|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
def onehot(indexes, N=None): |
|
""" |
|
Creates a one-representation of indexes with N possible entries |
|
if N is not specified, it will suit the maximum index appearing. |
|
indexes is a long-tensor of indexes |
|
""" |
|
if N is None: |
|
N = indexes.max() + 1 |
|
sz = list(indexes.size()) |
|
output = indexes.new().long().resize_(*sz, N).zero_() |
|
output.scatter_(-1, indexes.unsqueeze(-1), 1) |
|
return output |
|
|
|
|
|
class SmoothedCrossEntropyLoss(nn.Module): |
|
def __init__(self, reduction='mean'): |
|
super(SmoothedCrossEntropyLoss, self).__init__() |
|
self.reduction = reduction |
|
|
|
def forward(self, logits, labels, smooth_eps=0.1, mask=None, from_logits=True): |
|
""" |
|
Args: |
|
logits: (N, Lv), unnormalized probabilities, torch.float32 |
|
labels: (N, Lv) or (N, ), one hot labels or indices labels, torch.float32 or torch.int64 |
|
smooth_eps: float |
|
mask: (N, Lv) |
|
from_logits: bool |
|
""" |
|
if from_logits: |
|
probs = F.log_softmax(logits, dim=-1) |
|
else: |
|
probs = logits |
|
num_classes = probs.size()[-1] |
|
if len(probs.size()) > len(labels.size()): |
|
labels = onehot(labels, num_classes).type(probs.dtype) |
|
if mask is None: |
|
labels = labels * (1 - smooth_eps) + smooth_eps / num_classes |
|
else: |
|
mask = mask.type(probs.dtype) |
|
valid_samples = torch.sum(mask, dim=-1, keepdim=True, dtype=probs.dtype) |
|
eps_per_sample = smooth_eps / valid_samples |
|
labels = (labels * (1 - smooth_eps) + eps_per_sample) * mask |
|
loss = -torch.sum(labels * probs, dim=-1) |
|
if self.reduction == 'sum': |
|
return torch.sum(loss) |
|
elif self.reduction == 'mean': |
|
return torch.mean(loss) |
|
else: |
|
return loss |
|
|
|
|
|
class MILNCELoss(nn.Module): |
|
def __init__(self, reduction='mean'): |
|
super(MILNCELoss, self).__init__() |
|
self.reduction = reduction |
|
|
|
def forward(self, q2ctx_scores=None, contexts=None, queries=None): |
|
if q2ctx_scores is None: |
|
assert contexts is not None and queries is not None |
|
x = torch.matmul(contexts, queries.t()) |
|
device = contexts.device |
|
bsz = contexts.shape[0] |
|
else: |
|
x = q2ctx_scores |
|
device = q2ctx_scores.device |
|
bsz = q2ctx_scores.shape[0] |
|
x = x.view(bsz, bsz, -1) |
|
nominator = x * torch.eye(x.shape[0], dtype=torch.float32, device=device)[:, :, None] |
|
nominator = nominator.sum(dim=1) |
|
nominator = torch.logsumexp(nominator, dim=1) |
|
denominator = torch.cat((x, x.permute(1, 0, 2)), dim=1).view(x.shape[0], -1) |
|
denominator = torch.logsumexp(denominator, dim=1) |
|
if self.reduction: |
|
return torch.mean(denominator - nominator) |
|
else: |
|
return denominator - nominator |
|
|
|
|
|
class DepthwiseSeparableConv(nn.Module): |
|
""" |
|
Depth-wise separable convolution uses less parameters to generate output by convolution. |
|
:Examples: |
|
>>> m = DepthwiseSeparableConv(300, 200, 5, dim=1) |
|
>>> input_tensor = torch.randn(32, 300, 20) |
|
>>> output = m(input_tensor) |
|
""" |
|
def __init__(self, in_ch, out_ch, k, dim=1, relu=True): |
|
""" |
|
:param in_ch: input hidden dimension size |
|
:param out_ch: output hidden dimension size |
|
:param k: kernel size |
|
:param dim: default 1. 1D conv or 2D conv |
|
""" |
|
super(DepthwiseSeparableConv, self).__init__() |
|
self.relu = relu |
|
if dim == 1: |
|
self.depthwise_conv = nn.Conv1d(in_channels=in_ch, out_channels=in_ch, kernel_size=k, groups=in_ch, |
|
padding=k // 2) |
|
self.pointwise_conv = nn.Conv1d(in_channels=in_ch, out_channels=out_ch, kernel_size=1, padding=0) |
|
elif dim == 2: |
|
self.depthwise_conv = nn.Conv2d(in_channels=in_ch, out_channels=in_ch, kernel_size=k, groups=in_ch, |
|
padding=k // 2) |
|
self.pointwise_conv = nn.Conv2d(in_channels=in_ch, out_channels=out_ch, kernel_size=1, padding=0) |
|
else: |
|
raise Exception("Incorrect dimension!") |
|
|
|
def forward(self, x): |
|
""" |
|
:Input: (N, L_in, D) |
|
:Output: (N, L_out, D) |
|
""" |
|
x = x.transpose(1, 2) |
|
if self.relu: |
|
out = F.relu(self.pointwise_conv(self.depthwise_conv(x)), inplace=True) |
|
else: |
|
out = self.pointwise_conv(self.depthwise_conv(x)) |
|
return out.transpose(1, 2) |
|
|
|
|
|
class ConvEncoder(nn.Module): |
|
def __init__(self, kernel_size=7, n_filters=128, dropout=0.1): |
|
super(ConvEncoder, self).__init__() |
|
self.dropout = nn.Dropout(dropout) |
|
self.layer_norm = nn.LayerNorm(n_filters) |
|
self.conv = DepthwiseSeparableConv(in_ch=n_filters, out_ch=n_filters, k=kernel_size, relu=True) |
|
|
|
def forward(self, x): |
|
""" |
|
:param x: (N, L, D) |
|
:return: (N, L, D) |
|
""" |
|
return self.layer_norm(self.dropout(self.conv(x)) + x) |
|
|
|
|
|
class TrainablePositionalEncoding(nn.Module): |
|
"""Construct the embeddings from word, position and token_type embeddings.""" |
|
def __init__(self, max_position_embeddings, hidden_size, dropout=0.1): |
|
super(TrainablePositionalEncoding, self).__init__() |
|
self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size) |
|
self.LayerNorm = nn.LayerNorm(hidden_size) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, input_feat): |
|
bsz, seq_length = input_feat.shape[:2] |
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_feat.device) |
|
position_ids = position_ids.unsqueeze(0).repeat(bsz, 1) |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings = self.LayerNorm(input_feat + position_embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
def add_position_emb(self, input_feat): |
|
bsz, seq_length = input_feat.shape[:2] |
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_feat.device) |
|
position_ids = position_ids.unsqueeze(0).repeat(bsz, 1) |
|
position_embeddings = self.position_embeddings(position_ids) |
|
return input_feat + position_embeddings |
|
|
|
|
|
class LinearLayer(nn.Module): |
|
"""linear layer configurable with layer normalization, dropout, ReLU.""" |
|
def __init__(self, in_hsz, out_hsz, layer_norm=True, dropout=0.1, relu=True): |
|
super(LinearLayer, self).__init__() |
|
self.relu = relu |
|
self.layer_norm = layer_norm |
|
if layer_norm: |
|
self.LayerNorm = nn.LayerNorm(in_hsz) |
|
layers = [nn.Dropout(dropout), nn.Linear(in_hsz, out_hsz)] |
|
self.net = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
"""(N, L, D)""" |
|
if self.layer_norm: |
|
x = self.LayerNorm(x) |
|
x = self.net(x) |
|
if self.relu: |
|
x = F.relu(x, inplace=True) |
|
return x |
|
|
|
|
|
class BertLayer(nn.Module): |
|
def __init__(self, config, use_self_attention=True): |
|
super(BertLayer, self).__init__() |
|
self.use_self_attention = use_self_attention |
|
if use_self_attention: |
|
self.attention = BertAttention(config) |
|
self.intermediate = BertIntermediate(config) |
|
self.output = BertOutput(config) |
|
|
|
def forward(self, hidden_states, attention_mask): |
|
""" |
|
Args: |
|
hidden_states: (N, L, D) |
|
attention_mask: (N, L) with 1 indicate valid, 0 indicates invalid |
|
""" |
|
if self.use_self_attention: |
|
attention_output = self.attention(hidden_states, attention_mask) |
|
else: |
|
attention_output = hidden_states |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
class BertAttention(nn.Module): |
|
def __init__(self, config): |
|
super(BertAttention, self).__init__() |
|
self.self = BertSelfAttention(config) |
|
self.output = BertSelfOutput(config) |
|
|
|
def forward(self, input_tensor, attention_mask): |
|
""" |
|
Args: |
|
input_tensor: (N, L, D) |
|
attention_mask: (N, L) |
|
""" |
|
self_output = self.self(input_tensor, input_tensor, input_tensor, attention_mask) |
|
attention_output = self.output(self_output, input_tensor) |
|
return attention_output |
|
|
|
|
|
class BertIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super(BertIntermediate, self).__init__() |
|
self.dense = nn.Sequential(nn.Linear(config.hidden_size, config.intermediate_size), nn.ReLU(True)) |
|
|
|
def forward(self, hidden_states): |
|
return self.dense(hidden_states) |
|
|
|
|
|
class BertOutput(nn.Module): |
|
def __init__(self, config): |
|
super(BertOutput, self).__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class BertSelfAttention(nn.Module): |
|
def __init__(self, config): |
|
super(BertSelfAttention, self).__init__() |
|
if config.hidden_size % config.num_attention_heads != 0: |
|
raise ValueError("The hidden size (%d) is not a multiple of the number of attention heads (%d)" % ( |
|
config.hidden_size, config.num_attention_heads)) |
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
|
|
def transpose_for_scores(self, x): |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(*new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward(self, query_states, key_states, value_states, attention_mask): |
|
""" |
|
Args: |
|
query_states: (N, Lq, D) |
|
key_states: (N, L, D) |
|
value_states: (N, L, D) |
|
attention_mask: (N, Lq, L) |
|
""" |
|
|
|
|
|
attention_mask = (1 - attention_mask.unsqueeze(1)) * -10000. |
|
mixed_query_layer = self.query(query_states) |
|
mixed_key_layer = self.key(key_states) |
|
mixed_value_layer = self.value(value_states) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
key_layer = self.transpose_for_scores(mixed_key_layer) |
|
value_layer = self.transpose_for_scores(mixed_value_layer) |
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
attention_probs = nn.Softmax(dim=-1)(attention_scores) |
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
return context_layer |
|
|
|
|
|
class BertSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super(BertSelfOutput, self).__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|