metadata
license: cc-by-nc-sa-4.0
task_categories:
- question-answering
language:
- en
configs:
- config_name: train
data_files:
- split: 2ppl
path:
- train/people2_num200.jsonl
- split: 3ppl
path:
- train/people3_num1000.jsonl
- split: 4ppl
path:
- train/people4_num1000.jsonl
- split: 5ppl
path:
- train/people5_num1000.jsonl
- split: 6ppl
path:
- train/people6_num1000.jsonl
- split: 7ppl
path:
- train/people7_num1000.jsonl
- split: 8ppl
path:
- train/people8_num1000.jsonl
- config_name: test
data_files:
- split: 2ppl
path:
- test/people2_num100.jsonl
- split: 3ppl
path:
- test/people3_num100.jsonl
- split: 4ppl
path:
- test/people4_num100.jsonl
- split: 5ppl
path:
- test/people5_num100.jsonl
- split: 6ppl
path:
- test/people6_num100.jsonl
- split: 7ppl
path:
- test/people7_num100.jsonl
- split: 8ppl
path:
- test/people8_num100.jsonl
tags:
- logical
- reasoning
pretty_name: K
size_categories:
- 1K<n<10K
๐ knights-and-knaves Dataset [Project Page]
The knights-and-knaves dataset serves as a logical reasoning benchmark to evaluate the reasoning capabilities of LLMs.
๐๐ Check out the perturbed knights-and-knaves dataset to evaluate the memorization of LLMs in reasoning.
Loading the dataset
To load the dataset:
from datasets import load_dataset
data_subject = load_dataset('K-and-K/knights-and-knaves','test',split="2ppl")
- Available subset:
test
,train
. - Available split:
2ppl
,3ppl
,4ppl
,5ppl
,6ppl
,7ppl
,8ppl
.
๐ ๏ธ Codebase
To evaluate LLMs on our datasets, visit our GitHub repository.
โญ Citing our Work
If you find our codebase and datasets beneficial, kindly cite our work:
@article{xie2024memorization,
title={On Memorization of Large Language Models in Logical Reasoning},
author={Chulin Xie and Yangsibo Huang and Chiyuan Zhang and Da Yu and Xinyun Chen and Bill Yuchen Lin and Bo Li and Badih Ghazi and Ravi Kumar},
year={2024},
eprint={2410.23123},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.23123},
}