cankaracelebi's picture
update model card README.md
0686659
metadata
language:
  - tr
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Medium Tr - Can K V2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: tr
          split: test
          args: 'config: tr, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 67.02546197734821

Whisper Medium Tr - Can K V2

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1892
  • Wer: 67.0255

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.146 0.34 1000 0.2164 105.0754
0.1562 0.69 2000 0.2115 43.5238
0.0803 1.03 3000 0.1979 42.8919
0.0668 1.38 4000 0.1944 37.3397
0.0693 1.72 5000 0.1869 36.3910
0.0305 2.07 6000 0.1898 49.8254
0.0272 2.41 7000 0.1908 60.8005
0.0274 2.76 8000 0.1892 67.0255

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.13.3