ch-bz's picture
Update README.md
c364bb4 verified
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
import gymnasium as gym
from huggingface_sb3 import load_from_hub
import numpy as np
import pickle
# Load the Q table
env_name = "FrozenLake-v1"
model_name = "q-FrozenLake-v1-4x4-noSlippery"
model_path = load_from_hub(repo_id="ch-bz/" + model_name, filename="q-learning.pkl")
Qtable = pickle.load(open(model_path, "rb"))["qtable"]
# Run the demonstration of the result
env = gym.make("FrozenLake-v1", map_name="4x4", is_slippery=False, render_mode="human")
state, info = env.reset()
while True:
action = np.argmax(Qtable[state][:])
state, reward, terminated, truncated, info = env.step(action)
env.render()
if terminated or truncated:
state, info = env.reset()
```