TeX
stringlengths 1
269k
⌀ |
---|
v_{1},v_{2}\in\overline{V_{m}} |
|\Delta E|^{\prime}=w^{*} |
1\leq j\leq k |
{\mathcal{R}} |
\pi\left(G^{\prime}\right)\leq\pi(G)-d |
\displaystyle\underbrace{n_{R}\times|y-C|\times k^{\prime}}_{\text{between the%
subpath of }w_{2}\text{ and the vertices in }u}+\underbrace{n_{R}\times|y-B-C%
|\times k}_{{\text{between the subpath of }w_{2}\text{ and the vertices in }v}}+ |
\operatorname{min}(\mathcal{E}(M_{L}^{*}),\mathcal{E}(M_{R}^{*})) |
E_{m}=\{e^{*}\} |
\displaystyle n_{L}\times n_{R}\times|x+y-A-B-C|\xrightarrow{n_{R}=0} |
P |
v_{i}\in V_{L} |
M_{R}^{*}\xleftarrow[]{}\emptyset |
\alpha_{1}=A-x+x-A-B<B\xrightarrow{}0<2B |
M_{R} |
u,v\in V |
n_{L}=3 |
\left|\sum_{k=i}^{j-2}(w_{k}+\epsilon_{k})-w^{*}-\sum_{k=i}^{j-2}w_{k}\right|=%
\left|w^{*}-\sum_{k=i}^{j-2}\epsilon_{k}\right| |
n_{L}(|x-A|+|x-A-B|) |
\mathcal{E}_{L}^{(i+1)}-\mathcal{E}_{L}^{(i)}=n_{L}\times\big{(}(i+1)\;w_{i+1}%
-(k-i)\;w_{i+1}\big{)} |
w^{\prime}(e_{i})=w(e_{i})+w(e^{*}) |
S_{R}\xleftarrow{}\sum_{\forall e_{i}\in E_{R}}R_{i} |
u,v\in G_{1} |
x\geq A |
\Delta({\text{MARK\_RIGHT}}) |
\operatorname{min}(\mathcal{E}(M_{R}^{*}),\mathcal{E}(M_{L}^{*}))\leq\mathcal{%
E}(M) |
{\mathcal{L}}-(\frac{{\mathcal{L}}{n_{L}}+{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}})%
=\frac{{\mathcal{L}}{n_{L}}-{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}} |
u_{j+1} |
T_{j}^{R} |
\varphi(x)=x/\alpha-\beta |
\mathcal{E}=\mathcal{E}_{R} |
S_{R}-S_{L}\leq R_{i} |
e_{3} |
a\geq 0 |
V_{L} |
{n_{L}} |
n_{R} |
n_{L}\geq 0 |
c_{2}\geq\epsilon |
{n^{2}_{L}}\times((i+1)({\mathcal{L}}-i-1)-i({\mathcal{L}}-i))={n^{2}_{L}}%
\times(i{\mathcal{L}}-i^{2}-i+{\mathcal{L}}-i-1-i{\mathcal{L}}+i^{2})={n^{2}_{%
L}}\times({\mathcal{L}}-2i-1) |
e^{*}_{k}=(u_{j},u_{j+1}) |
|\Delta E|=|\overline{V_{m}}|(w^{*}_{1}+\dots+w^{*}_{k})=(n-2k)(w^{*}_{1}+%
\dots+w^{*}_{k}) |
e_{1},e_{2},\dots,e_{k} |
-\left|\sum_{k=n_{1}+1}^{j-2}\epsilon_{k}\right| |
\overline{E_{m}} |
e^{*}\in E |
\epsilon_{1}+\epsilon_{2}=B |
n_{L}+n_{R}=n-2 |
c^{\prime}_{1}+c^{\prime}_{2}=1 |
\mathcal{E}_{L}^{(j)},j\neq\frac{k}{2} |
L_{i}\geq S_{L}-S_{R} |
j>0 |
\Delta_{1}({\text{MARK\_LEFT}}) |
L_{i}\times R_{j}\times w^{*} |
e_{j}\neq e_{1} |
x-A |
j\leq\frac{{\mathcal{R}}}{2}+\frac{{n_{L}}(1-{\mathcal{L}})}{2{n_{R}}} |
|a|=a |
2\times L_{i}\times(S_{LM}) |
n_{L}+n_{R}=|\overline{V_{m}}|=n-(k+k^{\prime}) |
M_{L}^{*}\xleftarrow[]{}\emptyset |
\frac{\mathcal{E}_{L}}{n_{L}} |
\displaystyle(\frac{{\mathcal{L}}{n_{L}}+{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}})(%
{n^{2}_{L}}\times({\mathcal{L}}-1)+{n_{L}}{n_{R}}({\mathcal{R}}))+\frac{{%
\mathcal{L}}{n_{L}}-{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}}({n^{2}_{L}}\times({%
\mathcal{L}}-1)+{n_{L}}{n_{R}}(-{\mathcal{R}})) |
\displaystyle\mathcal{E}_{L}^{(0)}=n_{L}\times\big{(}w_{1}+w_{1}+w_{2}+w_{1}+w%
_{2}+w_{3}+\dots+w_{1}+w_{2}+\dots+w_{k}\big{)} |
\mathcal{W}^{\prime}(E^{(v_{1},u_{5})})=\epsilon_{1}+\epsilon_{2}+\epsilon_{2}%
+\epsilon_{3}+\epsilon_{4} |
v_{i}\in\overline{V_{m}} |
e_{4}=(v_{2},v_{6}) |
u\in\overline{V_{m}} |
{T_{i}^{L}},i\in\{1,\dots,{\mathcal{L}}\} |
\operatorname{CONTRACTION} |
{{\mathcal{L}}\choose{2}}\times n_{L}\times n_{L}\times 2w^{*}={n^{2}_{L}}%
\times{\mathcal{L}}({\mathcal{L}}-1)\times w^{*} |
\displaystyle n_{L}(|x-A|+|x-A-B|)+n_{R}(|y-C|+|y-B-C|)+n_{L}n_{R}|x+y-A-B-C| |
e_{3}=(v_{2},v_{5}) |
\mathcal{E}(M_{R}^{*})=\underbrace{\mathcal{E}(M_{0})}_{\text{The error %
associated with the empty marking}}+\underbrace{\sum_{e_{i}\in E_{R}}R_{i}%
\times w^{*}\times(S_{R}-R_{i}-S_{L})}_{\text{The sum of all }\Delta({\text{%
MARK\_RIGHT}})\text{'s that
transform }M_{0}\text{ into }M_{R}^{*}} |
{\mathcal{L}}=2 |
\displaystyle\geq\mathcal{E}(M_{0})+\epsilon_{1}\times\sum_{e_{i}\in E_{L}}L_{%
i}\times w^{*}\times(S_{L}-L_{i}-S_{R})+\epsilon_{2}\times\sum_{e_{i}\in E_{L}%
}L_{i}\times w^{*}\times(S_{L}-L_{i}-S_{R}) |
\mathcal{E}_{LR}=n_{L}\times n_{R}\times|x+y-w_{0}-w_{1}-\dots-w_{k+1}| |
w_{j} |
\displaystyle 0 |
\Delta({\text{MARK\_LEFT}}) |
j\xleftarrow{}j |
M_{0} |
x=A+\epsilon_{1} |
\Delta_{v_{i},u_{j}}+\Delta_{v_{i},u_{j+1}}\leq\left|w^{*}_{k}-\mathcal{W}^{%
\prime}(E^{(v_{i},u_{j})})+\mathcal{W}^{*}(E^{(v_{i},u_{j})})\right|-\left|w^{%
*}_{k}+\mathcal{W}^{*}(E^{(v_{i},u_{j})})-\mathcal{W}^{\prime}(E^{(v_{i},u_{j}%
)})\right|\leq 0 |
L_{i}=|\{v|v\in{T_{i}^{L}}\}| |
R_{j}=|\{v|v\in{T_{j}^{R}}\}| |
E^{\prime}=E-e^{*} |
e^{\prime}=e_{1} |
n_{L} |
E_{R}=\{(v,w)|(v,w)\in E,w\neq u\} |
e^{*}_{k}=e^{*}_{3}=(u_{5},u_{6}) |
(S_{LM}+(S_{LU}-L_{i})+S_{RM}-S_{RU})\leq 0\xrightarrow[]{S_{LM}+S_{LU}=S_{L}}%
S_{L}-L_{i}+S_{RM}-S_{RU}\leq 0 |
S_{R}^{\prime}=S_{R}-R_{1} |
\mathcal{E}_{1}=|x-w_{0}|+\dots+|w-w_{0}-\dots-w_{k}| |
S_{LM}>0 |
\Delta({\text{MARK\_LEFT}})\leq 0\text{ if }{n_{L}}\times({\mathcal{L}}-1)\leq%
{n_{R}}({\mathcal{R}}-2j)\xrightarrow[]{\text{Rearranging the terms}}j\leq%
\frac{{\mathcal{R}}}{2}+\frac{{n_{L}}(1-{\mathcal{L}})}{2{n_{R}}} |
\displaystyle\underbrace{\epsilon_{2}\times\sum_{e_{i}\in E_{R}}R_{i}\times w^%
{*}\times(S_{R}-R_{i}-S_{L})}_{\text{The sum of all }\Delta({\text{MARK\_RIGHT%
}})\text{'s by }\epsilon_{2}} |
k\geq k^{\prime} |
c^{\prime}_{i}=0 |
w_{i+1} |
(v_{1},v_{4}) |