carolinetfls's picture
update model card README.md
523f71d
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: plant-seedlings-model-ConvNet
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9522292993630573

plant-seedlings-model-ConvNet

This model is a fine-tuned version of facebook/convnext-tiny-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2410
  • Accuracy: 0.9522

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.494 0.8 100 0.4274 0.8828
0.246 1.6 200 0.2878 0.8930
0.1042 2.4 300 0.2227 0.9172
0.0174 3.2 400 0.2208 0.9299
0.0088 4.0 500 0.3197 0.9185
0.0078 4.8 600 0.2555 0.9357
0.0013 5.6 700 0.2599 0.9427
0.0068 6.4 800 0.3072 0.9312
0.0007 7.2 900 0.2217 0.9484
0.0004 8.0 1000 0.2551 0.9401
0.0003 8.8 1100 0.2321 0.9478
0.0002 9.6 1200 0.2329 0.9484
0.0002 10.4 1300 0.2322 0.9478
0.0002 11.2 1400 0.2342 0.9478
0.0002 12.0 1500 0.2348 0.9490
0.0001 12.8 1600 0.2358 0.9490
0.0001 13.6 1700 0.2368 0.9497
0.0001 14.4 1800 0.2377 0.9510
0.0001 15.2 1900 0.2384 0.9516
0.0001 16.0 2000 0.2391 0.9516
0.0001 16.8 2100 0.2397 0.9522
0.0001 17.6 2200 0.2401 0.9522
0.0001 18.4 2300 0.2406 0.9522
0.0001 19.2 2400 0.2409 0.9522
0.0001 20.0 2500 0.2410 0.9522

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3