Datasets:
pretty_name: Tarteel AI - EveryAyah Dataset
dataset_info:
features:
- name: audio
dtype: audio
- name: duration
dtype: float64
- name: text
dtype: string
- name: reciter
dtype: string
splits:
- name: train
num_bytes: 262627688145.3
num_examples: 187785
- name: test
num_bytes: 25156009734.72
num_examples: 23473
- name: validation
num_bytes: 23426886730.218
num_examples: 23474
download_size: 117190597305
dataset_size: 311210584610.23804
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
language:
- ar
license:
- mit
multilinguality:
- monolingual
paperswithcode_id: tarteel-everyayah
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- automatic-speech-recognition
task_ids: []
train-eval-index:
- config: clean
task: automatic-speech-recognition
task_id: speech_recognition
splits:
train_split: train
eval_split: test
validation_split: validation
col_mapping:
audio: audio
text: text
reciter: text
metrics:
- type: wer
name: WER
- type: cer
name: CER
﷽
Dataset Card for Tarteel AI's EveryAyah Dataset
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: Tarteel AI
- Repository: [Needs More Information]
- Point of Contact: Mohamed Saad Ibn Seddik
Dataset Summary
This dataset is a collection of Quranic verses and their transcriptions, with diacritization, by different reciters.
How to download
!pip install -q datasets
from datasets import load_dataset
dataset =load_dataset("Salama1429/tarteel-ai-everyayah-Quran", verification_mode="no_checks")
Supported Tasks and Leaderboards
[Needs More Information]
Languages
The audio is in Arabic.
Dataset Structure
Data Instances
A typical data point comprises the audio file audio
, and its transcription called text
.
The duration
is in seconds, and the author is reciter
.
An example from the dataset is:
{
'audio': {
'path': None,
'array': array([ 0. , 0. , 0. , ..., -0.00057983,
-0.00085449, -0.00061035]),
'sampling_rate': 16000
},
'duration': 6.478375,
'text': 'بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ',
'reciter': 'abdulsamad'
}
Length:
Training: Total duration: 2985111.2642479446 seconds Total duration: 49751.85440413241 minutes Total duration: 829.1975734022068 hours
Validation: Total duration: 372720.43139099434 seconds Total duration: 6212.007189849905 minutes Total duration: 103.5334531641651 hours
Test: Total duration: 375509.96909399604 seconds Total duration: 6258.499484899934 minutes Total duration: 104.30832474833224 hours
Data Fields
audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column:
dataset[0]["audio"]
the audio file is automatically decoded and resampled todataset.features["audio"].sampling_rate
. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the"audio"
column, i.e.dataset[0]["audio"]
should always be preferred overdataset["audio"][0]
.text: The transcription of the audio file.
duration: The duration of the audio file.
reciter: The reciter of the verses.
Data Splits
Train | Test | Validation | |
---|---|---|---|
dataset | 187785 | 23473 | 23474 |
reciters
- reciters_count: 36
- reciters: {'abdul_basit', 'abdullah_basfar', 'abdullah_matroud', 'abdulsamad', 'abdurrahmaan_as-sudais', 'abu_bakr_ash-shaatree', 'ahmed_ibn_ali_al_ajamy', 'ahmed_neana', 'akram_alalaqimy', 'alafasy', 'ali_hajjaj_alsuesy', 'aziz_alili', 'fares_abbad', 'ghamadi', 'hani_rifai', 'husary', 'karim_mansoori', 'khaalid_abdullaah_al-qahtaanee', 'khalefa_al_tunaiji', 'maher_al_muaiqly', 'mahmoud_ali_al_banna', 'menshawi', 'minshawi', 'mohammad_al_tablaway', 'muhammad_abdulkareem', 'muhammad_ayyoub', 'muhammad_jibreel', 'muhsin_al_qasim', 'mustafa_ismail', 'nasser_alqatami', 'parhizgar', 'sahl_yassin', 'salaah_abdulrahman_bukhatir', 'saood_ash-shuraym', 'yaser_salamah', 'yasser_ad-dussary'}
Dataset Creation
Curation Rationale
Source Data
Initial Data Collection and Normalization
Who are the source language producers?
Annotations
Annotation process
Who are the annotators?
Personal and Sensitive Information
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[Needs More Information]
Additional Information
Dataset Curators
Licensing Information
Citation Information
Contributions
This dataset was created by: