food-VQA-benchmark / README.md
AdaptLLM's picture
Update README.md
8a503fc verified
|
raw
history blame
12.3 kB
---
task_categories:
- visual-question-answering
language:
- en
tags:
- Vision
- food
- recipe
configs:
- config_name: Recipe1M
data_files:
- split: test
path: food_eval_multitask_v2/data-*.arrow
- config_name: Nutrition5K
data_files:
- split: test
path: nutrition50k/data-*.arrow
- config_name: Food101
data_files:
- split: test
path: food101/data-*.arrow
- config_name: FoodSeg103
data_files:
- split: test
path: foodseg103/data-*.arrow
---
# Adapting Multimodal Large Language Models to Domains via Post-Training
This repos contains the **food visual instruction tasks for evaluating MLLMs** in our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930).
The main project page is: [Adapt-MLLM-to-Domains](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains/edit/main/README.md)
We investigate domain adaptation of MLLMs through post-training, focusing on data synthesis, training pipelines, and task evaluation.
**(1) Data Synthesis**: Using open-source models, we develop a visual instruction synthesizer that effectively generates diverse visual instruction tasks from domain-specific image-caption pairs. **Our synthetic tasks surpass those generated by manual rules, GPT-4, and GPT-4V in enhancing the domain-specific performance of MLLMs.**
**(2) Training Pipeline**: While the two-stage training--initially on image-caption pairs followed by visual instruction tasks--is commonly adopted for developing general MLLMs, we apply a single-stage training pipeline to enhance task diversity for domain-specific post-training.
**(3) Task Evaluation**: We conduct experiments in two domains, biomedicine and food, by post-training MLLMs of different sources and scales (e.g., Qwen2-VL-2B, LLaVA-v1.6-8B, Llama-3.2-11B), and then evaluating MLLM performance on various domain-specific tasks.
<p align='left'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/-Jp7pAsCR2Tj4WwfwsbCo.png" width="600">
</p>
## Resources
**🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗**
| Model | Repo ID in HF 🤗 | Domain | Base Model | Training Data | Evaluation Benchmark |
|:----------------------------------------------------------------------------|:--------------------------------------------|:--------------|:-------------------------|:------------------------------------------------------------------------------------------------|-----------------------|
| [Visual Instruction Synthesizer](https://huggingface.co/AdaptLLM/visual-instruction-synthesizer) | AdaptLLM/visual-instruction-synthesizer | - | open-llava-next-llama3-8b | VisionFLAN and ALLaVA | - |
| [AdaMLLM-med-2B](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct) | AdaptLLM/biomed-Qwen2-VL-2B-Instruct | Biomedicine | Qwen2-VL-2B-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
| [AdaMLLM-food-2B](https://huggingface.co/AdaptLLM/food-Qwen2-VL-2B-Instruct) | AdaptLLM/food-Qwen2-VL-2B-Instruct | Food | Qwen2-VL-2B-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
| [AdaMLLM-med-8B](https://huggingface.co/AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B) | AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B | Biomedicine | open-llava-next-llama3-8b | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
| [AdaMLLM-food-8B](https://huggingface.co/AdaptLLM/food-LLaVA-NeXT-Llama3-8B) |AdaptLLM/food-LLaVA-NeXT-Llama3-8B | Food | open-llava-next-llama3-8b | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
| [AdaMLLM-med-11B](https://huggingface.co/AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct | Biomedicine | Llama-3.2-11B-Vision-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
| [AdaMLLM-food-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/food-Llama-3.2-11B-Vision-Instruct | Food | Llama-3.2-11B-Vision-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
**Code**: [https://github.com/bigai-ai/QA-Synthesizer](https://github.com/bigai-ai/QA-Synthesizer)
## 1. Download Data
You can load datasets using the `datasets` library:
```python
from datasets import load_dataset
# Choose the task name from the list of available tasks
task_name = 'FoodSeg103' # Options: 'Food101', 'FoodSeg103', 'Nutrition5K', 'Recipe1M'
# Load the dataset for the chosen task
data = load_dataset('AdaptLLM/food-VQA-benchmark', task_name, split='test')
print(list(data)[0])
```
The mapping between category names and indices for `Food101`, `FoodSeg103`, and `Nutrition5K` datasets is provided in the following files:
<details>
<summary> Click to expand </summary>
- Food101: `food101_name_to_label_map.json`
- FoodSeg103: `foodSeg103_id2label.json`
- Nutrition5K: `nutrition5k_ingredients.py`
#### Example Usages:
**Food101**
```python
import json
# Load the mapping file
map_path = 'food101_name_to_label_map.json'
name_to_label_map = json.load(open(map_path))
name_to_label_map = {key.replace('_', ' '): value for key, value in name_to_label_map.items()}
# Reverse mapping: label to name
label_to_name_map = {value: key for key, value in name_to_label_map.items()}
```
**FoodSeg103**
```python
import json
# Load the mapping file
map_path = 'foodSeg103_id2label.json'
id2name_map = json.load(open(map_path))
# Remove background and irrelevant labels
id2name_map.pop("0") # Background
id2name_map.pop("103") # Other ingredients
# Convert keys to integers
id2name_map = {int(key): value for key, value in id2name_map.items()}
# Create reverse mapping: name to ID
name2id_map = {value: key for key, value in id2name_map.items()}
```
**Nutrition5K**
```python
from nutrition5k_ingredients import all_ingredients
# Create mappings
id2name_map = dict(zip(range(0, len(all_ingredients)), all_ingredients))
name2id_map = {value: key for key, value in id2name_map.items()}
```
</details>
## 2. Evaluate Any MLLM Compatible with vLLM on the Food Benchmarks
We provide a guide to directly evaluate MLLMs such as LLaVA-v1.6 ([open-source version](https://huggingface.co/Lin-Chen/open-llava-next-llama3-8b)), Qwen2-VL-Instruct, and Llama-3.2-Vision-Instruct.
**The dataset loading script is embedded in the inference code, so you can directly run the following commands to evaluate MLLMs.**
To evaluate other MLLMs, refer to [this guide](https://github.com/vllm-project/vllm/blob/main/examples/offline_inference_vision_language.py) for modifying the `BaseTask` class in the [vllm_inference/utils/task.py](https://github.com/bigai-ai/QA-Synthesizer/blob/main/vllm_inference/utils/task.py) file.
Feel free reach out to us for assistance!
### 1) Setup
Install vLLM using `pip` or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source).
As recommended in the official vLLM documentation, install vLLM in a **fresh new** conda environment:
```bash
conda create -n vllm python=3.10 -y
conda activate vllm
pip install vllm # Ensure vllm>=0.6.2 for compatibility with Llama-3.2. If Llama-3.2 is not used, vllm==0.6.1 is sufficient.
```
Clone the repository and navigate to the inference directory:
```bash
git clone https://github.com/bigai-ai/QA-Synthesizer.git
cd QA-Synthesizer/vllm_inference
RESULTS_DIR=./eval_results # Directory for saving evaluation scores
```
### 2) Evaluate
Run the following commands:
```bash
# Specify the domain: choose from ['food', 'Recipe1M', 'Nutrition5K', 'Food101', 'FoodSeg103']
# 'food' runs inference on all food tasks; others run on individual tasks.
DOMAIN='food'
# Specify the model type: choose from ['llava', 'qwen2_vl', 'mllama']
# For LLaVA-v1.6, Qwen2-VL, and Llama-3.2-Vision-Instruct, respectively.
MODEL_TYPE='qwen2_vl'
# Set the model repository ID on Hugging Face. Examples:
# "Qwen/Qwen2-VL-2B-Instruct", "AdaptLLM/food-Qwen2-VL-2B-Instruct" for MLLMs based on Qwen2-VL-Instruct.
# "meta-llama/Llama-3.2-11B-Vision-Instruct", "AdaptLLM/food-Llama-3.2-11B-Vision-Instruct" for MLLMs based on Llama-3.2-Vision-Instruct.
# "AdaptLLM/food-LLaVA-NeXT-Llama3-8B" for MLLMs based on LLaVA-v1.6.
MODEL=AdaptLLM/food-Qwen2-VL-2B-Instruct
# Set the directory for saving model prediction outputs:
OUTPUT_DIR=./output/AdaMLLM-food-LLaVA-8B_${DOMAIN}
# Run inference with data parallelism; adjust CUDA devices as needed:
CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_inference.sh ${MODEL} ${DOMAIN} ${MODEL_TYPE} ${OUTPUT_DIR} ${RESULTS_DIR}
```
Detailed scripts to reproduce our results:
<details>
<summary> Click to expand </summary>
```bash
# Choose from ['food', 'Recipe1M', 'Nutrition5K', 'Food101', 'FoodSeg103']
# 'food' runs inference on all food tasks; others run on a single task
DOMAIN='food'
# 1. LLaVA-v1.6-8B
MODEL_TYPE='llava'
MODEL=AdaptLLM/food-LLaVA-NeXT-Llama3-8B # HuggingFace repo ID for AdaMLLM-food-8B
OUTPUT_DIR=./output/AdaMLLM-food-LLaVA-8B_${DOMAIN}
CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_inference.sh ${MODEL} ${DOMAIN} ${MODEL_TYPE} ${OUTPUT_DIR} ${RESULTS_DIR}
# 2. Qwen2-VL-2B
MODEL_TYPE='qwen2_vl'
MODEL=Qwen/Qwen2-VL-2B-Instruct # HuggingFace repo ID for Qwen2-VL
OUTPUT_DIR=./output/Qwen2-VL-2B-Instruct_${DOMAIN}
CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_inference.sh ${MODEL} ${DOMAIN} ${MODEL_TYPE} ${OUTPUT_DIR} ${RESULTS_DIR}
MODEL=AdaptLLM/food-Qwen2-VL-2B-Instruct # HuggingFace repo ID for AdaMLLM-food-2B
OUTPUT_DIR=./output/AdaMLLM-food-Qwen-2B_${DOMAIN}
CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_inference.sh ${MODEL} ${DOMAIN} ${MODEL_TYPE} ${OUTPUT_DIR} ${RESULTS_DIR}
# 3. Llama-3.2-11B
MODEL_TYPE='mllama'
MODEL=meta-llama/Llama-3.2-11B-Vision-Instruct # HuggingFace repo ID for Llama3.2
OUTPUT_DIR=./output/Llama-3.2-11B-Vision-Instruct_${DOMAIN}
CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_inference.sh ${MODEL} ${DOMAIN} ${MODEL_TYPE} ${OUTPUT_DIR} ${RESULTS_DIR}
MODEL=AdaptLLM/food-Llama-3.2-11B-Vision-Instruct # HuggingFace repo ID for AdaMLLM-food-11B
OUTPUT_DIR=./output/AdaMLLM-food-Llama3.2-2B_${DOMAIN}
CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_inference.sh ${MODEL} ${DOMAIN} ${MODEL_TYPE} ${OUTPUT_DIR} ${RESULTS_DIR}
```
</details>
### 3) Results
The evaluation results are stored in `./eval_results`, and the model prediction outputs are in `./output`.
## Citation
If you find our work helpful, please cite us.
AdaMLLM
```bibtex
@article{adamllm,
title={On Domain-Specific Post-Training for Multimodal Large Language Models},
author={Cheng, Daixuan and Huang, Shaohan and Zhu, Ziyu and Zhang, Xintong and Zhao, Wayne Xin and Luan, Zhongzhi and Dai, Bo and Zhang, Zhenliang},
journal={arXiv preprint arXiv:2411.19930},
year={2024}
}
```
[AdaptLLM](https://huggingface.co/papers/2309.09530) (ICLR 2024)
```bibtex
@inproceedings{
adaptllm,
title={Adapting Large Language Models via Reading Comprehension},
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=y886UXPEZ0}
}
```