Salama1429's picture
Update README.md
f52cc1f verified
metadata
pretty_name: Tarteel AI - EveryAyah Dataset
dataset_info:
  features:
    - name: audio
      dtype: audio
    - name: duration
      dtype: float64
    - name: text
      dtype: string
    - name: reciter
      dtype: string
  splits:
    - name: train
      num_bytes: 262627688145.3
      num_examples: 187785
    - name: test
      num_bytes: 25156009734.72
      num_examples: 23473
    - name: validation
      num_bytes: 23426886730.218
      num_examples: 23474
  download_size: 117190597305
  dataset_size: 311210584610.23804
annotations_creators:
  - expert-generated
language_creators:
  - crowdsourced
language:
  - ar
license:
  - mit
multilinguality:
  - monolingual
paperswithcode_id: tarteel-everyayah
size_categories:
  - 100K<n<1M
source_datasets:
  - original
task_categories:
  - automatic-speech-recognition
task_ids: []
train-eval-index:
  - config: clean
    task: automatic-speech-recognition
    task_id: speech_recognition
    splits:
      train_split: train
      eval_split: test
      validation_split: validation
    col_mapping:
      audio: audio
      text: text
      reciter: text
    metrics:
      - type: wer
        name: WER
      - type: cer
        name: CER

Dataset Card for Tarteel AI's EveryAyah Dataset

Table of Contents

Dataset Description

Dataset Summary

This dataset is a collection of Quranic verses and their transcriptions, with diacritization, by different reciters.

How to download

!pip install -q datasets

from datasets import load_dataset
dataset =load_dataset("Salama1429/tarteel-ai-everyayah-Quran", verification_mode="no_checks")

Supported Tasks and Leaderboards

[Needs More Information]

Languages

The audio is in Arabic.

Dataset Structure

Data Instances

A typical data point comprises the audio file audio, and its transcription called text. The duration is in seconds, and the author is reciter.

An example from the dataset is:

{
  'audio': {
    'path': None,
    'array': array([ 0.        ,  0.        ,  0.        , ..., -0.00057983,
       -0.00085449, -0.00061035]),
    'sampling_rate': 16000
  },
  'duration': 6.478375,
  'text': 'بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ',
  'reciter': 'abdulsamad'
}

Length:

Training: Total duration: 2985111.2642479446 seconds Total duration: 49751.85440413241 minutes Total duration: 829.1975734022068 hours

Validation: Total duration: 372720.43139099434 seconds Total duration: 6212.007189849905 minutes Total duration: 103.5334531641651 hours

Test: Total duration: 375509.96909399604 seconds Total duration: 6258.499484899934 minutes Total duration: 104.30832474833224 hours

Data Fields

  • audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: dataset[0]["audio"] the audio file is automatically decoded and resampled to dataset.features["audio"].sampling_rate. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the "audio" column, i.e. dataset[0]["audio"] should always be preferred over dataset["audio"][0].

  • text: The transcription of the audio file.

  • duration: The duration of the audio file.

  • reciter: The reciter of the verses.

Data Splits

Train Test Validation
dataset 187785 23473 23474

reciters

  • reciters_count: 36
  • reciters: {'abdul_basit', 'abdullah_basfar', 'abdullah_matroud', 'abdulsamad', 'abdurrahmaan_as-sudais', 'abu_bakr_ash-shaatree', 'ahmed_ibn_ali_al_ajamy', 'ahmed_neana', 'akram_alalaqimy', 'alafasy', 'ali_hajjaj_alsuesy', 'aziz_alili', 'fares_abbad', 'ghamadi', 'hani_rifai', 'husary', 'karim_mansoori', 'khaalid_abdullaah_al-qahtaanee', 'khalefa_al_tunaiji', 'maher_al_muaiqly', 'mahmoud_ali_al_banna', 'menshawi', 'minshawi', 'mohammad_al_tablaway', 'muhammad_abdulkareem', 'muhammad_ayyoub', 'muhammad_jibreel', 'muhsin_al_qasim', 'mustafa_ismail', 'nasser_alqatami', 'parhizgar', 'sahl_yassin', 'salaah_abdulrahman_bukhatir', 'saood_ash-shuraym', 'yaser_salamah', 'yasser_ad-dussary'}

Dataset Creation

Curation Rationale

Source Data

Initial Data Collection and Normalization

Who are the source language producers?

Annotations

Annotation process

Who are the annotators?

Personal and Sensitive Information

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[Needs More Information]

Additional Information

Dataset Curators

Licensing Information

CC BY 4.0

Citation Information


Contributions

This dataset was created by: