하기 위하여 원유하역 Line에 설치해 놓은
시료채취기 - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 10lr_scheduler_type
: cosinewarmup_ratio
: 0.1tf32
: Falseoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_64_cosine_map@100 |
---|---|---|---|---|---|
0.8767 | 4 | - | 0.2156 | 0.2448 | 0.1831 |
1.9726 | 9 | - | 0.2511 | 0.2765 | 0.2154 |
2.1918 | 10 | 7.6309 | - | - | - |
2.8493 | 13 | - | 0.2531 | 0.2852 | 0.2345 |
3.9452 | 18 | - | 0.2617 | 0.2914 | 0.2353 |
4.3836 | 20 | 5.3042 | - | - | - |
4.8219 | 22 | - | 0.2626 | 0.2946 | 0.2422 |
5.9178 | 27 | - | 0.2629 | 0.2987 | 0.2481 |
6.5753 | 30 | 4.2433 | - | - | - |
6.7945 | 31 | - | 0.2684 | 0.2988 | 0.2495 |
7.8904 | 36 | - | 0.2652 | 0.3003 | 0.2488 |
8.7671 | 40 | 3.9117 | 0.2653 | 0.3003 | 0.2482 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.0.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}