Datasets:

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
knights-and-knaves / README.md
alphapav's picture
Update README.md
2f68547 verified
---
license: cc-by-nc-sa-4.0
task_categories:
- question-answering
language:
- en
configs:
- config_name: train
data_files:
- split: 2ppl
path:
- train/people2_num200.jsonl
- split: 3ppl
path:
- train/people3_num1000.jsonl
- split: 4ppl
path:
- train/people4_num1000.jsonl
- split: 5ppl
path:
- train/people5_num1000.jsonl
- split: 6ppl
path:
- train/people6_num1000.jsonl
- split: 7ppl
path:
- train/people7_num1000.jsonl
- split: 8ppl
path:
- train/people8_num1000.jsonl
- config_name: test
data_files:
- split: 2ppl
path:
- test/people2_num100.jsonl
- split: 3ppl
path:
- test/people3_num100.jsonl
- split: 4ppl
path:
- test/people4_num100.jsonl
- split: 5ppl
path:
- test/people5_num100.jsonl
- split: 6ppl
path:
- test/people6_num100.jsonl
- split: 7ppl
path:
- test/people7_num100.jsonl
- split: 8ppl
path:
- test/people8_num100.jsonl
tags:
- logical
- reasoning
pretty_name: K
size_categories:
- 1K<n<10K
---
# πŸ“˜ knights-and-knaves Dataset [[Project Page]](https://memkklogic.github.io/)
The **knights-and-knaves dataset** serves as a logical reasoning benchmark to evaluate the reasoning capabilities of LLMs.
**πŸš€πŸš€ Check out the [perturbed knights-and-knaves dataset](https://huggingface.co/datasets/K-and-K/perturbed-knights-and-knaves) to evaluate the memorization of LLMs in reasoning.**
## Loading the dataset
To load the dataset:
```python
from datasets import load_dataset
data_subject = load_dataset('K-and-K/knights-and-knaves','test',split="2ppl")
```
* Available subset: `test`, `train`.
* Available split: `2ppl`,`3ppl`,`4ppl`,`5ppl`,`6ppl`,`7ppl`,`8ppl`.
## πŸ› οΈ Codebase
To evaluate LLMs on our datasets, visit our [GitHub repository](https://github.com/AlphaPav/mem-kk-logic/).
## ⭐ Citing our Work
If you find our codebase and datasets beneficial, kindly cite our work:
```bibtex
@article{xie2024memorization,
title={On Memorization of Large Language Models in Logical Reasoning},
author={Chulin Xie and Yangsibo Huang and Chiyuan Zhang and Da Yu and Xinyun Chen and Bill Yuchen Lin and Bo Li and Badih Ghazi and Ravi Kumar},
year={2024},
eprint={2410.23123},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.23123},
}
```