content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def conv_variance_scaling_initializer(in_channel, out_channel, kernel_size): """conv init""" fan_in = in_channel * kernel_size * kernel_size scale = 1.0 scale /= max(1., fan_in) stddev = (scale ** 0.5) / .87962566103423978 mu, sigma = 0, stddev weight = truncnorm(-2, 2, loc=mu, scale=sigma).rvs(out_channel * in_channel * kernel_size * kernel_size) weight = np.reshape(weight, (out_channel, in_channel, kernel_size, kernel_size)) return Tensor(weight, dtype=mstype.float32)
925339a12e4f2e04c403ad8148145df0497da0da
449
def vgg8(**kwargs): """VGG 8-layer model (configuration "S") Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = VGG(cfg['S'], **kwargs) return model
61d9f2e98c68691c1ed26631220f447eef28ba11
450
def get_char_from_ascii(key_num): """Function that converts a character to an ascii code Parameters ---------- ascii_code : int Ascii code of character Returns ------- char : character character converted from ascii """ return chr(key_num)
79f6a5627805909a005d5921f4e9fe738fb09936
451
def start(): """ view for data entry for optimisation """ form = LocationForm() if form.validate_on_submit(): return optimise(form.data) return flask.render_template("start.html", title="Start", form=form)
caba5a4d20d544ed480bda4d4e4d4377880bbd40
453
def c_flag(opt, test_not=False): """ convert a test parameter into t if true for the Fortran build system """ if test_not: if opt: return "FALSE" else: return "TRUE" else: if opt: return "TRUE" else: return "FALSE"
cf78668ae19287822fba9946fa472187848e0084
455
def false_function(): """Sample function to test unit testing.""" return False
7823ac0f533c97544a8f73f73715bebb8e5b45cc
456
def broker_task_send(task_uuid, request, broker_point, reply_to=None): """Command to publish `primitives.Request` to customer Args: task_uuid(str): task identification request: Serialized request broker_point(gromozeka.BrokerPoint): reply_to(gromozeka.BrokerPoint): Returns: Command: """ return Command(command=BROKER_TASK_SEND, args={'task_uuid': task_uuid, 'request': request, 'broker_point': broker_point, 'reply_to': reply_to}).as_tuple()
52b389982676f65547f10a2cd45ac225e6486673
457
import numpy def process_axis_labels(datadesc, blobs, offset=0): """Convert the raw axis label descriptions. Similar to LiveDataPanel._process_axis_labels, but is flexible in datadesc. """ CLASSIC = {'define': 'classic'} labels = {} titles = {} for size, axis in zip(reversed(datadesc['shape']), AXES): # if the 'labels' key does not exist or does not have the right # axis key set default to 'classic'. label = datadesc.get( 'labels', {'x': CLASSIC, 'y': CLASSIC}).get(axis, CLASSIC) if label['define'] == 'range': start = label.get('start', 0) size = label.get('length', 1) step = label.get('step', 1) end = start + step * size labels[axis] = numpy.arange(start, end, step) elif label['define'] == 'array': index = label.get('index', 0) labels[axis] = numpy.frombuffer(blobs[index], label.get('dtype', '<i4')) else: labels[axis] = numpy.array(range(size)) labels[axis] += offset if axis == 'x' else 0 titles[axis] = label.get('title') return labels, titles
d0f880c69160b2a620affe7b1cfe8c7dda12d807
458
def _to_ranks_by_group(dat, group, formula, exclude_cols=[]): """ Covert predictors to ranks separately for each group for use in rank Lmer. Any columns not in the model formula or in exclude_cols will not be converted to ranks. Used by models.Lmer Args: dat (pd.DataFrame): dataframe of data group (string): string name of column to group data on formula (string): Lmer flavored model formula with random effects exclude_cols (list): optional columns that are part of the formula to exclude from rank conversion. Returns: pandas.core.frame.DataFrame: ranked data """ if (not isinstance(group, str)) and (group not in dat.columns): raise TypeError( "group must be a valid column name in the dataframe. Currently only 1 grouping variable is supported." ) if isinstance(exclude_cols, str): exclude_cols = [exclude_cols] original_col_order = list(dat.columns) formula = formula.replace(" ", "") to_rank = formula.split("~")[-1].split("(")[0].split("+")[:-1] # add dv to be ranked to_rank.append(formula.split("~")[0]) to_rank = [c for c in to_rank if c not in exclude_cols] other_cols = [c for c in dat.columns if c not in to_rank] dat = pd.concat( [dat[other_cols], dat.groupby(group).apply(lambda g: g[to_rank].rank())], axis=1 ) return dat[original_col_order]
6cff465b0a1877d6594953dda75913dfb36a67ad
459
def list_scans(): """ :return: A JSON containing a list of: - Scan resource URL (eg. /scans/1) - Scan target - Scan status """ data = [] for scan_id, scan_info in SCANS.iteritems(): if scan_info is None: continue target_urls = scan_info.target_urls status = scan_info.w3af_core.status.get_simplified_status() errors = True if scan_info.exception is not None else False data.append({'id': scan_id, 'href': '/scans/%s' % scan_id, 'target_urls': target_urls, 'status': status, 'errors': errors}) return jsonify({'items': data})
60d5eb5c33c09ac6e35ffae2c10b6aca566c6027
461
def factor_list(f, *gens, **args): """ Compute a list of irreducible factors of ``f``. **Examples** >>> from sympy import factor_list >>> from sympy.abc import x, y >>> factor_list(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y) (2, [(x + y, 1), (1 + x**2, 2)]) """ return _generic_factor_list(f, gens, args, method='factor')
c13e503a631d3bfc5ead05dc8de8cc5243614241
462
import pickle import torch def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = dist.get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to("cuda") # obtain Tensor size of each rank local_size = torch.LongTensor([tensor.numel()]).to("cuda") size_list = [torch.LongTensor([0]).to("cuda") for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda")) if local_size != max_size: padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda") tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list
9e89ed2f299f5de8dec55d5529478177d45c21fa
463
import torch def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=()): """Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights Parameters: net (network) -- the network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal init_gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Return an initialized network. """ if len(gpu_ids) > 0: assert(torch.cuda.is_available()) net.to(gpu_ids[0]) net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs init_weights(net, init_type, init_gain=init_gain) return net
2ddeda15b84bca0b83a7b5b516c83f991cec44c7
464
def remove_from_group(group_name, nodes=None, nodes_by_col='SUID', edges=None, edges_by_col='SUID', network=None, base_url=DEFAULT_BASE_URL): """Remove the specified nodes and edges from the specified group. Args: group_name (str): Specifies the name used to identify the group nodes (list or str or int or None): List of nodes or keyword: selected, unselected or all. If node list: ``list`` of node names or SUIDs, comma-separated string of node names or SUIDs, or scalar node name or SUID). Node names should be found in the ``SUID`` column of the ``node table`` unless specified in ``nodes_by_col``. If list is None, default is currently selected nodes. nodes_by_col (str): name of node table column corresponding to provided nodes list. Default is 'SUID'. edges (str or list or int or None): List of edges or keyword: selected, unselected or all. If edge list: ``list`` of edge names or SUIDs, comma-separated string of edge names or SUIDs, or scalar edge name or SUID). Edge names should be found in the ``SUID`` column of the ``edge table`` unless specified in ``edges_by_col``. If list is None, default is currently selected edges. edges_by_col (str): name of edge table column corresponding to provided edges list. Default is 'SUID'. network (SUID or str or None): Name or SUID of a network. Default is the "current" network active in Cytoscape. base_url (str): Ignore unless you need to specify a custom domain, port or version to connect to the CyREST API. Default is http://127.0.0.1:1234 and the latest version of the CyREST API supported by this version of py4cytoscape. Returns: dict: {} Raises: CyError: if network name or SUID doesn't exist requests.exceptions.RequestException: if can't connect to Cytoscape or Cytoscape returns an error Examples: >>> remove_from_group('Group 1', ['GDS1', 'SIP4', 'PDC1'], nodes_by_col='COMMON') # remove nodes by common name & all their edges {} >>> remove_from_group('Group 1', 'GDS1, SIP4, PDC1', nodes_by_col='COMMON') # remove nodes by common name & all their edges {} >>> remove_from_group('Group 1', [76545, 75499, 80299]) # remove nodes by SUID & all their edges {} >>> remove_from_group('Group 1', 80299) # remove node by SUID & all its edges {} >>> remove_from_group('Group 1') # remove all selected nodes and edges {} >>> remove_from_group('Group 1', nodes=[], edges=[78565, 79565]) # remove edges but not any nodes {} >>> remove_from_group('Group 1', nodes='unselected', edges='unselected') # remove all unselected nodes and edges {} """ if isinstance(nodes, str) and nodes in {'all', 'selected', 'unselected'}: nodes_by_col = None node_list = prep_post_query_lists(nodes, nodes_by_col) if isinstance(edges, str) and edges in {'all', 'selected', 'unselected'}: edges_by_col = None edge_list = prep_post_query_lists(edges, edges_by_col) net_suid = networks.get_network_suid(network, base_url=base_url) res = commands.commands_post( f'group remove groupName="{group_name}" nodeList="{node_list}" edgeList="{edge_list}" network="SUID:{net_suid}"', base_url=base_url) return res
0f7ae3b161aa1b189be14973ddaa7a7a4fef4bbf
465
def filter_bank_2high(t, Nj, Nj_1, ac=2.0, bc=2.0): """ computes the filter bank for control points N_j, Nj_1 given the variable t :param t: data points on the real line R arranged in numpy array :param Nj: control point, Nj > Nj_1, integer :param Nj_1: control point, Nj > Nj_1, integer :param ac: between (1, 2]. Default 2.0 :param bc: bc < 2. Default 2.0 :return: (ha, hb1, hb2) low-pass filter ha and high-pass filters hb1 and hb2 at t, all in numpy array format """ # a_hat a_cR = (1 + Nj_1) / ac a_epsR = Nj_1 - a_cR a_cL = -a_cR a_epsL = a_epsR # b_hat_1 b1_cL = a_cR b1_epsL = a_epsR b1_cR = (Nj_1 + Nj) / bc b1_epsR = Nj - b1_cR # b_hat_2 b2_cL = b1_cR b2_epsL = b1_epsR b2_cR = 2 * Nj b2_epsR = 1 # supp(ha) = [0, 1 / 4] ha = hmask(t, a_cL, a_epsL, a_cR, a_epsR) # supp(hb1) = [1 / 8, 1 / 2] hb1 = hmask(t, b1_cL, b1_epsL, b1_cR, b1_epsR) # supp(hb2) = [1 / 4, 1 / 2] hb2 = hmask(t, b2_cL, b2_epsL, b2_cR, b2_epsR) return ha, hb1, hb2
a197cbd99ea4d2ce6fcf9c277cff3e634b539049
466
def as_public(): """Return requests session without authentication""" return BaseUrlSession()
d55cc3616c6910e88d99083cf4e530987c1d8d6c
468
def transform_real_2_sim(real_position): """ Transforms a position from the 'real' coordinate system to the 'sim' coordinate system. :param real_position: dictionary with 'x', 'y' and 'z' keys to floating point values :return: position in sim space as dictionary with 'x', 'y' and 'z' keys to floating point values """ real_pos = np.array([real_position["x"], real_position["y"], 1]) sim_pos_np = np.dot(REAL_2_SIM_TRANSFORM, real_pos) sim_pos = {"x": sim_pos_np[0], "y": 0.9010001, "z": sim_pos_np[1]} return sim_pos
29b83be1f6f4e49f777e085db651e4f31d47c2e0
469
import torch def generate_tgt_mask(sz): """Generate a square mask for the sequence. The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0). This function is a slight modification of the version in the PyTorch repository. Parameters ---------- sz : int The length of the target sequence. """ mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) mask = ( mask.float() .masked_fill(mask == 0, float("-inf")) .masked_fill(mask == 1, float(0.0)) ) return mask
3fce5eb1cb852ca162fda58407c2cf81c1bdc849
470
def SceneAddPipeline(builder, pipeline): """This method is deprecated. Please switch to AddPipeline.""" return AddPipeline(builder, pipeline)
f220a53ad13923b1f00d208f59e575926e5b7fa2
471
def SynthesizeUserId(email): """Return a synthetic user ID from an email address. Note that this is not the same user ID found in the production system. Args: email: An email address. Returns: A string userid derived from the email address. """ user_id_digest = _MD5_FUNC(email.lower()).digest() user_id = '1' + ''.join(['%02d' % ord(x) for x in user_id_digest])[:20] return user_id
fb3f81e37decaa941857ac575a5fd034f92a2324
472
import torch def compute_jacobian(fn, x0: torch.Tensor, bs: int): """ Computes the Jacobian matrix of the given function at x0, using vector-Jacobian products """ input_shape = x0.shape assert len(input_shape) == 3 dim = x0.numel() eye = torch.eye(dim, dtype=x0.dtype, device=x0.device) # Forward pass x0rep = x0.detach()[None].repeat([bs] + [1] * len(input_shape)) # repeat along batch axis x0rep.requires_grad = True z0rep = fn(x0rep) zshape = z0rep.shape[1:] assert zshape.numel() == dim # Compute batches of rows of the Jacobian rows = [] for row_start in trange(0, dim, bs, desc='jacobian', leave=False): # Pre-pad with extra rows to ensure that batch size stays constant row_end = min(row_start + bs, dim) num_rows = row_end - row_start if num_rows != bs: assert num_rows < bs pre_pad_rows = bs - num_rows else: pre_pad_rows = 0 assert row_start - pre_pad_rows >= 0 # vector-Jacobian product with rows of an identity matrix g, = torch.autograd.grad( z0rep, x0rep, grad_outputs=eye[row_start - pre_pad_rows:row_end].reshape(row_end - row_start + pre_pad_rows, *zshape), retain_graph=True ) assert g.shape == x0rep.shape rows.append(g.view(g.shape[0], -1)[pre_pad_rows:, :]) jacobian = torch.cat(rows, dim=0) assert jacobian.shape == (dim, dim) return jacobian
c184fd03abea440e27bdd27bb1105778e7bde4b6
474
import math def pixel_distance(A, B): """ In 9th grade I sat in geometry class wondering "when then hell am I ever going to use this?"...today is that day. Return the distance between two pixels """ (col_A, row_A) = A (col_B, row_B) = B return math.sqrt(math.pow(col_B - col_A, 2) + math.pow(row_B - row_A, 2))
64853c44400428c8040ae47d1cc2cca17aed0a5f
475
def word_ngrams(s, n=3, token_fn=tokens.on_whitespace): """ Word-level n-grams in a string By default, whitespace is assumed to be a word boundary. >>> ng.word_ngrams('This is not a test!') [('This', 'is', 'not'), ('is', 'not', 'a'), ('not', 'a', 'test!')] If the sequence's length is less than or equal to n, the n-grams are simply the sequence itself. >>> ng.word_ngrams('Test!') [('Test!')] Args: s: a string Returns: list: tuples of word-level n-grams """ tokens = token_fn(s) return __ngrams(tokens, n=min(len(tokens), n))
8be360785e38b8f427c509d63f5ecba3b6b2c020
476
def phosites_detail(text): """ create detail view output of phosphosites by accession. :param text: string of phos group ID :return: template """ results = browse_queries.browse_detail(text,'Phosphosite') table = browse_queries.phos_kin_query(text) # pass tables, results and style indicator to template for rendering, plus # variables for title info (related and text of acc no) return render_template('search_results.html', title="Phosphosite", style='double', results=results, table=table, related="Kinases", text=text)
5f1b67fadda3eb1dfe86e7e996e65197ff1eca3a
477
def convert_to_np_arrays(X): """ Converts the input arrays to dense numpy arrays to allow the methods to work properly """ try: X = X.todense() except: pass X = np.array(X) if len(X.shape) > 2: X = reduce_shape(X) return X
68fdf6fd87df160e96acec5abb8af310886fccc2
478
def reduce_arr(arr): """ Return which elements on which axis are unique Args: arr (np.ndarray) : input array which to reduce to unique value Returns: reduced array(np.ndarray) : array with reduced data. data_axis (list) : the axises that have changing data. """ ndim = len(arr.shape) data_axis = [] slice_array = () for i in range(ndim): mn = np.min(arr, axis=i) mx = np.max(arr, axis=i) eq = np.all(mn == mx) if not eq: data_axis.append(ndim - i - 1) slice_array += (slice(None),) else: slice_array += (0,) red_ar = arr[slice_array] return red_ar, data_axis
d207876b820c7d7b30f8af6c302181620b00bf25
480
import torch def nll_lorentzian(preds, target, gamma): """ Isotropic lorentzian loss function :param preds: prediction values from NN of size [batch, particles, timesteps, (x,y,v_x,v_y)] :param target: target data of size [batch, particles, timesteps, (x,y,v_x,v_y)] :param gamma: The tensor for the FWHM of the distribution of size [batch, particles, timesteps, (x,y,v_x,v_y)] :return: value of the loss function normalised by (batch * number of atoms) """ gammasquared = gamma ** 2 neg_log_p = torch.log(1+((preds - target) ** 2 / (gammasquared))) neg_log_p += torch.log(gamma) return neg_log_p.sum() / (target.size(0) * target.size(1))
24d6ea2c4b40bc0f8c27eebf0e402261d865836e
481
from pathlib import Path def get_archive(): """Ensure that the archive file exists and return its path. This is a function so the path can be made configurable in the future. Returns: :obj:`str`: The full local path to the archive file. """ filename = '/config/archive.txt' archfile = Path(filename) if not archfile.exists(): archfile.touch() return filename
78abc493d7f256ebf53ec2cfeb9ab4f1d42b5c02
482
from typing import Sequence from typing import Callable from typing import List def _filter_unique_configs( configs: Sequence[ProblemConfig], filter_fn: Callable[[ProblemConfig], bool] = lambda _: True, ) -> List[ProblemConfig]: # pytype: disable=annotation-type-mismatch """Filters a list of problem_config to their unique occurrences for testing. Args: configs: list of ProblemConfig. filter_fn: optional function to apply only to subset meeting this condition. Returns: List of unique occurrences for testing. """ observed_configs = set() new_configs = [] for problem_config in configs: if filter_fn(problem_config): if problem_config not in observed_configs: new_configs.append(problem_config) observed_configs.add(problem_config) return new_configs
98481fa9991726f3ba4253fb132f7f7e3cb2a420
483
def convert_units(str): """ Convert some string with binary prefix to int bytes""" unit = ''.join(ele for ele in str if not ele.isdigit()).strip().lower() return int(''.join(ele for ele in str if ele.isdigit()))*{ "b": 1, "B": 1, "k": 2**10, "kb": 2**10, "m": 2**20, "mb": 2**20, "g": 2**30, "gb": 2**30, "t": 2**40, "tb": 2**40 }.get(unit, 1)
a9de044090bfd4311a27dbbf373361e7d88a1e06
484
def match_piecewise(candidates: set, symbol: str, sep: str='::') -> set: """ Match the requested symbol reverse piecewise (split on ``::``) against the candidates. This allows you to under-specify the base namespace so that ``"MyClass"`` can match ``my_namespace::MyClass`` Args: candidates: set of possible matches for symbol symbol: the symbol to match against sep: the separator between identifier elements Returns: set of matches """ piecewise_list = set() for item in candidates: split_symbol = symbol.split(sep) split_item = item.split(sep) split_symbol.reverse() split_item.reverse() min_length = len(split_symbol) split_item = split_item[:min_length] if split_symbol == split_item: piecewise_list.add(item) return piecewise_list
1c6d7240365ef22f753aa4195cfb5e879fc453e0
485
def is_kube_version_supported(kube_version, min_version=None, max_version=None): """Check if the k8s version is supported by the application. :param kube_version: the running or target k8s version :param min_version (optional): minimum k8s version supported by the app :param max_version (optional): maximum k8s version supported by the app :returns bool: True if k8s version is supported """ if ((min_version is not None and LooseVersion(kube_version) < LooseVersion(min_version)) or (max_version is not None and LooseVersion(kube_version) > LooseVersion(max_version))): return False return True
f08a5e5eb9ac9928e2e08ddddd6d30db90e8c868
486
def chebi(name=None, identifier=None): """Build a ChEBI abundance node. :rtype: Abundance """ return Abundance(namespace='CHEBI', name=name, identifier=identifier)
bbe8cf217a545f2818d7957b01d7bbaf0a2cc6d2
487
def get_group(request): """returns all the groups in database """ group_id = request.matchdict.get('id', -1) group = Group.query.filter_by(id=group_id).first() return [ { 'id': group.id, 'name': group.name, 'thumbnail_full_path': group.thumbnail.full_path if group.thumbnail else None, 'created_by_id': group.created_by.id, 'created_by_name': group.created_by.name, 'users_count': len(group.users), } ]
6d53d8969ecebb882c6626b128a72f24dafa6997
488
def create_histogram(path_to_image, target_path=''): """ creates a histogram of a given image and either shows or saves a plot Args: path_to_image: path to the image target_path: if given, saves a plot, otherwise (if empty) shows the plot Returns: the histogram plot """ image = cv2.imread(path_to_image) depth = image.shape[2] for z in range(depth): im = image[:, :, z] mi = im.min() ma = im.max() if mi < 0 or ma > 255: print("range error: min=" + str(mi) + " max=" + ma) exit() # V1 # plt.hist(im.ravel(), 256, [0, 256]) # V2 # calculate mean value from RGB channels and flatten to 1D array vals = im.flatten() # plot histogram with 255 bins # b, bins, patches = plt.hist(vals, 255, stacked=True, density=True) counts, bins = np.histogram(vals, 255) counts = (counts - min(counts)) / (max(counts) - min(counts)) plt.hist(bins[:-1], bins, weights=counts) plt.xlim([0, 255]) # plt.show() # plt.title(path_to_image) plt.xlabel('pixel value') plt.ylabel('count') if target_path == '': plt.show() else: plt.savefig(target_path + 'histo') plt.clf() return plt
cb68b5f8bd55120d4f720020b092af02b727a6ba
489
def task_6_list_all_supplier_countries(cur) -> list: """ List all supplier countries Args: cur: psycopg cursor Returns: 29 records """ cur.execute("""SELECT country FROM suppliers""") return cur.fetchall()
a3d8af1eb2948ebc01e408265d20b0055f1a0504
490
def _energy_to_length_factor(e_unit, l_unit): """ Convert the units of Planck's constant and speed of light :param e_unit: :type e_unit: str :param l_unit: :type l_unit: str :return: c,h """ dest_h_u = ug.parse_units('%s s' % e_unit) dest_c_u = ug.parse_units('%s/s' % l_unit) if dest_h_u.dimensionality != _h_unit.dimensionality: raise ValueError("e_unit should be a valid energy unit") if dest_c_u.dimensionality != _c_unit.dimensionality: raise ValueError('l_unit should be a valid length unit') h = ug.convert(sc.h, _h_unit, dest_h_u) c = ug.convert(sc.c, _c_unit, dest_c_u) return c, h
23e1dbfac7265ff1df4cf62e3609f91d5e327a35
491
def kev_to_wavelength(kev): """Calculate the wavelength from kev""" lamda = 12.3984 / kev #keV to Angstrom return lamda
cfb3126e56bc0890dd8cf2caa50a240b380dad56
492
def _convert_rde_to_1_0_format(rde_data: dict) -> dict: """Convert defined entity to RDE 1.0. :param DefEntity rde_data: Defined entity dictionary :return: converted defined entity :rtype: dict """ new_rde = common_models.DefEntity(**rde_data) new_native_entity: AbstractNativeEntity = rde_utils.convert_runtime_rde_to_input_rde_version_format( # noqa: E501 new_rde.entity, rde_constants.RDEVersion.RDE_1_0_0) new_rde.entity = new_native_entity new_rde.entityType = common_models.EntityType.NATIVE_ENTITY_TYPE_1_0_0.value.get_id() # noqa: E501 return new_rde.to_dict()
931bc93c7326a4640892a3876885fcc19430bbe1
493
def additive_symbols(tokens, base_url): """``additive-symbols`` descriptor validation.""" results = [] for part in split_on_comma(tokens): result = pad(remove_whitespace(part), base_url) if result is None: return if results and results[-1][0] <= result[0]: return results.append(result) return tuple(results)
346eae19c5d4d936d0ad7f2cdba2191943cc7bca
494
def _index_list(key_or_list, direction=None): """Helper to generate a list of (key, direction) pairs. Takes such a list, or a single key, or a single key and direction. """ if direction is not None: return [(key_or_list, direction)] else: if isinstance(key_or_list, string_type): return [(key_or_list, ASCENDING)] elif not isinstance(key_or_list, (list, tuple)): raise TypeError("if no direction is specified, " "key_or_list must be an instance of list") return key_or_list
e32ddb70a10d52e1f2595cac9cb99c0381b9a3e4
496
def CalculateOSNames(os_name, os_variants): """Calculates all the names an OS can be called, according to its variants. @type os_name: string @param os_name: base name of the os @type os_variants: list or None @param os_variants: list of supported variants @rtype: list @return: list of valid names """ if os_variants: return ["%s+%s" % (os_name, v) for v in os_variants] else: return [os_name]
5689ed7da55cec929045e95344c60e7a06af711d
498
def c4x(c: Circuit, c0: int, c1: int, c2: int, c3: int, t: int) -> Circuit: """A macro of 4-controlled X gate""" return c.h[t].c4z(c0, c1, c2, c3, t).h[t]
89b5d790a70448a1d46452554ab234e113e63c59
500
def pad(data, pad_id): """ Pad all lists in data to the same length. """ width = max(len(d) for d in data) return [d + [pad_id] * (width - len(d)) for d in data]
a0951f4332879600d25c061cf1c553126d6df8d2
501
from netharn import util def draw_boxes_on_image(img, boxes, color='blue', thickness=1, box_format=None): """ Example: >>> from netharn import util >>> img = np.zeros((10, 10, 3), dtype=np.uint8) >>> color = 'blue' >>> thickness = 1 >>> boxes = util.Boxes([[1, 1, 8, 8]], 'tlbr') >>> img2 = draw_boxes_on_image(img, boxes, color, thickness) >>> # xdoc: +REQUIRES(--show) >>> from netharn.util import mplutil >>> mplutil.autompl() # xdoc: +SKIP >>> mplutil.figure(doclf=True, fnum=1) >>> mplutil.imshow(img2) """ if not isinstance(boxes, util.Boxes): if box_format is None: raise ValueError('specify box_format') boxes = util.Boxes(boxes, box_format) color = tuple(util.Color(color).as255('bgr')) tlbr = boxes.to_tlbr().data img2 = img.copy() for x1, y1, x2, y2 in tlbr: # pt1 = (int(round(x1)), int(round(y1))) # pt2 = (int(round(x2)), int(round(y2))) pt1 = (int(x1), int(y1)) pt2 = (int(x2), int(y2)) img2 = cv2.rectangle(img2, pt1, pt2, color, thickness=thickness) return img2
3c4a3b547d39bac940ea9f6999a98f2db62f938b
502
def _select_random_features(feature_list, amount): """Selects a given amount of random features from the feature list""" set_size = len(feature_list) -1 random_features = [] for i in range(amount): while(True): random_feature = feature_list[randint(0, set_size)] if(random_feature in random_features): continue else: random_features.append(random_feature) break return random_features
e281bfa75e153aa195119f84777f41db9d5e806c
503
def matrixop_inp_matr(): """ Функция возвращает матрицу, введённую пользователем с клавиатуры. Returns ------- a : [[float, float, ...], [float, float, ...], ...] Матрица, введенная пользователем """ while True: try: m = int(input('Сколько будет строк в матрице? ')) except: print('Вы ввели не число') else: if m > 0: break else: print('Вы ввели не натуральное число') while True: try: n = int(input('Сколько будет столбцов в матрице? ')) except: print('Вы ввели не число') else: if n > 0: break else: print('Вы ввели не натуральное число') print("Введите элементы матрицы (заполнение идёт по строкам)") a = [] for i in range(m): a.append([]) for j in range(n): while True: try: print(f'Введите элемент a[{i+1}][{j+1}]') elem = eval(input()) except: print('Вы ввели не число') else: break a[i].append(elem) return a
c373af0c7493ff32f919d903644b2031cc51162c
504
def dropannotation(annotation_list): """ Drop out the annotation contained in annotation_list """ target = "" for c in annotation_list: if not c == "#": target += c else: return target return target
9f4a695eaf80f79dce943f2f91926d9c823483b6
506
def do_associate_latest_edit(parser, token): """ AssociateLatestEdit """ try: tag, node = token.split_contents() except ValueError: raise template.TemplateSyntaxError, "%r tag requires one argument" % token.contents.split()[0] return AssociateLatestEdit(node)
75cf36f1cccd2191636f3cb603503c6655ae0c67
507
def open_monitoring_db(dbhost, dbuser, dbpass, database): """ Open MySQL monitoring DB """ try: conn = MySQLdb.connect(host=dbhost, user=dbuser, passwd=dbpass, db=database) except MySQLdb.Error, err: print "Error %d: %s" % (err.args[0], err.args[1]) sys.exit(1) return conn
db33430d20c7c72c7428d85f161d1c186404dc05
508
def matdiff(matrix1,matrix2,figsize=None,cmap=None): """ display the difference between two real matrices, alongside this plot this difference on a log- colour scale (if diff!=0) """ if not figsize: figsize = defaults['figsize'] if not cmap: cmap = defaults['cmap'] _matdiff = matrix1-matrix2 f, (ax1, ax2) = plt.subplots(1,2,figsize=(2*figsize[0],figsize[1])) imreal = ax1.imshow(_matdiff,interpolation='nearest',cmap=cmap) f.colorbar(imreal,ax=ax1) # trying to plot the log-scale diff will fail if the difference is zero everywhere if not np.all(_matdiff==np.zeros(_matdiff.shape)): imimag = ax2.imshow(np.log10(np.abs(_matdiff)),interpolation='nearest',cmap=cmap) f.colorbar(imimag,ax=ax2) return f
fb11354f7388e461ac49bcac942a9b6a2b5528d4
509
def _tokens_by_class_of(tokens): """Generates lookup table of tokens in each class.""" out = defaultdict(set) for token, token_classes in tokens.items(): for token_class in token_classes: out[token_class].add(token) return out
c335582785e4c8a5b82232849ccee579f5ab068f
510
def load_mnist_dataset(shape=(-1, 784), path='data'): """Load the original mnist. Automatically download MNIST dataset and return the training, validation and test set with 50000, 10000 and 10000 digit images respectively. Parameters ---------- shape : tuple The shape of digit images (the default is (-1, 784), alternatively (-1, 28, 28, 1)). path : str The path that the data is downloaded to. Returns ------- X_train, y_train, X_val, y_val, X_test, y_test: tuple Return splitted training/validation/test set respectively. Examples -------- >>> X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_mnist_dataset(shape=(-1,784), path='datasets') >>> X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_mnist_dataset(shape=(-1, 28, 28, 1)) """ return _load_mnist_dataset(shape, path, name='mnist', url='http://yann.lecun.com/exdb/mnist/')
856a758864ef85b4a5bea742dd90a49e997ad9b7
511
def EntryToSlaveName(entry): """Produces slave name from the slaves config dict.""" name = entry.get('slavename') or entry.get('hostname') if 'subdir' in entry: return '%s#%s' % (name, entry['subdir']) return name
258e68c683592c21ea8111f21ba3ab648ddb8c57
513
def is_symmetric_re(root: TreeNode) -> bool: """Check if a binary tree is a mirror of itself (symmetric around its center).""" if not root: return False def is_mirror(t1, t2): if not t1 and not t2: return True if not t1 or not t2: return False return t1.val == t2.val and is_mirror(t1.left, t2.right) and is_mirror(t1.right, t2.left) return is_mirror(root, root)
b2d0450a881e0a1748575baa8d7c6ae1224fb3c0
515
async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Set up paperless from a config entry.""" hass.config_entries.async_setup_platforms(entry, PLATFORMS) return True
8793312f379c510e3420e785eba6ce4db3f098c7
516
def azimuthal_average(image, center=None, stddev=True, binsize=0.5, interpnan=False): """ Modified based on https://github.com/keflavich/image_tools/blob/master/image_tools/radialprofile.py Calculate the azimuthally averaged radial profile. Parameters: imgae (numpy ndarray): 2-D image center (list): [x, y] pixel coordinates. If None, use image center. Note that x is horizontal and y is vertical, y, x = image.shape. stdev (bool): if True, the stdev of profile will also be returned. binsize (float): size of the averaging bin. Can lead to strange results if non-binsize factors are used to specify the center and the binsize is too large. interpnan (bool): Interpolate over NAN values, i.e. bins where there is no data? Returns: If `stdev == True`, it will return [radius, profile, stdev]; else, it will return [radius, profile]. """ # Calculate the indices from the image y, x = np.indices(image.shape) if center is None: center = np.array([(x.max() - x.min()) / 2.0, (y.max() - y.min()) / 2.0]) r = np.hypot(x - center[0], y - center[1]) # The 'bins' as initially defined are lower/upper bounds for each bin # so that values will be in [lower,upper) nbins = int(np.round(r.max() / binsize) + 1) maxbin = nbins * binsize bins = np.linspace(0, maxbin, nbins + 1) # We're probably more interested in the bin centers than their left or right sides... bin_centers = (bins[1:] + bins[:-1]) / 2.0 # There are never any in bin 0, because the lowest index returned by digitize is 1 nr = np.histogram(r, bins)[0] # nr is how many pixels are within each bin # Radial profile itself profile = np.histogram(r, bins, weights=image)[0] / nr if interpnan: profile = np.interp(bin_centers, bin_centers[~np.isnan(profile)], profile[~np.isnan(profile)]) if stddev: # Find out which radial bin each point in the map belongs to # recall that bins are from 1 to nbins whichbin = np.digitize(r.ravel(), bins) profile_std = np.array([image.ravel()[whichbin == b].std() for b in range(1, nbins + 1)]) profile_std /= np.sqrt(nr) # 均值的偏差 return [bin_centers, profile, profile_std] else: return [bin_centers, profile]
3ebadf5fa93cc93e6a5b14327392a2fdecb5d266
517
import re def find_assign(data, varname): """Finds a substring that looks like an assignment. :param data: Source to search in. :param varname: Name of the variable for which an assignment should be found. """ ASSIGN_RE = re.compile(BASE_ASSIGN_PATTERN.format(varname)) if len(ASSIGN_RE.findall(data)) > 1: raise PluginError('Found multiple {}-strings.'.format(varname)) if len(ASSIGN_RE.findall(data)) < 1: raise PluginError('No version assignment ("{}") found.' .format(varname)) return ASSIGN_RE.search(data).group(2)
99e1d1436307dd278fbef8b7e52c4d2eedd6d657
518
import requests def remove(token: str, server: str="http://localhost:8080/remove", params: dict=None) -> int: """ Removes the data associated with the token. :param token: the token to download the data for :type token: str :param server: the URL of the server to upload to :type server: str :param params: the additional parameters to send to the server, eg login information (user/password) :type params: dict :return: the status code, None if failed to download :rtype: int """ if params is None: files = {} else: files = params.copy() files['token'] = token r = requests.post(server, files=files) return r.status_code
a74f2c5f84ae064a909df717917f4589b59eacb5
519
import requests def get_pending_surveys_batch_number(batch_no): """ Gets batch number for the shared survey :param batch_no: Shared survey batch number :type batch_no: str :raises ApiError: Raised when party returns api error :return: list share surveys """ bound_logger = logger.bind(batch_no=batch_no) bound_logger.info("Attempting to retrieve share surveys by batch number") url = f"{app.config['PARTY_URL']}/party-api/v1/pending-surveys/{batch_no}" response = requests.get(url, auth=app.config["BASIC_AUTH"]) try: response.raise_for_status() except requests.exceptions.HTTPError: bound_logger.error("Failed to retrieve share surveys by batch number") raise ApiError(logger, response) bound_logger.info("Successfully retrieved share surveys by batch number") return response
ee31c28c393e29b6cd628aefc38d2ca948c7cdaf
520
def make_sign_initializer(random_sign_init): """Random sign intitializer for HyperBatchEnsemble layers.""" if random_sign_init > 0: return ed.initializers.RandomSign(random_sign_init) else: return tf.keras.initializers.RandomNormal( mean=1.0, stddev=-random_sign_init)
e8ea2653ef9c7c5ba447921d7def990e29a7c9b2
522
def _parallel_predict_proba(ensemble, X, idx, results): """ Compute predictions of SCM estimators """ for k in idx: res = ensemble.estimators[k].predict(X[:, ensemble.estim_features[k]]) results = results + res return results
b0a2d5c59318506202c9331597ab2a11eacb7a32
523
def compute_FP_TP_Probs(Ycorr, Xcorr, Probs, is_tumor, evaluation_mask, Isolated_Tumor_Cells, level): """Generates true positive and false positive stats for the analyzed image Args: Probs: list of the Probabilities of the detected lesions Xcorr: list of X-coordinates of the lesions Ycorr: list of Y-coordinates of the lesions is_tumor: A boolean variable which is one when the case cotains tumor evaluation_mask: The evaluation mask Isolated_Tumor_Cells: list of labels containing Isolated Tumor Cells level: The level at which the evaluation mask was made Returns: FP_probs: A list containing the probabilities of the false positive detections TP_probs: A list containing the probabilities of the True positive detections NumberOfTumors: Number of Tumors in the image (excluding Isolate Tumor Cells) detection_summary: A python dictionary object with keys that are the labels of the lesions that should be detected (non-ITC tumors) and values that contain detection details [confidence score, X-coordinate, Y-coordinate]. Lesions that are missed by the algorithm have an empty value. FP_summary: A python dictionary object with keys that represent the false positive finding number and values that contain detection details [confidence score, X-coordinate, Y-coordinate]. """ max_label = np.amax(evaluation_mask) FP_probs = [] TP_probs = np.zeros((max_label,), dtype=np.float32) detection_summary = {} FP_summary = {} for i in range(1, max_label + 1): if i not in Isolated_Tumor_Cells: label = 'Label ' + str(i) detection_summary[label] = [] FP_counter = 0 if (is_tumor): for i in range(0, len(Xcorr)): # note: the x, y coordinates are switched, I make the x, y to be int, so that the array of evaluation_mask #HittedLabel = evaluation_mask[int(Xcorr[i] / pow(2, level)), int(Ycorr[i] / pow(2, level))] HittedLabel = evaluation_mask[int( Ycorr[i]/pow(2, level)), int(Xcorr[i]/pow(2, level))] print(HittedLabel) # HittedLabel = evaluation_mask[int(Ycorr[i]/pow(2, level)), int(Xcorr[i]/pow(2, level))] # HittedLabel = evaluation_mask[Ycorr[i]/pow(2, level), Xcorr[i]/pow(2, level)] if HittedLabel == 0: FP_probs.append(Probs[i]) key = 'FP ' + str(FP_counter) FP_summary[key] = [Probs[i], Xcorr[i], Ycorr[i]] FP_counter += 1 elif HittedLabel not in Isolated_Tumor_Cells: if (Probs[i] > TP_probs[HittedLabel - 1]): label = 'Label ' + str(HittedLabel) detection_summary[label] = [Probs[i], Xcorr[i], Ycorr[i]] TP_probs[HittedLabel - 1] = Probs[i] else: for i in range(0, len(Xcorr)): FP_probs.append(Probs[i]) key = 'FP ' + str(FP_counter) FP_summary[key] = [Probs[i], Xcorr[i], Ycorr[i]] FP_counter += 1 print(FP_counter) num_of_tumors = max_label - len(Isolated_Tumor_Cells) # just for diagnose print('number of isolated tumor cells =', len(Isolated_Tumor_Cells)) return FP_probs, TP_probs, num_of_tumors, detection_summary, FP_summary
434abefeba56201d20799b1f00783bc77dcbf2c0
524
def make_sentences(text, src): """ Builds a list of dictionaries, one for each sentence resulting from the sentence parser. The dictionary schema is {"src": src, "label": 0, "sentence": sent} Substitutions are made for the identified tokens. Args: text (str): text to process src (str): identifier (file name) to include in the output Returns: List[Dict] """ no_sec = True text = text.replace(USC_DOT, USC) text = text.replace(PL, PL_SPACE) text = text.replace(EO, EO_SPACE) sents = [scrubber(sent, no_sec=no_sec) for sent in sent_tokenize(text)] sent_list = list() for sent in sents: if not sent: continue sent_list.append({"src": src, "label": 0, "sentence": sent}) return sent_list
5da57a55f76a3d4d29f1d0ed681b8597e958b9d0
525
def read_test_case(file_path): """ reads one test case from file. returns contents of test case Parameters ---------- file_path : str the path of the test case file to read. Returns ------- list a list of contents of the test case. """ file = open(file_path, "r") number = int(file.readline().strip()) case = list() for i in range(number): case.append(file.readline().strip()) file.close() return case
6a87ff979d0b1ccf838ebef56401a48760711541
526
import torch def accuracy4batch(model, testloader, criterion): """save a model checkpoint INPUT: model: pytorch nn model. testloader: DataLoader. test data set criterion: criterion. loss criterion device: torch.device. device on which model/data is based OUTPUT: accuracy: float in [0:1]. percenct proportion of correct classifications in testloader test_loss: float. absolute error """ test_loss = 0 accuracy = 0 model.eval() with torch.no_grad(): for inputs, labels in testloader: inputs, labels = inputs.to(model.device), labels.to(model.device) logps = model.forward(inputs) batch_loss = criterion(logps, labels) test_loss += batch_loss.item() # Calculate accuracy ps = torch.exp(logps) top_p, top_class = ps.topk(1, dim=1) equals = top_class == labels.view(*top_class.shape) accuracy += torch.mean(equals.type(torch.FloatTensor)).item() accuracy = accuracy/len(testloader) return accuracy, test_loss
2005984b94f17bf601034953bbea3dca6542143d
528
def pick_an_experiment(i): """ Input: { (repo_uoa) - experiment repository name (defaults to hackathon_local_repo, but can be overridden by '*') (extra_tags) - extra tags to filter } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 } """ repo_uoa = i.get('repo_uoa', hackathon_local_repo) extra_tags = i.get('extra_tags') list_exp_adict = { 'action': 'list_experiments', 'module_uoa': work['self_module_uoa'], 'repo_uoa': repo_uoa, 'extra_tags': extra_tags, } r=ck.access( list_exp_adict ) if r['return']>0: return r if len(r['lst'])==0: return {'return':1, 'error':'No experiments to choose from - please relax your filters'} all_experiment_names = [ '{repo_uoa}:{module_uoa}:{data_uoa}'.format(**entry_dict) for entry_dict in r['lst']] number_of_experiments = len(all_experiment_names) select_adict = {'action': 'select_string', 'module_uoa': 'misc', 'options': all_experiment_names, 'default': str(number_of_experiments-1), 'question': 'Please select the experiment entry', } r=ck.access( select_adict ) if r['return']>0: return r else: cid = r['selected_value'] return {'return':0, 'cid': cid}
97671967ab153173280a142143fb4b07892c92fa
530
import uuid import pathlib def run(args, image: str) -> str: """ Run docker image and mount user-provided folder with C++ files. Parameters ---------- args : dict-like User provided arguments parsed by argparse.ArgumentParser instance. image : str Name of image from which container is run Returns ------- str: Name of created container. Consist of torchlambda prefix and random string """ def _add_components(args): return ( '"' + ";".join(args.aws_components) + '"' if args.aws_components else '"core"' ) def _compilation(args): return '"' + args.compilation + '"' if args.compilation else "" container_name = "torchlambda-" + str(uuid.uuid4()) source_directory = pathlib.Path(args.source).absolute() if source_directory.is_dir(): command = "docker {} run {} -v {}:/usr/local/user_code --name {} {} {} ".format( *general.parse_none( args.docker, args.docker_run, source_directory, container_name, image, _add_components(args), ) ) command += _compilation(args) general.run( command, operation="building inference AWS Lambda package.", silent=args.silent, ) return container_name print("torchlambda:: Provided source files are not directory, exiting.") exit(1)
eba0ab0e93543410ae4a2375ec80a9015168d303
531
def get_top_design_list(oProject): """ Returns a list of the names of the top-level designs. Parameters ---------- oProject : pywin32 COMObject The HFSS project in which the operation will be performed. designname : str Name of the design to insert. Returns ------- design_list : list of str The top-level design list. """ design_list = list(oProject.GetTopDesignList()) return map(str,design_list)
6610cd68a90e20fd916a2ec13b54f37a75c31050
532
from typing import Union from typing import Dict from typing import Any def chi01(param_name: Union[str, None], yval: float, **kwargs) -> Dict[str, Any]: """Plot defaults for sweep_plotting.chi01""" kwargs["xlabel"] = kwargs.get("xlabel") or recast_name(param_name) kwargs["ylabel"] = kwargs.get("ylabel") or r"$\chi_{{01}}$ [{}]".format( units.get_units() ) kwargs["title"] = kwargs.get("title") or r"$\chi_{{01}}=${:.4f} {}".format( yval, units.get_units() ) return kwargs
58e5d09152062a9307526bd953ff91832ef80321
533
def cstring(*args, **kwargs): """Return a colored string. Parameters ---------- args : iterable of str bold : bool color : str, {'HEADER', 'LIGHTBLUE', 'LIGHTGREEN', 'WARNING', 'FAIL', 'ENDC', 'BOLD', 'UNDERLINE' 'BLACK', 'RED', 'GREEN', 'YELLOW', 'BLUE', 'MAGENTA', 'CYAN', 'WHITE'} Terminal color to use. """ args, kwargs = _colorize(*args, **kwargs) cstr = " ".join(args) return cstr
69bc81f0e9267743297bec25b2fccc8f2da2c89d
534
from . import routes # Import routes def create_app(): """Construct the core application.""" app = Flask(__name__, instance_relative_config=False) app.config.from_object('config.Config') db.init_app(app) admin.init_app(app) basic_auth.init_app(app) with app.app_context(): db.create_all() # Create sql tables for our data models admin.add_view(ArticleView(Articles, db.session)) return app
28bfb75626a5be05aef21404956f6ef7adf8f80a
535
def bytes_index(x: bytes, sub: bytes, start: int, end: int) -> int: """Where is the first location of a subsequence within a given slice of a bytes object? Compiling bytes.index compiles this function, when sub is a bytes object. This function is only intended to be executed in this compiled form. Args: x: The bytes object in which to search. sub: The subsequence to look for. start: Beginning of slice of x. Interpreted as slice notation. end: End of slice of x. Interpreted as slice notation. Returns: Lowest index of match within slice of x. Raises: ValueError: If sub is not found. """ ret = bytes_find(x, sub, start, end) if ret == -1: raise ValueError("subsection not found") return ret
3a78e029a96d27fdf5b5cdea397b21f57ca939d9
536
def uniform(minimum, maximum, shape=[]): """uniform(minimum, maximum, shape=[]) returns array of given shape of random reals in given range""" if shape == []: shape = None return mt.uniform(minimum, maximum, shape)
882cd915cb7dfec0e1b6857f99ecefe876ae21b1
538
def unquote_to_bytes(urlencoded_string): """Replace %xx escapes by their single-character equivalent, using the “iso-8859-1” encoding to decode all 8-bit values. """ return bytes( unquote(urlencoded_string, encoding='iso-8859-1'), encoding='iso-8859-1' )
60216d170381e356520c283f308add08754c987d
539
def qualifiedName(item): """Return the full name of an item, including any projects that it's in. If the item does not have a name, return ``None``. XXX: Doesn't include folders. """ names = [] # Note: assumes that the presence of a single null name in the parent tree # means that the item is not properly named. for i in iterParents(item): name = i.name() if name is None: return None names.append(name) return " / ".join(reversed(names))
2a1cdc9e15897c104f63793041ed2d4fe91e383d
540
def assign_columns_of_sector_levels(df_load): """ Add additional column capturing the sector level in the two columns :param df_load: df with at least on sector column :param ambiguous_sector_assignment: if there are sectors that can be assigned to multiple sector lengths (e.g., for government or household sectors), option to specify which sector assignment to keep. :return: df with new column for sector length """ df = replace_NoneType_with_empty_cells(df_load) # load cw with column of sector levels cw = load_sector_length_cw_melt() # merge df assigning sector lengths for s in ['Produced', 'Consumed']: df = df.merge(cw, how='left', left_on=f'Sector{s}By', right_on='Sector').drop(columns=['Sector']).rename( columns={'SectorLength': f'Sector{s}ByLength'}) df[f'Sector{s}ByLength'] = df[f'Sector{s}ByLength'].fillna(0) # There are cases where non-traditional sectors (non naics) have # multiple naics assignments. If there is a non-zero value in the other # sector length column, keep that row because sector lengths must always # match. # subset df into two dfs, one where one sector column length has a zero # value and the second where both sector length columns have non-zero # values df1 = df[(df['SectorProducedByLength'] == 0) | (df['SectorConsumedByLength'] == 0)] df2 = df[(df['SectorProducedByLength'] != 0) & (df['SectorConsumedByLength'] != 0)] # only keep rows where the values are equal df2e = df2[df2['SectorProducedByLength'] == df2['SectorConsumedByLength']] # concat dfs dfc = pd.concat([df1, df2e], ignore_index=True) # check for duplicates. Rows might be duplicated if a sector is the same # for multiple sector lengths duplicate_cols = [e for e in dfc.columns if e not in [ 'SectorProducedByLength', 'SectorConsumedByLength']] duplicate_df = dfc[dfc.duplicated(subset=duplicate_cols, keep=False)].reset_index(drop=True) if len(duplicate_df) > 0: log.warning('There are duplicate rows caused by ambiguous sectors.') dfc = dfc.sort_values(['SectorProducedByLength', 'SectorConsumedByLength']).reset_index(drop=True) return dfc
4dd60267702f21e103cab18293975a5f62c934d2
541
def add_matrices(matrix_a, matrix_b): """Add two n x n matrices """ return [[x + y for x, y in zip(matrix_a[i], matrix_b[i])] for i in range(len(matrix_a))]
a9f6a857892872fde584b6884e59a8b624220061
542
import scipy def no_pretrain_inner_speech(subject): """This function aims at training a model without pretraining by training only on the inner speech condition of a sigle subject :return: metric history for every of the n k-folds :rtype: list of dictonaries """ ###### DATA data, events = dp.load_data(subjects=[subject], filter_action=True) # shuffle data and labels data, events = sklearn.utils.shuffle(data, events) # save memory by converting from 64bit to 32bit floats data = data.astype(np.float32) # filter out only the inner speech condition data, events = dp.choose_condition(data, events, 'inner speech') # select the column containing directions (up, down, left, right) events = events[:, 1] # one-hot event data events = np_utils.to_categorical(events, 4) # zscore normalize the data data = scipy.stats.zscore(data, axis=2) # reshape data = data.reshape(*data.shape, 1) print("Data Prepared.") ###### MODEL gpus = tf.config.list_logical_devices('GPU') mirrored_strategy = tf.distribute.MirroredStrategy(gpus) with mirrored_strategy.scope(): # create EEGNet (source: https://github.com/vlawhern/arl-eegmodels) model = EEGNet(nb_classes=4, Chans=data.shape[1], Samples=data.shape[2], dropoutRate=DROPOUT, kernLength=KERNEL_LENGTH, F1=8, D=2, F2=16, dropoutType='Dropout') # adam optimizer optimizer = tf.keras.optimizers.Adam() # compile model model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) model.build(input_shape=(BATCH_SIZE, *data.shape[1:])) path = './models/saved_models/no_pretrain_inner_speech' model.save(path) del model ###### KFOLD TRAINING history_accumulator = [] for _ in range(N_CHECKS): history = kfold_training(data, events, path, BATCH_SIZE, EPOCHS) history_accumulator += history print(history_accumulator) print("Subject", subject, " Mean Accuracy:", np.mean([h['val_accuracy'][-1] for h in history_accumulator])) return history_accumulator
daa08a8ea88838b8e66c3fc23c2b6997bfdff490
543
from typing import Any def build_put_big_decimal_negative_decimal_request(**kwargs: Any) -> HttpRequest: """Put big decimal value -99999999.99. See https://aka.ms/azsdk/python/protocol/quickstart for how to incorporate this request builder into your code flow. :keyword json: The default value is -99999999.99. Note that overriding this default value may result in unsupported behavior. :paramtype json: float :return: Returns an :class:`~azure.core.rest.HttpRequest` that you will pass to the client's `send_request` method. See https://aka.ms/azsdk/python/protocol/quickstart for how to incorporate this response into your code flow. :rtype: ~azure.core.rest.HttpRequest """ content_type = kwargs.pop("content_type", None) # type: Optional[str] json = kwargs.pop("json", -99999999.99) # type: float accept = "application/json" # Construct URL url = "/number/big/decimal/-99999999.99" # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="PUT", url=url, headers=header_parameters, json=json, **kwargs)
e41800c8bee6a9c4874b3625ed374c9514c81fe7
544
def make_subplots( rows=1, cols=1, shared_xaxes=False, shared_yaxes=False, start_cell="top-left", print_grid=False, horizontal_spacing=None, vertical_spacing=None, subplot_titles=None, column_widths=None, row_heights=None, specs=None, insets=None, column_titles=None, row_titles=None, x_title=None, y_title=None, figure=None, **kwargs, ) -> go.Figure: """ Return an instance of plotly.graph_objs.Figure with predefined subplots configured in 'layout'. Parameters ---------- rows: int (default 1) Number of rows in the subplot grid. Must be greater than zero. cols: int (default 1) Number of columns in the subplot grid. Must be greater than zero. shared_xaxes: boolean or str (default False) Assign shared (linked) x-axes for 2D cartesian subplots - True or 'columns': Share axes among subplots in the same column - 'rows': Share axes among subplots in the same row - 'all': Share axes across all subplots in the grid. shared_yaxes: boolean or str (default False) Assign shared (linked) y-axes for 2D cartesian subplots - 'columns': Share axes among subplots in the same column - True or 'rows': Share axes among subplots in the same row - 'all': Share axes across all subplots in the grid. start_cell: 'bottom-left' or 'top-left' (default 'top-left') Choose the starting cell in the subplot grid used to set the domains_grid of the subplots. - 'top-left': Subplots are numbered with (1, 1) in the top left corner - 'bottom-left': Subplots are numbererd with (1, 1) in the bottom left corner print_grid: boolean (default True): If True, prints a string representation of the plot grid. Grid may also be printed using the `Figure.print_grid()` method on the resulting figure. horizontal_spacing: float (default 0.2 / cols) Space between subplot columns in normalized plot coordinates. Must be a float between 0 and 1. Applies to all columns (use 'specs' subplot-dependents spacing) vertical_spacing: float (default 0.3 / rows) Space between subplot rows in normalized plot coordinates. Must be a float between 0 and 1. Applies to all rows (use 'specs' subplot-dependents spacing) subplot_titles: list of str or None (default None) Title of each subplot as a list in row-major ordering. Empty strings ("") can be included in the list if no subplot title is desired in that space so that the titles are properly indexed. specs: list of lists of dict or None (default None) Per subplot specifications of subplot type, row/column spanning, and spacing. ex1: specs=[[{}, {}], [{'colspan': 2}, None]] ex2: specs=[[{'rowspan': 2}, {}], [None, {}]] - Indices of the outer list correspond to subplot grid rows starting from the top, if start_cell='top-left', or bottom, if start_cell='bottom-left'. The number of rows in 'specs' must be equal to 'rows'. - Indices of the inner lists correspond to subplot grid columns starting from the left. The number of columns in 'specs' must be equal to 'cols'. - Each item in the 'specs' list corresponds to one subplot in a subplot grid. (N.B. The subplot grid has exactly 'rows' times 'cols' cells.) - Use None for a blank a subplot cell (or to move past a col/row span). - Note that specs[0][0] has the specs of the 'start_cell' subplot. - Each item in 'specs' is a dictionary. The available keys are: * type (string, default 'xy'): Subplot type. One of - 'xy': 2D Cartesian subplot type for scatter, bar, etc. - 'scene': 3D Cartesian subplot for scatter3d, cone, etc. - 'polar': Polar subplot for scatterpolar, barpolar, etc. - 'ternary': Ternary subplot for scatterternary - 'mapbox': Mapbox subplot for scattermapbox - 'domain': Subplot type for traces that are individually positioned. pie, parcoords, parcats, etc. - trace type: A trace type which will be used to determine the appropriate subplot type for that trace * secondary_y (bool, default False): If True, create a secondary y-axis positioned on the right side of the subplot. Only valid if type='xy'. * colspan (int, default 1): number of subplot columns for this subplot to span. * rowspan (int, default 1): number of subplot rows for this subplot to span. * l (float, default 0.0): padding left of cell * r (float, default 0.0): padding right of cell * t (float, default 0.0): padding right of cell * b (float, default 0.0): padding bottom of cell - Note: Use 'horizontal_spacing' and 'vertical_spacing' to adjust the spacing in between the subplots. insets: list of dict or None (default None): Inset specifications. Insets are subplots that overlay grid subplots - Each item in 'insets' is a dictionary. The available keys are: * cell (tuple, default=(1,1)): (row, col) index of the subplot cell to overlay inset axes onto. * type (string, default 'xy'): Subplot type * l (float, default=0.0): padding left of inset in fraction of cell width * w (float or 'to_end', default='to_end') inset width in fraction of cell width ('to_end': to cell right edge) * b (float, default=0.0): padding bottom of inset in fraction of cell height * h (float or 'to_end', default='to_end') inset height in fraction of cell height ('to_end': to cell top edge) column_widths: list of numbers or None (default None) list of length `cols` of the relative widths of each column of suplots. Values are normalized internally and used to distribute overall width of the figure (excluding padding) among the columns. For backward compatibility, may also be specified using the `column_width` keyword argument. row_heights: list of numbers or None (default None) list of length `rows` of the relative heights of each row of subplots. If start_cell='top-left' then row heights are applied top to bottom. Otherwise, if start_cell='bottom-left' then row heights are applied bottom to top. For backward compatibility, may also be specified using the `row_width` kwarg. If specified as `row_width`, then the width values are applied from bottom to top regardless of the value of start_cell. This matches the legacy behavior of the `row_width` argument. column_titles: list of str or None (default None) list of length `cols` of titles to place above the top subplot in each column. row_titles: list of str or None (default None) list of length `rows` of titles to place on the right side of each row of subplots. If start_cell='top-left' then row titles are applied top to bottom. Otherwise, if start_cell='bottom-left' then row titles are applied bottom to top. x_title: str or None (default None) Title to place below the bottom row of subplots, centered horizontally y_title: str or None (default None) Title to place to the left of the left column of subplots, centered vertically figure: go.Figure or None (default None) If None, a new go.Figure instance will be created and its axes will be populated with those corresponding to the requested subplot geometry and this new figure will be returned. If a go.Figure instance, the axes will be added to the layout of this figure and this figure will be returned. If the figure already contains axes, they will be overwritten. Examples -------- Example 1: >>> # Stack two subplots vertically, and add a scatter trace to each >>> from plotly.subplots import make_subplots >>> import plotly.graph_objects as go >>> fig = make_subplots(rows=2) This is the format of your plot grid: [ (1,1) xaxis1,yaxis1 ] [ (2,1) xaxis2,yaxis2 ] >>> fig.add_scatter(y=[2, 1, 3], row=1, col=1) # doctest: +ELLIPSIS Figure(...) >>> fig.add_scatter(y=[1, 3, 2], row=2, col=1) # doctest: +ELLIPSIS Figure(...) or see Figure.append_trace Example 2: >>> # Stack a scatter plot >>> fig = make_subplots(rows=2, shared_xaxes=True) This is the format of your plot grid: [ (1,1) xaxis1,yaxis1 ] [ (2,1) xaxis2,yaxis2 ] >>> fig.add_scatter(y=[2, 1, 3], row=1, col=1) # doctest: +ELLIPSIS Figure(...) >>> fig.add_scatter(y=[1, 3, 2], row=2, col=1) # doctest: +ELLIPSIS Figure(...) Example 3: >>> # irregular subplot layout (more examples below under 'specs') >>> fig = make_subplots(rows=2, cols=2, ... specs=[[{}, {}], ... [{'colspan': 2}, None]]) This is the format of your plot grid: [ (1,1) xaxis1,yaxis1 ] [ (1,2) xaxis2,yaxis2 ] [ (2,1) xaxis3,yaxis3 - ] >>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=1, col=1) # doctest: +ELLIPSIS Figure(...) >>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=1, col=2) # doctest: +ELLIPSIS Figure(...) >>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=2, col=1) # doctest: +ELLIPSIS Figure(...) Example 4: >>> # insets >>> fig = make_subplots(insets=[{'cell': (1,1), 'l': 0.7, 'b': 0.3}]) This is the format of your plot grid: [ (1,1) xaxis1,yaxis1 ] With insets: [ xaxis2,yaxis2 ] over [ (1,1) xaxis1,yaxis1 ] >>> fig.add_scatter(x=[1,2,3], y=[2,1,1]) # doctest: +ELLIPSIS Figure(...) >>> fig.add_scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2') # doctest: +ELLIPSIS Figure(...) Example 5: >>> # include subplot titles >>> fig = make_subplots(rows=2, subplot_titles=('Plot 1','Plot 2')) This is the format of your plot grid: [ (1,1) x1,y1 ] [ (2,1) x2,y2 ] >>> fig.add_scatter(x=[1,2,3], y=[2,1,2], row=1, col=1) # doctest: +ELLIPSIS Figure(...) >>> fig.add_bar(x=[1,2,3], y=[2,1,2], row=2, col=1) # doctest: +ELLIPSIS Figure(...) Example 6: Subplot with mixed subplot types >>> fig = make_subplots(rows=2, cols=2, ... specs=[[{'type': 'xy'}, {'type': 'polar'}], ... [{'type': 'scene'}, {'type': 'ternary'}]]) >>> fig.add_traces( ... [go.Scatter(y=[2, 3, 1]), ... go.Scatterpolar(r=[1, 3, 2], theta=[0, 45, 90]), ... go.Scatter3d(x=[1, 2, 1], y=[2, 3, 1], z=[0, 3, 5]), ... go.Scatterternary(a=[0.1, 0.2, 0.1], ... b=[0.2, 0.3, 0.1], ... c=[0.7, 0.5, 0.8])], ... rows=[1, 1, 2, 2], ... cols=[1, 2, 1, 2]) # doctest: +ELLIPSIS Figure(...) """ return _sub.make_subplots( rows, cols, shared_xaxes, shared_yaxes, start_cell, print_grid, horizontal_spacing, vertical_spacing, subplot_titles, column_widths, row_heights, specs, insets, column_titles, row_titles, x_title, y_title, figure, **kwargs, )
1119aba8e9b9f35b18959f765e4528e2d065a5b8
545
from re import T def op_table(name): """Get the symbol `name' as an int8_t[].""" return gdb.parse_and_eval("&'" + name + "'").cast(T('int8_t').pointer())
8266128cb1bf59b9d71d7dabb7d002ff22e41192
546
from typing import Dict from typing import Any def nf_masks_to_neurof_dict(binary_masks: np.ndarray, dataset_name: str) -> Dict[str, Any]: """ Take as input a tensor of binary mask and produces dict format for neurofinder Args: binary_masks: 3d ndarray (components x dimension 1 x dimension 2) dataset_filename: name of the dataset Returns: dset: dict dataset in neurofinder format to be saved in json """ regions = [] for m in binary_masks: coords = [[int(x), int(y)] for x, y in zip(*np.where(m))] regions.append({"coordinates": coords}) dset = {"regions": regions, "dataset": dataset_name} return dset
daee76afc56e6e0da0939530a49f4a77b4c1d5f6
547
def get_domain_machine_command(): """Retrieves a collection of Machines that have communicated to or from a given domain address. Returns: (str, dict, dict). Human readable, context, raw response """ headers = ['ID', 'ComputerDNSName', 'OSPlatform', 'LastIPAddress', 'LastExternalIPAddress', 'HealthStatus', 'RiskScore', 'ExposureLevel'] domain = demisto.args().get('domain') response = get_domain_machines_request(domain) machines_list = get_machines_list(response) human_readable = tableToMarkdown(f'Machines that have communicated with {domain} domain:', machines_list, headers=headers, removeNull=True) context_output = { 'Domain': domain, 'Machines': machines_list } entry_context = { 'MicrosoftATP.DomainMachine(val.Domain === obj.Domain)': context_output } return human_readable, entry_context, response
0e614d15abd3e99408d4a3d7a93ecc49dba694ad
548
import copy from functools import reduce def flatten_dict(source_dict, name_delimiter='_', inner_name=False): """ flatten nest dict Parameters ---------- source_dict : nest dict name_delimiter : flatten name delimiter(non-use when inner_name is True) inner_name : False, use innermost name as retrun dict key or not Returns ------- flatten dict Examples -------- >>> from tidyframe import flatten_dict >>> nest_dict = { ... 'a': 1, ... 'b': [1, 2], ... 'c': { ... 'cc1': 3, ... 'cc2': 4 ... }, ... 'd': { ... 'd1': 5, ... 'd2': { ... 'dd1': 6, ... 'dd2': 7 ... } ... } ... } >>> flatten_dict(nest_dict) {'a': 1, 'b': [1, 2], 'c_cc1': 3, 'c_cc2': 4, 'd_d1': 5, 'd_d2_dd1': 6, 'd_d2_dd2': 7} >>> flatten_dict(nest_dict, inner_name=True) {'a': 1, 'b': [1, 2], 'cc1': 3, 'cc2': 4, 'd1': 5, 'dd1': 6, 'dd2': 7} """ assert isinstance(source_dict, dict), "import source_dict is not dict" json_name = {} for key in source_dict.keys(): if isinstance(get_in(source_dict, [key]), dict): val = [True, [key]] json_name.update({key: val}) else: val = [False, [key]] json_name.update({key: val}) while True: key_inner = list(filter(lambda x: json_name.get(x)[0], json_name)) if key_inner: for x in key_inner: dict_to_update_json_name = {} val = json_name.get(x)[1] for key in get_in(source_dict, val).keys(): val_in = copy(val) val_in.append(key) if isinstance(get_in(source_dict, val_in), dict): dict_to_update = { reduce(lambda x, y: x + name_delimiter + y, val_in): [True, val_in] } else: dict_to_update = { reduce(lambda x, y: x + name_delimiter + y, val_in): [False, val_in] } dict_to_update_json_name.update(dict_to_update) json_name.update(dict_to_update_json_name) json_name.pop(x) else: break if inner_name: return { json_name.get(x)[1][-1]: get_in(source_dict, json_name.get(x)[1]) for x in json_name.keys() } else: return { x: get_in(source_dict, json_name.get(x)[1]) for x in json_name.keys() }
fbba7666c25f5eafd47642b8308a486e25cdc6f9
549
def matrix_multiply(A, B): """ Multiply two matrices A and B. :param A: the right matrix :param B: the left matrix :return: A * B """ # define m and n for the matrix as well as l, the connecting dimension between A and B m, l, n = len(A), len(A[0]), len(B[0]) # initialize an all zeros matrix C = [[0.0 for _ in range(len(B[0]))] for _ in range(len(A))] # iterative over the rows of C for i in range(m): # iterative over the columns of C for j in range(n): # set C[i][j] to the dot product of ith row of A and the jth column of B C[i][j] = sum(A[i][k] * B[k][j] for k in range(l)) # return the matrix C = A @ B return C
3cd551ea87d9f925654a4153106c2fe87e33fa8c
550
def hard_light(image1, image2): """ Superimposes two videos on top of each other using the Hard Light algorithm :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_hard_light(image2.im))
dcfd25a83f142c2d42c38a787569001af6f6bfc9
551
def show(*actors, **options): """ Create on the fly an instance of class ``Plotter`` and show the object(s) provided. Allowed input objects types are: ``str``, ``Mesh``, ``Volume``, ``Picture``, ``Assembly`` ``vtkPolyData``, ``vtkActor``, ``vtkActor2D``, ``vtkImageActor``, ``vtkAssembly`` or ``vtkVolume``. If filename is given, its type is guessed based on its extension. Supported formats are: `vtu, vts, vtp, ply, obj, stl, 3ds, xml, neutral, gmsh, pcd, xyz, txt, byu, tif, slc, vti, mhd, png, jpg`. :param int at: number of the renderer to plot to, if more than one exists :param list shape: Number of sub-render windows inside of the main window. Specify two across with ``shape=(2, 1)`` and a two by two grid with ``shape=(2, 2)``. By default there is only one renderer. Can also accept a shape as string descriptor. E.g.: - shape="3|1" means 3 plots on the left and 1 on the right, - shape="4/2" means 4 plots on top of 2 at bottom. :param int axes: set the type of axes to be shown - 0, no axes - 1, draw three gray grid walls - 2, show cartesian axes from (0,0,0) - 3, show positive range of cartesian axes from (0,0,0) - 4, show a triad at bottom left - 5, show a cube at bottom left - 6, mark the corners of the bounding box - 7, draw a 3D ruler at each side of the cartesian axes - 8, show the ``vtkCubeAxesActor`` object - 9, show the bounding box outLine - 10, show three circles representing the maximum bounding box - 11, show a large grid on the x-y plane - 12, show polar axes - 13, draw a simple ruler at the bottom of the window Axis type-1 can be fully customized by passing a dictionary ``axes=dict()`` where: Check ``addons.Axes()`` for the full list of options. :param float azimuth/elevation/roll: move camera accordingly :param str viewup: either ['x', 'y', 'z'] or a vector to set vertical direction :param bool resetcam: re-adjust camera position to fit objects :param dict camera: Camera parameters can further be specified with a dictionary assigned to the ``camera`` keyword (E.g. `show(camera={'pos':(1,2,3), 'thickness':1000,})`) - pos, `(list)`, the position of the camera in world coordinates - focalPoint `(list)`, the focal point of the camera in world coordinates - viewup `(list)`, the view up direction for the camera - distance `(float)`, set the focal point to the specified distance from the camera position. - clippingRange `(float)`, distance of the near and far clipping planes along the direction of projection. - parallelScale `(float)`, scaling used for a parallel projection, i.e. the height of the viewport in world-coordinate distances. The default is 1. Note that the "scale" parameter works as an "inverse scale", larger numbers produce smaller images. This method has no effect in perspective projection mode. - thickness `(float)`, set the distance between clipping planes. This method adjusts the far clipping plane to be set a distance 'thickness' beyond the near clipping plane. - viewAngle `(float)`, the camera view angle, which is the angular height of the camera view measured in degrees. The default angle is 30 degrees. This method has no effect in parallel projection mode. The formula for setting the angle up for perfect perspective viewing is: angle = 2*atan((h/2)/d) where h is the height of the RenderWindow (measured by holding a ruler up to your screen) and d is the distance from your eyes to the screen. :param bool interactive: pause and interact with window (True) or continue execution (False) :param float rate: maximum rate of `show()` in Hertz :param int interactorStyle: set the type of interaction - 0 = TrackballCamera [default] - 1 = TrackballActor - 2 = JoystickCamera - 3 = JoystickActor - 4 = Flight - 5 = RubberBand2D - 6 = RubberBand3D - 7 = RubberBandZoom - 8 = Context - 9 = 3D - 10 = Terrain - 11 = Unicam :param bool q: force program to quit after `show()` command returns. :param bool new: if set to `True`, a call to ``show`` will instantiate a new ``Plotter`` object (a new window) instead of reusing the first created. :return: the current ``Plotter`` class instance. .. note:: With multiple renderers, keyword ``at`` can become a `list`, e.g. .. code-block:: python from vedo import * s = Sphere() c = Cube() p = Paraboloid() show(s, c, at=[0, 1], shape=(3,1)) show(p, at=2, interactive=True) # # is equivalent to: plt = Plotter(shape=(3,1)) s = Sphere() c = Cube() p = Paraboloid() plt.show(s, at=0) plt.show(p, at=1) plt.show(c, at=2, interactive=True) """ at = options.pop("at", None) shape = options.pop("shape", (1, 1)) N = options.pop("N", None) pos = options.pop("pos", (0, 0)) size = options.pop("size", "auto") screensize = options.pop("screensize", "auto") title = options.pop("title", "") bg = options.pop("bg", "white") bg2 = options.pop("bg2", None) axes = options.pop("axes", settings.defaultAxesType) interactive = options.pop("interactive", None) offscreen = options.pop("offscreen", False) sharecam = options.pop("sharecam", True) resetcam = options.pop("resetcam", True) zoom = options.pop("zoom", None) viewup = options.pop("viewup", "") azimuth = options.pop("azimuth", 0) elevation = options.pop("elevation", 0) roll = options.pop("roll", 0) camera = options.pop("camera", None) interactorStyle = options.pop("interactorStyle", 0) q = options.pop("q", False) newPlotter = options.pop("new", False) if len(options): for op in options: printc("Warning: unknown keyword in show():", op, c='y') if len(actors) == 0: actors = None elif len(actors) == 1: actors = actors[0] else: actors = utils.flatten(actors) if settings.plotter_instance and not newPlotter: # Plotter exists plt = settings.plotter_instance else: # Plotter must be created if utils.isSequence(at): # user passed a sequence for "at" if not utils.isSequence(actors): printc("show() Error: input must be a list.", c='r') raise RuntimeError() if len(at) != len(actors): printc("show() Error: lists 'input' and 'at', must have equal lengths.", c='r') raise RuntimeError() if len(at) > 1 and (shape == (1, 1) and N is None): N = max(at) + 1 elif at is None and (N or shape != (1, 1)): if not utils.isSequence(actors): printc('show() Error: N or shape is set, but input is not a sequence.', c='r') printc(' you may need to specify e.g. at=0', c='r') raise RuntimeError() at = list(range(len(actors))) plt = Plotter( shape=shape, N=N, pos=pos, size=size, screensize=screensize, title=title, axes=axes, sharecam=sharecam, resetcam=resetcam, interactive=interactive, offscreen=offscreen, bg=bg, bg2=bg2, ) # use _plt_to_return because plt.show() can return a k3d/panel plot _plt_to_return = None if utils.isSequence(at): for i, a in enumerate(actors): _plt_to_return = plt.show( a, at=i, zoom=zoom, resetcam=resetcam, viewup=viewup, azimuth=azimuth, elevation=elevation, roll=roll, camera=camera, interactive=False, interactorStyle=interactorStyle, bg=bg, bg2=bg2, axes=axes, q=q, ) plt.interactive = interactive if interactive or len(at)==N \ or (isinstance(shape[0],int) and len(at)==shape[0]*shape[1]): # note that shape can be a string if not offscreen: plt.interactor.Start() else: _plt_to_return = plt.show( actors, at=at, zoom=zoom, resetcam=resetcam, viewup=viewup, azimuth=azimuth, elevation=elevation, roll=roll, camera=camera, interactive=interactive, interactorStyle=interactorStyle, bg=bg, bg2=bg2, axes=axes, q=q, ) return _plt_to_return
e95c9bbd325e8e6da6ee4f33ca861496c3048bd3
552
from typing import List def get_followup_question_list(intent: str) -> List[str]: """ Get all imported followup questions for this intent as a list * `intent`: name-parameter of the yml-section with which the followup questions were imported **Returns:** None if no followup questions are known for this intent, otherwise list of followup questions for this intent """ return None if not qa.get(intent) else qa.get(intent).followup_questions
00581a497d4e09670edaa0d44870a2a0d7589ada
554
from typing import Tuple def event_train_test_split( evs: np.ndarray, n_evs: int, train_split: float, random_seed: int=1 ) -> Tuple[np.ndarray, np.ndarray]: """[summary] Args: n_evs (int): [description] train_split (float): [description] random_seed (int, optional): [description]. Defaults to 1. Returns: Tuple[np.ndarray, np.ndarray]: [description] """ # some basic checks assert 0 < train_split < 1, "Variable train_split (ts) must be 0<ts<1." assert n_evs > 1, "Need more than 1 event to split." # set the random state locally r = np.random.RandomState(random_seed) # compute the number of test and train samples train_samples = int(np.round(train_split * n_evs, 0)) test_samples = int(n_evs - train_samples) # split the events train_events = r.choice(evs, train_samples, replace=False) test_events = evs[~np.isin(evs, train_events)] # make sure they add up to the total number! assert len(train_events) + len(test_events) == n_evs return train_events, test_events
69deb28d199fc8636ed45a90630a69753f4c1066
555
def get_cd(wcs, n=1): """ Get the value of the change in world coordinate per pixel across a linear axis. Defaults to wcs.wcs.cd if present. Does not support rotated headers (e.g., with nonzero CDm_n where m!=n) """ if hasattr(wcs.wcs,'cd'): if wcs.wcs.cd[n-1,n-1] != 0: return wcs.wcs.cd[n-1,n-1] else: return wcs.wcs.get_cdelt()[n-1]
9b31c81a1a5e87efeb201ffef7f8f65f846fe0b7
556
def mock_clear(): """Clear MOCK_DATA_HEAP""" MOCK_DATA_HEAP.clear() return ""
96212726db3f1e29ac4da54e62df70cb89ba1f2e
557
from datetime import datetime def cls_merge_type(classification): """ classification type이 2가지일 때 합쳐주는 함수 Parameters ---------- classification: cls classification 리스트 Returns ------- list of cls 변환된 classification 리스트 """ cls_type = {'instant' if cls.get('instant_datetime') else 'not_instant' for cls in classification } if len(cls_type) == 2: for cls in classification: instant_datetime = cls.get('instant_datetime') if instant_datetime: year = instant_datetime.year start_datetime = datetime.datetime(year, 1, 1) # 해당년도 1월 1일로 설정 end_datetime = instant_datetime cls['instant_datetime'] = None cls['start_datetime'] = start_datetime cls['end_datetime'] = end_datetime return classification
e6a59f45adecdc21acb81f6890ac79cfaa93b4d6
558
def duplicate_detector(gate_orders: list[tuple[str]]) -> int: """Detects any schematics that have an identical combination of gates.""" difference = len(gate_orders) - len(list(set(gate_orders))) # List - list with no duplicates return difference
e439a106abc0ff21bfe9773b3185d35b5bf05aa0
559
def permutations(x): """Return all permutations of x""" def fn(i): if i == len(x): ans.append(x.copy()) for k in range(i, len(x)): x[i], x[k] = x[k], x[i] fn(i+1) x[i], x[k] = x[k], x[i] ans = [] fn(0) return ans
691c701e1ac17da5dabb0fc3fe607ff68ac8fcdc
560
def encode(model, text, out_file=None, topic_priors=None, prior_weight=1.0): """ Perform text-to-image encoding. Parameters ---------- model : :obj:`gclda.model.Model` Model object needed for decoding. text : :obj:`str` or :obj:`list` Text to encode into an image. out_file : :obj:`str`, optional If not None, writes the encoded image to a file. topic_priors : :obj:`numpy.ndarray` of :obj:`float`, optional A 1d array of size (n_topics) with values for topic weighting. If None, no weighting is done. Default is None. prior_weight : :obj:`float`, optional The weight by which the prior will affect the encoding. Default is 1. Returns ------- img : :obj:`nibabel.Nifti1Image` The encoded image. topic_weights : :obj:`numpy.ndarray` of :obj:`float` The weights of the topics used in encoding. Notes ----- ====================== ============================================================== Notation Meaning ====================== ============================================================== :math:`v` Voxel :math:`t` Topic :math:`w` Word type :math:`h` Input text :math:`p(v|t)` Probability of topic given voxel (``p_topic_g_voxel``) :math:`\\tau_{t}` Topic weight vector (``topic_weights``) :math:`p(w|t)` Probability of word type given topic (``p_word_g_topic``) :math:`\omega` 1d array from input image (``input_values``) ====================== ============================================================== 1. Compute :math:`p(v|t)` (``p_voxel_g_topic``). - From :obj:`gclda.model.Model.get_spatial_probs()` 2. Compute :math:`p(t|w)` (``p_topic_g_word``). 3. Vectorize input text according to model vocabulary. 4. Reduce :math:`p(t|w)` to only include word types in input text. 5. Compute :math:`p(t|h)` (``p_topic_g_text``) by multiplying :math:`p(t|w)` by word counts for input text. 6. Sum topic weights (:math:`\\tau_{t}`) across words. - :math:`\\tau_{t} = \sum_{i}{p(t|h_{i})}` 7. Compute voxel weights. - :math:`p(v|h) \propto p(v|t) \cdot \\tau_{t}` 8. The resulting array (``voxel_weights``) reflects arbitrarily scaled voxel weights for the input text. 9. Unmask and reshape ``voxel_weights`` into brain image. """ if isinstance(text, list): text = " ".join(text) # Assume that words in word_labels are underscore-separated. # Convert to space-separation for vectorization of input string. vocabulary = [term.replace("_", " ") for term in model.dataset.word_labels] max_len = max([len(term.split(" ")) for term in vocabulary]) vectorizer = CountVectorizer( vocabulary=model.dataset.word_labels, ngram_range=(1, max_len) ) word_counts = np.squeeze(vectorizer.fit_transform([text]).toarray()) keep_idx = np.where(word_counts > 0)[0] text_counts = word_counts[keep_idx] n_topics_per_word_token = np.sum(model.n_word_tokens_word_by_topic, axis=1) p_topic_g_word = ( model.n_word_tokens_word_by_topic / n_topics_per_word_token[:, None] ) p_topic_g_word = np.nan_to_num(p_topic_g_word, 0) p_topic_g_text = p_topic_g_word[keep_idx] # p(T|W) for words in text only prod = p_topic_g_text * text_counts[:, None] # Multiply p(T|W) by words in text topic_weights = np.sum(prod, axis=0) # Sum across words if topic_priors is not None: weighted_priors = weight_priors(topic_priors, prior_weight) topic_weights *= weighted_priors _, p_voxel_g_topic = model.get_spatial_probs() voxel_weights = np.dot(p_voxel_g_topic, topic_weights) img = unmask(voxel_weights, model.dataset.mask_img) if out_file is not None: img.to_filename(out_file) return img, topic_weights
941745be7b84c3af9d7f7e62cb2d93fabc3b22c1
562
def clean_string(s: str) -> str: """Cleans and returns an input string >>> clean_string(" xYz ") 'XYZ' """ return str(s).strip().upper()
c97281505492ded5b9167076312959c5eee41a6c
563
import collections def get_unique_region_cov_df(unique_region_dict, fuzzer_names): """Returns a DataFrame where the two columns are fuzzers and the number of unique regions covered.""" fuzzers = collections.defaultdict(int) for region in unique_region_dict: for fuzzer in unique_region_dict[region]: fuzzers[fuzzer] += 1 dict_to_transform = {'fuzzer': [], 'unique_regions_covered': []} for fuzzer in fuzzer_names: covered_num = fuzzers[fuzzer] dict_to_transform['fuzzer'].append(fuzzer) dict_to_transform['unique_regions_covered'].append(covered_num) return pd.DataFrame(dict_to_transform)
923227fb804549252bf51cd94e65180c3f8564e8
564
def display_generation_hit_results(hit_info, hit_results): """Displays the results of a generation HIT Parameters ---------- hit_info : GenerationHITInfo HITInfo object storing information regarding the HIT hit_results : GenerationResults HIT results object storing the results of the relevant HIT Returns ------- bool returns True """ dec_string = format_decomposition_string(hit_results.decomposition) print( 'HIT ID: {hit_id}' '\nAssignment ID: {assignment_id}' '\nHIT Type: Generation' '\n' '\nResults' '\n=======' '\nAnnotation ID: {annotation_id}' '\nQuestion ID: {question_id}' '\nQuestion Text: {question_text}' '\nDecomposition: {decomposition}'.format( hit_id=hit_results.hit_id, assignment_id=hit_results.assignment_id, annotation_id=hit_info.annotation_id, question_id=hit_info.question_id, question_text=hit_info.question_text, decomposition=dec_string)) return True
649cf05d0ee3a87032993fd05fc120162c7f8d2b
566
def XOR(v1, v2): """ XOR operation element by element from 2 lists :param v1: [1, 0, 1, 0, 0, 1] :param v2: [1, 1, 0, 0, 1, 1] :return: [0, 1, 1, 0, 1, 0] """ return [a ^ b for a, b in zip(v1, v2)]
e3b94b35ccf4e1dd99cc51f32c70f96c5fe99795
568