|
--- |
|
pretty_name: Tarteel AI - EveryAyah Dataset |
|
dataset_info: |
|
features: |
|
- name: audio |
|
dtype: audio |
|
- name: duration |
|
dtype: float64 |
|
- name: text |
|
dtype: string |
|
- name: reciter |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 262627688145.3 |
|
num_examples: 187785 |
|
- name: test |
|
num_bytes: 25156009734.72 |
|
num_examples: 23473 |
|
- name: validation |
|
num_bytes: 23426886730.218 |
|
num_examples: 23474 |
|
download_size: 117190597305 |
|
dataset_size: 311210584610.23804 |
|
annotations_creators: |
|
- expert-generated |
|
language_creators: |
|
- crowdsourced |
|
language: |
|
- ar |
|
license: |
|
- mit |
|
multilinguality: |
|
- monolingual |
|
paperswithcode_id: tarteel-everyayah |
|
size_categories: |
|
- 100K<n<1M |
|
source_datasets: |
|
- original |
|
task_categories: |
|
- automatic-speech-recognition |
|
task_ids: [] |
|
train-eval-index: |
|
- config: clean |
|
task: automatic-speech-recognition |
|
task_id: speech_recognition |
|
splits: |
|
train_split: train |
|
eval_split: test |
|
validation_split: validation |
|
col_mapping: |
|
audio: audio |
|
text: text |
|
reciter: text |
|
metrics: |
|
- type: wer |
|
name: WER |
|
- type: cer |
|
name: CER |
|
--- |
|
|
|
﷽ |
|
|
|
# Dataset Card for Tarteel AI's EveryAyah Dataset |
|
|
|
## Table of Contents |
|
- [Dataset Description](#dataset-description) |
|
- [Dataset Summary](#dataset-summary) |
|
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) |
|
- [Languages](#languages) |
|
- [Dataset Structure](#dataset-structure) |
|
- [Data Instances](#data-instances) |
|
- [Data Fields](#data-fields) |
|
- [Data Splits](#data-splits) |
|
- [Dataset Creation](#dataset-creation) |
|
- [Curation Rationale](#curation-rationale) |
|
- [Source Data](#source-data) |
|
- [Annotations](#annotations) |
|
- [Personal and Sensitive Information](#personal-and-sensitive-information) |
|
- [Considerations for Using the Data](#considerations-for-using-the-data) |
|
- [Social Impact of Dataset](#social-impact-of-dataset) |
|
- [Discussion of Biases](#discussion-of-biases) |
|
- [Other Known Limitations](#other-known-limitations) |
|
- [Additional Information](#additional-information) |
|
- [Dataset Curators](#dataset-curators) |
|
- [Licensing Information](#licensing-information) |
|
- [Citation Information](#citation-information) |
|
- [Contributions](#contributions) |
|
|
|
## Dataset Description |
|
|
|
- **Homepage:** [Tarteel AI](https://www.tarteel.ai/) |
|
- **Repository:** [Needs More Information] |
|
- **Point of Contact:** [Mohamed Saad Ibn Seddik](mailto:ms.ibnseddik@tarteel.ai) |
|
|
|
### Dataset Summary |
|
|
|
This dataset is a collection of Quranic verses and their transcriptions, with diacritization, by different reciters. |
|
|
|
### How to download |
|
``` |
|
!pip install -q datasets |
|
|
|
from datasets import load_dataset |
|
dataset =load_dataset("Salama1429/tarteel-ai-everyayah-Quran", verification_mode="no_checks") |
|
|
|
``` |
|
|
|
### Supported Tasks and Leaderboards |
|
|
|
[Needs More Information] |
|
|
|
### Languages |
|
|
|
The audio is in Arabic. |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
A typical data point comprises the audio file `audio`, and its transcription called `text`. |
|
The `duration` is in seconds, and the author is `reciter`. |
|
|
|
An example from the dataset is: |
|
``` |
|
{ |
|
'audio': { |
|
'path': None, |
|
'array': array([ 0. , 0. , 0. , ..., -0.00057983, |
|
-0.00085449, -0.00061035]), |
|
'sampling_rate': 16000 |
|
}, |
|
'duration': 6.478375, |
|
'text': 'بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ', |
|
'reciter': 'abdulsamad' |
|
} |
|
``` |
|
|
|
### Length: |
|
|
|
Training: |
|
Total duration: 2985111.2642479446 seconds |
|
Total duration: 49751.85440413241 minutes |
|
Total duration: 829.1975734022068 hours |
|
|
|
Validation: |
|
Total duration: 372720.43139099434 seconds |
|
Total duration: 6212.007189849905 minutes |
|
Total duration: 103.5334531641651 hours |
|
|
|
Test: |
|
Total duration: 375509.96909399604 seconds |
|
Total duration: 6258.499484899934 minutes |
|
Total duration: 104.30832474833224 hours |
|
|
|
### Data Fields |
|
|
|
- audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`. |
|
|
|
- text: The transcription of the audio file. |
|
|
|
- duration: The duration of the audio file. |
|
|
|
- reciter: The reciter of the verses. |
|
|
|
### Data Splits |
|
|
|
| | Train | Test | Validation | |
|
| ----- | ----- | ---- | ---------- | |
|
| dataset | 187785 | 23473 | 23474 | |
|
|
|
### reciters |
|
- reciters_count: 36 |
|
- reciters: {'abdul_basit', |
|
'abdullah_basfar', |
|
'abdullah_matroud', |
|
'abdulsamad', |
|
'abdurrahmaan_as-sudais', |
|
'abu_bakr_ash-shaatree', |
|
'ahmed_ibn_ali_al_ajamy', |
|
'ahmed_neana', |
|
'akram_alalaqimy', |
|
'alafasy', |
|
'ali_hajjaj_alsuesy', |
|
'aziz_alili', |
|
'fares_abbad', |
|
'ghamadi', |
|
'hani_rifai', |
|
'husary', |
|
'karim_mansoori', |
|
'khaalid_abdullaah_al-qahtaanee', |
|
'khalefa_al_tunaiji', |
|
'maher_al_muaiqly', |
|
'mahmoud_ali_al_banna', |
|
'menshawi', |
|
'minshawi', |
|
'mohammad_al_tablaway', |
|
'muhammad_abdulkareem', |
|
'muhammad_ayyoub', |
|
'muhammad_jibreel', |
|
'muhsin_al_qasim', |
|
'mustafa_ismail', |
|
'nasser_alqatami', |
|
'parhizgar', |
|
'sahl_yassin', |
|
'salaah_abdulrahman_bukhatir', |
|
'saood_ash-shuraym', |
|
'yaser_salamah', |
|
'yasser_ad-dussary'} |
|
|
|
|
|
## Dataset Creation |
|
|
|
### Curation Rationale |
|
|
|
|
|
### Source Data |
|
|
|
#### Initial Data Collection and Normalization |
|
|
|
|
|
#### Who are the source language producers? |
|
|
|
|
|
### Annotations |
|
|
|
#### Annotation process |
|
|
|
|
|
#### Who are the annotators? |
|
|
|
|
|
|
|
### Personal and Sensitive Information |
|
|
|
|
|
|
|
## Considerations for Using the Data |
|
|
|
### Social Impact of Dataset |
|
|
|
[More Information Needed] |
|
|
|
### Discussion of Biases |
|
|
|
[More Information Needed] |
|
|
|
### Other Known Limitations |
|
|
|
[Needs More Information] |
|
|
|
## Additional Information |
|
|
|
### Dataset Curators |
|
|
|
|
|
|
|
### Licensing Information |
|
|
|
[CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) |
|
|
|
### Citation Information |
|
|
|
``` |
|
``` |
|
|
|
### Contributions |
|
|
|
This dataset was created by: |
|
|