xlsr-53-ur / README.md
akmalmasud96's picture
update model card README.md
486bf89
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - fleurs
metrics:
  - wer
model-index:
  - name: xlsr-53-ur
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fleurs
          type: fleurs
          config: ur_pk
          split: test
          args: ur_pk
        metrics:
          - name: Wer
            type: wer
            value: 0.3450557529714496

xlsr-53-ur

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6860
  • Wer: 0.3451

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 12
  • total_eval_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.0396 1.59 300 3.0179 1.0
0.4976 3.17 600 0.7037 0.5447
0.3062 4.76 900 0.5557 0.4036
0.2287 6.35 1200 0.5620 0.3935
0.2504 7.94 1500 0.5907 0.3677
0.0633 9.52 1800 0.6239 0.3773
0.0456 11.11 2100 0.6748 0.3604
0.0774 12.7 2400 0.6747 0.3552
0.058 14.29 2700 0.6860 0.3451

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2