content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def linearly_spaced_combinations(bounds, num_samples): """ Return 2-D array with all linearly spaced combinations with the bounds. Parameters ---------- bounds : sequence of tuples The bounds for the variables, [(x1_min, x1_max), (x2_min, x2_max), ...] num_samples : integer or array_likem Number of samples to use for every dimension. Can be a constant if the same number should be used for all, or an array to fine-tune precision. Total number of data points is num_samples ** len(bounds). Returns ------- combinations : 2-d array A 2-d arrray. If d = len(bounds) and l = prod(num_samples) then it is of size l x d, that is, every row contains one combination of inputs. """ bounds = np.atleast_2d(bounds) num_vars = len(bounds) num_samples = np.broadcast_to(num_samples, num_vars) # Create linearly spaced test inputs inputs = [np.linspace(b[0], b[1], n) for b, n in zip(bounds, num_samples)] # Convert to 2-D array return combinations(inputs)
4d493290ae5c8af91f2f0dce5041c12c22bb6aaa
569
from typing import Optional from typing import Tuple def flatten_expressions_tree( expression: Optional[Expression]) -> Tuple[Expression, ...]: """ Flatten expressions tree into a list. """ if not expression: return tuple() expressions = [expression] for arg in expression.arguments: if is_expression(arg): expressions.extend(flatten_expressions_tree(arg)) return tuple(expressions)
dea87f37663e995a74b7709b3dbb62d5cc370f50
570
def policy_head(x, mode, params): """ The policy head attached after the residual blocks as described by DeepMind: 1. A convolution of 8 filters of kernel size 3 × 3 with stride 1 2. Batch normalisation 3. A rectifier non-linearity 4. A fully connected linear layer that outputs a vector of size 19²+1 = 362 corresponding to logit probabilities for all intersections and the pass move """ num_channels = params['num_channels'] num_samples = params['num_samples'] def _forward(x, is_recomputing=False): """ Returns the result of the forward inference pass on `x` """ y = batch_norm_conv2d(x, 'conv_1', (3, 3, num_channels, num_samples), mode, params, is_recomputing=is_recomputing) y = tf.nn.relu(y) y = tf.reshape(y, (-1, 361 * num_samples)) y = dense(y, 'linear_1', (361 * num_samples, 362), policy_offset_op, mode, params, is_recomputing=is_recomputing) return tf.cast(y, tf.float32) return recompute_grad(_forward)(x)
8e8418ffd46857cf03921ea516729d15a0ef5ca9
571
def _get_word_ngrams(n, sentences): """Calculates word n-grams for multiple sentences. """ assert len(sentences) > 0 assert n > 0 words = sum(sentences, []) return _get_ngrams(n, words)
73640beb269895d7c54d21825135908eba3f3bd4
573
from typing import List def override_list(base_list: List, dynamic_key: str, val): """ Customize the base list by updating with the dynamic_key and val. Parameters ---------- base: dict Dictionary or List to be customized with dynamic args dynamic_key: str Key to identify the location the value should be updated. Nested with DOT like "custom.key_0.key_1.key_2.0.0.key_4" val: str or float or int or dict or list Value to be set Returns ------- dict Updated base_list based on the key-value pairs in dynamic_args Notes ----- This will be called recursively with override_dict. If dynamic_key is not a number, then we try to match on `name` field in the list of dictionaries. """ def find_root_key_index(base_list, root_key): if root_key.isdigit(): # If array index root_key = int(root_key) else: # If string, then match on `name` for root_key_i in range(len(base_list)): if root_key == base_list[root_key_i][NAME]: root_key = root_key_i break if not isinstance(root_key, int): raise KeyError("{} not found in List".format(root_key)) return root_key if DOT in dynamic_key: # Compute root and subtree keys root_key = find_root_key_index(base_list, dynamic_key.split(DOT)[0]) subtree_key = DOT.join(dynamic_key.split(DOT)[1:]) # Extract subtree subtree = base_list[root_key] if isinstance(subtree, dict): root_val = override_dict(base_dict=subtree, dynamic_key=subtree_key, val=val) elif isinstance(subtree, list): root_val = override_list(base_list=subtree, dynamic_key=subtree_key, val=val) else: raise ValueError( "Unsupported subtree type. Must be one of list or dict") else: # End of nested dynamic key root_key = find_root_key_index(base_list, dynamic_key) root_val = val base_list[root_key] = root_val return base_list
eb7e4a0462d2db82cb1900784b5d99e2865dcc00
574
def c_components(DAG): """Return a list of the maximal c-component node sets in DAG.""" G = nx.Graph(); G.add_nodes_from(observable_nodes(DAG)) G.add_edges_from([(u,v) for u,v in observable_pairs(DAG) if has_confounded_path(DAG, u, v)]) return list(nx.connected_components(G))
85c4ae4ee7b9572e31727f672864e4b079e3bde7
575
def wss_over_number_of_clusters(data, algorithm='kmeans', max_iter=100, num_repeats = 5, max_num_clusters = 12, plot_file = None): """ Calculates the within-sum-of-squares (WSS) for different numbers of clusters, averaged over several iterations. Parameters ---------- data : float array Trajectory data [frames,frame_data] algorithm : string The algorithm to use for the clustering. Options: kmeans, rspace. Default: kmeans max_iter : int, optional Maximum number of iterations. Default: 100. num_repeats : int, optional Number of times to run the clustering for each number of clusters. Default: 5. max_num_clusters : int, optional Maximum number of clusters for k-means clustering. Default: 12. plot_file : str, optional Name of the file to save the plot. Returns ------- all_wss : float array WSS values for each number of clusters (starting at 2). std_wss : float array Standard deviations of the WSS. """ # Initialize lists all_wss = [] std_wss = [] # Loop over the number of clusters for nc in range(1,max_num_clusters): rep_wss = [] # Run each clustering several times. for repeat in range(num_repeats): # Get clusters and WSS for this repetition. cc = obtain_clusters(data, algorithm=algorithm, max_iter=max_iter, num_clusters=nc, plot=False) cidx, wss, centroids = cc rep_wss.append(wss) # Calculate mean and standard deviation for this number of clusters. all_wss.append(np.mean(rep_wss)) std_wss.append(np.std(rep_wss)) # Plot the WSS over the number of clusters fig, ax = plt.subplots(1,1, figsize=[4,3], dpi=300) ax.errorbar(np.arange(len(all_wss))+2,np.array(all_wss),yerr=np.array(std_wss)/np.sqrt(num_repeats)) ax.set_xlabel('number of clusters') ax.set_ylabel('total WSS') fig.tight_layout() # Save the plot to file. if plot_file: fig.savefig(plot_file) return all_wss, std_wss
fa00e00a5b0ba53b4b578fae04c43c69500d2d97
576
from typing import List from typing import Tuple def separate_classes(x: np.ndarray, y: np.ndarray) -> List[Tuple[int, np.ndarray]]: """Separate samples by classes into a list. Args: x (np.ndarray): Samples. y (np.ndarray): Target labels (classes). Returns: List[Tuple[int, np.ndarray]]: List in the format [(class, samples),...] """ classes = np.unique(y) l = [] for clss in classes: l.append((clss, x[y==clss])) return l
ee0a93b44785f6f017769da6fd6f1cc65f9cf121
577
import time from datetime import datetime def monitor_threads(threads, arguments): """ Monitor the threads. Parameters ---------- threads: dict The threads to monitor. arguments: namespace The parsed command line. # --GT-- not used, kept to avoid to break the function call. Returns ------- int 0 """ try: # exit and let systemd restart the process to avoid issues with # potential memory leaks time.sleep(60 * 60 * 2) except Exception: # the sleep was interrupted pass for th in threads.keys(): threads[th].stop() # give up to 30 seconds for threads to exit cleanly timeout = datetime.now() + timedelta(seconds=30) while timeout > datetime.now(): thread_running = False for th in threads.keys(): if threads[th].is_alive(): thread_running = True if not thread_running: break return 0
fa0e1f329cb70eb1fd81c74c9ec555921cab9041
578
def fetch_cfr_parts(notice_xml): """ Sometimes we need to read the CFR part numbers from the notice XML itself. This would need to happen when we've broken up a multiple-effective-date notice that has multiple CFR parts that may not be included in each date. """ parts = [] for cfr_elm in notice_xml.xpath('//CFR'): parts.extend(notice_cfr_p.parseString(cfr_elm.text).cfr_parts) return list(sorted(set(parts)))
d4fc1be9004f5a670c58dc3badaef80d53f73fc4
579
def get_dayofweek(date): """ Returns day of week in string format from date parameter (in datetime format). """ return date.strftime("%A")
4a0f728733870998331ea6f796b167b9dd3276ab
580
def add_model_output(modelIn, mode=None, num_add=None, activation=None): """ This function modifies the last dense layer in the passed keras model. The modification includes adding units and optionally changing the activation function. Parameters ---------- modelIn : keras model Keras model to be modified. mode : string Mode to modify the layer. It could be: 'abstain' for adding an arbitrary number of units for the abstention optimization strategy. 'qtl' for quantile regression which needs the outputs to be tripled. 'het' for heteroscedastic regression which needs the outputs to be doubled. (current implicit default: 'het') num_add : integer Number of units to add. This only applies to the 'abstain' mode. activation : string String with keras specification of activation function (e.g. 'relu', 'sigomid', 'softmax', etc.) Return ---------- modelOut : keras model Keras model after last dense layer has been modified as specified. If there is no mode specified it returns the same model. """ if mode is None: return modelIn numlayers = len(modelIn.layers) # Find last dense layer i = -1 while 'dense' not in (modelIn.layers[i].name) and ((i+numlayers) > 0): i -= 1 # Minimal verification about the validity of the layer found assert ((i + numlayers) >= 0) assert ('dense' in modelIn.layers[i].name) # Compute new output size if mode is 'abstain': assert num_add is not None new_output_size = modelIn.layers[i].output_shape[-1] + num_add elif mode is 'qtl': # for quantile UQ new_output_size = 3 * modelIn.layers[i].output_shape[-1] else: # for heteroscedastic UQ new_output_size = 2 * modelIn.layers[i].output_shape[-1] # Recover current layer options config = modelIn.layers[i].get_config() # Update number of units config['units'] = new_output_size # Update activation function if requested if activation is not None: config['activation'] = activation # Create new Dense layer reconstructed_layer = Dense.from_config(config) # Connect new Dense last layer to previous one-before-last layer additional = reconstructed_layer(modelIn.layers[i-1].output) # If the layer to replace is not the last layer, add the remainder layers if i < -1: for j in range(i+1, 0): config_j = modelIn.layers[j].get_config() aux_j = layers.deserialize({'class_name': modelIn.layers[j].__class__.__name__, 'config': config_j}) reconstructed_layer = aux_j.from_config(config_j) additional = reconstructed_layer(additional) modelOut = Model(modelIn.input, additional) return modelOut
2b869477bb67f7349569d15e0ada229cc1400e39
581
def parse(f): """Parse ASDL from the given file and return a Module node describing it.""" parser = ASDLParser() return parser.parse(f)
ca6b97c2181444dd7325877d67d74bb894c1bfef
582
def distance(xyz, lattice, PBC=[1,2,3]): """ Returns the Euclidean distance from the origin for a fractional displacement vector. Takes into account the lattice metric and periodic boundary conditions, including up to one non-periodic axis. Args: xyz: a fractional 3d displacement vector. Can be obtained by subtracting one fractional vector from another lattice: a 3x3 matrix describing a unit cell's lattice vectors PBC: the axes, if any, which are periodic. 1, 2, and 3 correspond to x, y, and z respectively. Returns: a scalar for the distance of the point from the origin """ xyz = filtered_coords(xyz, PBC=PBC) matrix = create_matrix(PBC=PBC) matrix += xyz matrix = np.dot(matrix, lattice) return np.min(cdist(matrix,[[0,0,0]]))
e6a6a925773b35996cc5f71982b72aeaef25cc4f
583
def dobro(n=0, formato=False): """ Dobrar número :param n: número a ser dobrado :param formato: (opicional) mostrar o moeda :return: resultado """ n = float(n) n += n return moeda(n) if formato else n
f01267cf432d48ab263d90756fd920c7d6d987a1
584
def f_q2d(n, m): """Lowercase f term for 2D-Q polynomials. oe-20-3-2483 Eq. (A.18b). Parameters ---------- n : int radial order m : int azimuthal order Returns ------- float f """ if n == 0: return np.sqrt(F_q2d(n=0, m=m)) else: return np.sqrt(F_q2d(n, m) - g_q2d(n-1, m) ** 2)
52919fab40e51dfa8ba89eb1d6f97ec733ce9de5
585
def binary_search(data, target, low, high): """Return position if target is found in indicated portion of a python list and -1 if target is not found. """ if low > high: return -1 mid = (low + high) // 2 if target == data[mid]: return mid elif target < data[mid]: # recur on the portion left of the middle return binary_search(data, target, low, mid - 1) else: # recur on the portion right of the middle return binary_search(data, target, mid + 1, high)
8f85596e4ff8971f4002b2f108c9c276304924be
586
def delete_position(id): """Delete a post. Ensures that the post exists and that the logged in user is the author of the post. """ db = get_db() db.execute('DELETE FROM gatekeeping WHERE id = ?', (id,)) db.commit() return jsonify(status='ok')
cf5d6580eea191a0d17d1a98e2f86a8610a5f58a
587
import struct def read_string(stream, length): """read data from the file and return as a text string """ text = struct.unpack('{}s'.format(length), stream.read(length)) try: result = str(text[0], encoding='utf-8') except UnicodeDecodeError: result = str(text[0], encoding='latin-1') return result.rstrip('\x00')
da8ddf04ea6c0232e59c4612105a243a5c1807d4
588
import math def generate_gate_y_hamiltonian_vec() -> np.ndarray: """Return the vector representation for the Hamiltonian of a Y gate with respect to the orthonormal Hermitian matrix basis with the normalized identity matrix as the 0th element. The result is a real vector with size 4. Parameters ---------- Returns ---------- np.ndarray The real vector representation of the Hamiltonian of the gate. """ dim = 2 coeff = 0.5 * math.pi * np.sqrt(2) vec = np.zeros(dim * dim, dtype=np.float64) vec[0] = -coeff vec[2] = coeff return vec
0a290c8f4a2c0acd81439caa4e5c4a7032a91d83
589
def _semi_implicit_midpoint(ode_fun, jac_fun, y_olds, t_old, f_old, dt, args, solver_parameters, J00, I): """ Calculate solution at t_old+dt using the semi-implicit midpoint formula. Based on equations IV.9.16a-b of Ref II. """ y_older, y_old = y_olds je_tot=0 if(y_older is None): # Use Euler to get starting value return _semi_implicit_euler(ode_fun, jac_fun, y_olds, t_old, f_old, dt, args, solver_parameters, J00, I) if(f_old is None): f_yj = ode_fun(*(y_old,t_old)+args) fe_tot = 1 else: # We already computed it and can just reuse it f_yj = f_old fe_tot=0 b = np.dot(-(I+dt*J00),(y_old-y_older)) + 2*dt*f_yj A = I-dt*J00 if(solver_parameters['initialGuess']): # Use Euler for initial guess x0, f_yj, fe_tot_,je_tot=_explicit_euler(ode_fun, jac_fun, y_olds, t_old, f_yj, dt, args, solver_parameters) fe_tot += fe_tot_ else: x0=None dy = linear_solve(A, b, iterative=solver_parameters['iterative'], tol=solver_parameters['min_tol'], x0=x0) y_new = y_old + dy return (y_new, f_yj, fe_tot, je_tot)
7807427e64d4348eb4deb4624d1db5e4df0226ca
590
from tensorflow.python.framework.graph_util import ( convert_variables_to_constants, remove_training_nodes, ) def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True): """ Freezes the state of a session into a pruned computation graph. Creates a new computation graph where variable nodes are replaced by constants taking their current value in the session. The new graph will be pruned so subgraphs that are not necessary to compute the requested outputs are removed. @param session The TensorFlow session to be frozen. @param keep_var_names A list of variable names that should not be frozen, or None to freeze all the variables in the graph. @param output_names Names of the relevant graph outputs. @param clear_devices Remove the device directives from the graph for better portability. @return The frozen graph definition. """ graph = session.graph with graph.as_default(): freeze_var_names = list( set(v.op.name for v in tf.global_variables()).difference( keep_var_names or [])) output_names = output_names or [] output_names += [v.op.name for v in tf.global_variables()] # Graph -> GraphDef ProtoBuf input_graph_def = graph.as_graph_def() if clear_devices: for node in input_graph_def.node: node.device = "" frozen_graph = convert_variables_to_constants( session, input_graph_def, output_names, freeze_var_names) frozen_graph = remove_training_nodes(frozen_graph) return frozen_graph
3617fc93a1727fcabf128622fcaf0e8dd5008b24
591
def get_system_cpu_times(): """Return system CPU times as a namedtuple.""" user, nice, system, idle = _psutil_osx.get_system_cpu_times() return _cputimes_ntuple(user, nice, system, idle)
c2edb6c0b87449c31aba1fe023736e30cdf41154
592
def Mce1(m, q, ξ, *, p=0): """ v = Mce1(m, q, ξ, *, p=0) Compute the value of the even Radial Mathieu function of the first kind Mce⁽¹⁾ₘ(q, ξ). Parameters ---------- m : array_like interger order of the Mathieu function q : array_like positive parameter in the Mathieu differential equation ξ : array like ``radial'' coordinate in the Elliptic coordinates p : 0 or 1 or 2 (default 0) 0 for the function, 1 for the first derivative 2 for the second derivative Returns ------- v : array like value of Mce⁽¹⁾ₘ(q, ξ) or Mce⁽¹⁾ₘ′(q, ξ) or Mce⁽¹⁾ₘ′´(q, ξ) """ if p == 0: return mathieu_modcem1(m, q, ξ)[0] if p == 1: return mathieu_modcem1(m, q, ξ)[1] if p == 2: return (mathieu_a(m, q) - (2 * q) * cosh(2 * ξ)) * mathieu_modcem1(m, q, ξ)[0] raise ValueError("The value p must be 0, 1, or 2.")
7a5c7fc6b9a9380c5d763f1773a26516345e5a3b
593
def profileown(): """Display user's profile""" return render_template("profile.html", user=session, person=session, books=None)
83ac3e78fb2f3b43596874c8208099d041536ebb
594
def GetChildConfigListMetadata(child_configs, config_status_map): """Creates a list for the child configs metadata. This creates a list of child config dictionaries from the given child configs, optionally adding the final status if the success map is specified. Args: child_configs: The list of child configs for this build. config_status_map: The map of config name to final build status. Returns: List of child config dictionaries, with optional final status """ child_config_list = [] for c in child_configs: pass_fail_status = None if config_status_map: if config_status_map[c['name']]: pass_fail_status = constants.FINAL_STATUS_PASSED else: pass_fail_status = constants.FINAL_STATUS_FAILED child_config_list.append({'name': c['name'], 'boards': c['boards'], 'status': pass_fail_status}) return child_config_list
621fa06eb0055a2dec1941bb4fd84ecb8fd6847c
595
def get_samples(df, selected_rows, no_of_samples, records_in_db): """ get samples without shuffling columns """ df_fixed = None df_random = None generic_data_dict = [] #drop rows with 'ignore' set to 'yes' if 'ignore' in df.columns: df = df[df["ignore"] != "yes"] df = df.drop(['ignore'], axis = 1) print_info("================================================================================") print_info("Total no. of samples found in variable xls file : {}".format(len(df.index))) print_info("Total no. of samples already tested : {}".format(len(records_in_db))) print_info("Total no. of samples remaining to test : {}".format(len(df.index) - len(records_in_db))) print_info("Total no. of random samples selected in this test : {}".format(no_of_samples)) if selected_rows: print_info("Selected rows to test : {}".format(selected_rows)) print_info("================================================================================") #select user selected rows if selected_rows: selected_rows = [row-1 for row in selected_rows] df_fixed = df.iloc[selected_rows] df = df.drop(selected_rows, axis=0) #select records in df which are not in db_df db_df = pd.DataFrame(records_in_db) if db_df.columns.tolist(): df = df.merge(db_df, how = 'outer' ,indicator=True).\ loc[lambda x : x['_merge']=='left_only'] df = df.drop(['_merge'], axis = 1) if no_of_samples and len(df.index) == 0: print_error("All the samples are tested. use --reset_execution to restart test again") exit(1) if no_of_samples and no_of_samples <= len(df.index): #select random samples df_random = df.sample(n=no_of_samples) elif no_of_samples and no_of_samples > len(df.index): print_error("Given no. of samples {} is greater than remaining samples to" \ " test {}. please reduce no. of samples".format(no_of_samples, len(df.index))) exit(1) df = pd.concat([df_fixed, df_random]) generic_data_dict = df.to_dict('records') print_info("selected samples : {}".format(generic_data_dict)) print_info("================================================================================") return generic_data_dict
16b13d59e50ebcb16e65feea41bc801b1e8b87b8
596
def update_member_names(oldasndict, pydr_input): """ Update names in a member dictionary. Given an association dictionary with rootnames and a list of full file names, it will update the names in the member dictionary to contain '_*' extension. For example a rootname of 'u9600201m' will be replaced by 'u9600201m_c0h' making sure that a MEf file is passed as an input and not the corresponding GEIS file. """ omembers = oldasndict['members'].copy() nmembers = {} translated_names = [f.split('.fits')[0] for f in pydr_input] newkeys = [fileutil.buildNewRootname(file) for file in pydr_input] keys_map = list(zip(newkeys, pydr_input)) for okey, oval in list(omembers.items()): if okey in newkeys: nkey = pydr_input[newkeys.index(okey)] nmembers[nkey.split('.fits')[0]] = oval oldasndict.pop('members') # replace should be always True to cover the case when flt files were removed # and the case when names were translated oldasndict.update(members=nmembers, replace=True) oldasndict['order'] = translated_names return oldasndict
364a4bdd742fe03545e9bb4fb72ef996beea1550
597
def part1(entries: str) -> int: """part1 solver take a str and return an int""" houses = {(0, 0): 1} pos_x, pos_y = 0, 0 for direction in entries: delta_x, delta_y = moves[direction] pos_x += delta_x pos_y += delta_y houses[(pos_x, pos_y)] = houses.get((pos_x, pos_y), 0) + 1 return len(houses)
104cf7b32ec9f395603a32f57b146129d30a417b
598
def quantile_compute(x, n_bins): """Quantile computation. Parameters ---------- x: pd.DataFrame the data variable we want to obtain its distribution. n_bins: int the number of bins we want to use to plot the distribution. Returns ------- quantiles: np.ndarray the quantiles. """ # aux.quantile(np.linspace(0, 1, 11)) # version = 0.15 quantiles = [x.quantile(q) for q in np.linspace(0, 1, n_bins+1)] quantiles = np.array(quantiles) return quantiles
4c23b417bb8c9e99709fca2371e476e4edadfeec
600
def remove_separators(version): """Remove separator characters ('.', '_', and '-') from a version. A version like 1.2.3 may be displayed as 1_2_3 in the URL. Make sure 1.2.3, 1-2-3, 1_2_3, and 123 are considered equal. Unfortunately, this also means that 1.23 and 12.3 are equal. Args: version (str or Version): A version Returns: str: The version with all separator characters removed """ version = str(version) version = version.replace('.', '') version = version.replace('_', '') version = version.replace('-', '') return version
c29b9e7ca84705a9f36123ff0d84e3beb24468bf
601
def parse_coverage_status(status): """Parse a coverage status""" return Status.HIT if status.upper() == 'SATISFIED' else Status.MISSED
8a295b3df2d10b7813ce0efc96331607da5ba1b9
602
def max_index(list): """Returns the index of the max value of list.""" split_list = zip(list, range(len(list))) (retval, retI) = reduce(lambda (currV, currI), (nV, nI): (currV, currI) if currV > nV else (nV, nI), split_list) return retI
43e15edbc227b13db3d468b4ee8d030770d5f1a2
603
def mask_coverage(coverage: mx.sym.Symbol, source_length: mx.sym.Symbol) -> mx.sym.Symbol: """ Masks all coverage scores that are outside the actual sequence. :param coverage: Input coverage vector. Shape: (batch_size, seq_len, coverage_num_hidden). :param source_length: Source length. Shape: (batch_size,). :return: Masked coverage vector. Shape: (batch_size, seq_len, coverage_num_hidden). """ return mx.sym.SequenceMask(data=coverage, axis=1, use_sequence_length=True, sequence_length=source_length)
d2594a12a78d604c26588218f8b084bf5c18d2ac
604
def DFS_complete(g): """Perform DFS for entire graph and return forest as a dictionary. Result maps each vertex v to the edge that was used to discover it. (Vertices that are roots of a DFS tree are mapped to None.) """ forest = {} for u in g.vertices(): if u not in forest: forest[u] = None # u will be the root of a tree DFS(g, u, forest) return forest
ec141354d41cf87381db841e6adf8e888a573494
605
def _transform_p_dict(p_value_dict): """ Utility function that transforms a dictionary of dicts into a dataframe representing the dicts as rows (like tuples). Is needed to keep track of the feature names and corresponding values. The underlying datastructures are confusing. :param p_value_dict: dictionary of dictionaries storing the p_values :return: dataframe where the keys are added to the p_values as columns """ # Turn dictionary of dictionaries into a collection of the key-value pairs represented as nested tuples item_dict = dict() for feat in p_value_dict: item_dict[feat] = list(p_value_dict[feat].items()) # building a matrix (nested lists) by extracting and sorting data from nested tuples # (items[0], (nested_items[0], nested_items[1])) df_matrix = [] for items in item_dict.items(): for nested_items in items[1]: df_matrix.append([nested_items[1], nested_items[0], items[0]]) return pd.DataFrame(df_matrix)
154ce78ae03267ce69254ff583ca0b736d62d435
606
import torch from typing import Optional def iou( predict: torch.Tensor, target: torch.Tensor, mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ This is a great loss because it emphasizes on the active regions of the predict and targets """ dims = tuple(range(predict.dim())[1:]) if mask is not None: predict = predict * mask target = target * mask intersect = (predict * target).sum(dims) union = (predict + target - predict * target).sum(dims) + 1e-4 return (intersect / union).sum() / intersect.numel()
7608189bde3b640a8f148e3628e5668a3b310655
607
import re def get_sequence(seq_id): """ TO DO: 1. redirection 303. (not tested in compliance_suite) 2. Note: compliance_suite ignores the range if it is out of bounds or if > SUBSEQUENCE_LIMIT 3. Ambiguous error code resolution in refget documentation: range: The server MUST respond with a Bad Request error if one or more ranges are out of bounds of the sequence. If the server supports circular chromosomes and the chromosome is not circular or the range is outside the bounds of the chromosome the server shall return Range Not Satisfiable. start, end: The server MUST respond with a Bad Request error if start is specified and is larger than the total sequence length. If the server supports circular chromosomes and the chromosome is not circular or the range is outside the bounds of the chromosome the server shall return Range Not Satisfiable. 4. Should we validate the response headers in the compliance suite? 5. check if start and end are 32 bit """ header_content = request.headers accept_type = "text/vnd.ga4gh.refget.v1.0.0+plain" # validate the accept header if "accept" in header_content and header_content["accept"] not in [accept_type,"*/*"]: # bad mock server: status = 200 when headers are incorrect return Response(status=200) # check if the sequence is present. If not, error = 404 sequence_obj = get_sequence_obj(seq_id, DATA, TRUNC512) if not sequence_obj: # bad mock server: status = 200 when sequence is not found return Response(status=200) # get start, end and range params start = request.args.get('start', default = None) end = request.args.get('end', default=None) RANGE_HEADER_PATTERN = re.compile(r'bytes=[0-9]*-[0-9]*$') if "range" in header_content: seq_range = header_content["Range"] # bad mock server: status = 404 when both start/end and range parameters are passed if (start or end) and seq_range: return Response(status=404) # bad mock server: status = 404 when range pattern is not as expected if not RANGE_HEADER_PATTERN.match(seq_range): return Response(status=404) fbs = int(header_content['Range'].split('=')[1].split('-')[0]) lbs = int(header_content['Range'].split('=')[1].split('-')[1]) if (fbs > sequence_obj.size-1) or (fbs > lbs): """ Note: we are ignoring case where (lbs > sequence_obj.size-1), (lbs-fbs+1 > SUBSEQUENCE_LIMIT) to match the compliance_suite tests filtering the case where (fbs > lbs) : Sub-sequences of circular chromosomes across the origin may not be requested via the Range header """ # since fbs and lbs <= SUBSEQUENCE_LIMIT-1, it is implied that the subsequence limit if any is satisfied # bad mock server: incorrect status = 400 return Response(status=400) elif (lbs > sequence_obj.size-1) : lbs = sequence_obj.size # bad mock server: status = 200 while returning subsequence return Response(response=(sequence_obj.sequence[fbs:lbs+1]).encode("ascii"),status=200, mimetype=accept_type) if start or end: # if start or end params are present, return the filtered sequence # if start or end params are not 32 bit unsigned int, error = 400 # if start > sequence length, error =400 # if start > end and circular not implemented, error = 501 if start: # TO DO: check if start and end are 32 bit if not start.isdigit(): #checks if start is unsigned int # bad mock server: incorrect status 200 return Response(status=200) start = int(start) else: start = 0 if end: if not end.isdigit(): #checks if end is unsigned int # bad mock server: incorrect status 200 return Response(status=200) end = int(end) else: end = sequence_obj.size if start >= sequence_obj.size or end > sequence_obj.size : # bad mock server: incorrect status 400 return Response(status=400) elif start > end: if CIRCULAR_CHROMOSOME_SUPPORT == False: # bad mock server: incorrect status 416 return Response(status=416) else: if sequence_obj.is_circular == False: # bad mock server: incorrect status 500 return Response(status=500) else: if len(sequence_obj.sequence[start:sequence_obj.size]+sequence_obj.sequence[0:end])>SUBSEQUENCE_LIMIT: # bad mock server: incorrect status 400 return Response(status=400) else: # bad mock server: incorrect status 404 return Response(response=(sequence_obj.sequence[start:sequence_obj.size]+sequence_obj.sequence[0:end]).encode("ascii"),status=404,mimetype=accept_type) elif end-start >SUBSEQUENCE_LIMIT: # bad mock server: incorrect status 200 return Response(status=200) # bad mock server: incorrect status 404 return Response(response=(sequence_obj.sequence[start:end]).encode("ascii"),status=404,mimetype=accept_type) # bad mock server: incorrect status 500 return Response(response=(sequence_obj.sequence).encode("ascii"), status=500,mimetype=accept_type)
d0d10c1c491d32ffc70c5579330163bee11d5a15
608
def getCondVisibility(condition): """ Returns ``True`` (``1``) or ``False`` (``0``) as a ``bool``. :param condition: string - condition to check. List of Conditions: http://wiki.xbmc.org/?title=List_of_Boolean_Conditions .. note:: You can combine two (or more) of the above settings by using "+" as an ``AND`` operator, "|" as an ``OR`` operator, "!" as a ``NOT`` operator, and "[" and "]" to bracket expressions. example:: visible = xbmc.getCondVisibility('[Control.IsVisible(41) + !Control.IsVisible(12)]') """ return bool(1)
761914696ac2050c6bf130e5b49221be043903bd
609
def history_cumulative(request): """ This endpoints returns the number of cumulative infections for each area given a date in history. """ days = int(request.query_params.get("days")) observed = Covid19DataPoint.objects.all() historyDate = max([d.date for d in observed]) - timedelta(days=-days) shownData = observed.filter(date=historyDate) deathData = Covid19DeathDataPoint.objects.filter(date=historyDate) #total_confirmed = sum([d.val for d in shownData]) #total_death = sum([d.val for d in deathData]) greatest_model = Covid19Model.objects.get(name="SI-kJalpha - 40x") greatest_predictions = Covid19PredictionDataPoint.objects.filter(model=greatest_model) greatest_predictions = greatest_predictions.filter(date=greatest_predictions.last().date, social_distancing=1) greatest_vals = [d.val for d in greatest_predictions] max_val = max(greatest_vals) greatest_death_model = Covid19Model.objects.get(name="SI-kJalpha - 40x (death prediction)") greatest_death_predictions = Covid19PredictionDataPoint.objects.filter(model=greatest_death_model) greatest_death_predictions = greatest_death_predictions.filter(date=greatest_death_predictions.last().date, social_distancing=1) greatest_death_vals = [d.val for d in greatest_death_predictions] max_death_val = max(greatest_death_vals) response = [{ 'area': { 'country': d.area.country, 'state': d.area.state, 'iso_2': d.area.iso_2, }, 'value': d.val, #'value_percentage': 1e3*d.val/total_confirmed, 'max_val_percentage': 1e4*d.val/max_val, 'date': d.date, 'deathValue': deathData.filter(area=d.area, date=d.date).first().val, 'max_death_percentage':1e4*deathData.filter(area=d.area, date=d.date).first().val/max_death_val, #'death_percentage': 1e3*deathData.filter(area=d.area, date=d.date).first().val/total_death, } for d in shownData] return Response(response)
7ecdf3e41304d99b11e7695e2962dbe3b7f6c96a
611
def check_partial(func, *args, **kwargs): """Create a partial to be used by goodtables.""" new_func = partial(func, *args, **kwargs) new_func.check = func.check return new_func
55a723bc81e5666db9fdd97a4ea88d36635e3dc3
612
def mcas(mc, entries): """Multi-entry compare-and-set. Synopsis: >>> from memcache_collections import mcas >>> mc = memcache.Client(['127.0.0.1:11211'], cache_cas=True) >>> # initialize a doubly-linked list with two elements >>> mc.set_multi({ ... 'foo': {'next': 'bar'}, ... 'bar': {'prev': 'foo'}}) [] >>> # Always use mcas_get to access entries potentially in MCAS >>> # operations. It returns an object representing a memcache entry >>> # snapshot. >>> foo_entry, bar_entry = mcas_get(mc, 'foo'), mcas_get(mc, 'bar') >>> foo_entry.key, foo_entry.value ('foo', {'next': 'bar'}) >>> # atomically insert new node in our doubly linked list via MCAS >>> mc.add('baz', {'prev': 'foo', 'next': 'bar'}) 1 >>> mcas(mc, [ ... (foo_entry, {'next': 'baz'}), ... (bar_entry, {'prev': 'baz'})]) True Function is not thread safe due to implicit CAS ID handling of the Python API. Args: mc: memcache client entries: iterable of (Entry, new_value) tuples Returns: True if MCAS completed successfully. The aggregate size of current and new values for all entries must fit within the memcache value limit (typically 1 MB). Based on "Practical lock-freedom", Keir Fraser, 2004, pp. 30-34. """ dc = _DequeClient(mc) mcas_record = _McasRecord(mc, entries) dc.AddNode(mcas_record) # very sad that we need to read this back just to get CAS ID dc.mc.gets(mcas_record.uuid) return _mcas_help(dc, mcas_record, is_originator=True)
741cbc4d9962292fc544b945785a72cc25060d5b
613
def figure_8s(N_cycles=2, duration=30, mag=0.75): """ Scenario: multiple figure-8s. Parameters ---------- N_cycles : int How many cycles of left+right braking. duration : int [sec] Seconds per half-cycle. mag : float Magnitude of braking applied. """ on = [(2.0, mag), (duration - 2.0, None)] # Braking on off = [(1.0, 0), (duration - 1.0, None)] # Braking off inputs = { "delta_br": simulation.linear_control([(2, 0), *([*on, *off] * N_cycles)]), "delta_bl": simulation.linear_control([(2, 0), *([*off, *on] * N_cycles)]), } T = N_cycles * duration * 2 return inputs, T
3bb485b23ea337b038a52fa946b5080cb8ae79eb
614
import inspect def grad_ast(func, wrt, motion, mode, preserve_result, verbose): """Perform AD on a single function and return the AST. Args: See `grad`. Returns: node: The AST of a module containing the adjoint and primal function definitions. required: A list of non-built in functions that this function called, and of which the primals and adjoints need to be made available in order for the returned function to run. """ node = annotate.resolve_calls(func) fence.validate(node, inspect.getsource(func)) node = anf_.anf(node) if verbose >= 2: print('ANF') print(quoting.to_source(node)) if mode == 'reverse': node, required, stack = reverse_ad.reverse_ad(node.body[0], wrt, preserve_result) if verbose >= 2: print('RAW') print(quoting.to_source(node)) if motion == 'split': node = reverse_ad.split(node, stack) else: node = reverse_ad.joint(node) if verbose >= 2: print('MOTION') print(quoting.to_source(node)) elif mode == 'forward': node, required = forward_ad.forward_ad(node.body[0], wrt, preserve_result) return node, required
1b358f36fb73169fa31bfd3266ccfae172980178
615
import re def sortRules(ruleList): """Return sorted list of rules. Rules should be in a tab-delimited format: 'rule\t\t[four letter negation tag]' Sorts list of rules descending based on length of the rule, splits each rule into components, converts pattern to regular expression, and appends it to the end of the rule. """ ruleList.sort(key = len, reverse = True) sortedList = [] for rule in ruleList: s = rule.strip().split('\t') splitTrig = s[0].split() trig = r'\s+'.join(splitTrig) pattern = r'\b(' + trig + r')\b' s.append(re.compile(pattern, re.IGNORECASE)) sortedList.append(s) return sortedList
5b98903fd48f562d22e0ce269aa55e52963fa4a9
616
def v3_settings_response(): """Define a fixture that returns a V3 subscriptions response.""" return load_fixture("v3_settings_response.json")
909d538388dde838bc57d6084c98db40b24db4f8
617
def Geom2dLProp_Curve2dTool_FirstParameter(*args): """ * returns the first parameter bound of the curve. :param C: :type C: Handle_Geom2d_Curve & :rtype: float """ return _Geom2dLProp.Geom2dLProp_Curve2dTool_FirstParameter(*args)
f9dea146d3e9002c17cddd3f60ff6fe5362a1268
618
def decode_regression_batch_image(x_batch, y_batch, x_post_fn = None, y_post_fn = None, **kwargs): """ x_batch: L or gray (batch_size, height, width, 1) y_batch: ab channel (batch_size, height, width, 2) x_post_fn: decode function of x_batch y_post_fn: decode function of y_batch """ assert len(y_batch.shape)==4 and y_batch.shape[3]==2, "Invalid y_batch shape (batchsize, height, width, 2)" assert len(x_batch.shape)==3 and x_batch.shape[3]==1, "Invalid y_batch shape (batchsize, height, width, 1)" y_height, y_width = y_batch.shape[1:3] x_height, x_width = x_batch.shape[1:3] if x_height != y_height or x_width != y_width: y_batch = sni.zoom(y_batch, [1, 1.*x_height/y_height, 1.*x_width/y_width, 1]) # if x_batch = x_post_fn(x_batch) if x_post_fn is not None else x_batch y_batch = y_post_fn(y_batch) if y_post_fn is not None else y_batch y_batch_Lab = np.concatenate([y_batch_L, y_batch_ab], axis = 3) y_batch_RGB = np.array([cv2.cvtColor(image.astype(np.uint8), cv2.COLOR_Lab2RGB) for image in y_batch_Lab]) return y_batch_RGB
270c0b60646c0d16f8f8a4f3f2d5933bef369e3e
619
def get_mag_from_obs(h, e, d0=0): """gets the magnetic north components given the observatory components. Parameters __________ h: array_like the h component from the observatory e: array_like the e component from the observatory d0: float the declination baseline angle in radians Returns _______ tuple of array_like [0]: total h component as a float [1]: total d declination as a float """ mag_h = get_mag_h_from_obs(h, e) mag_d = get_mag_d_from_obs(h, e, d0) return (mag_h, mag_d)
27f4d538c3a9e13522f195bd9abb2683037ba72a
620
def set_cell(client, instance, colid, value, file_=None): """Set the value of one cell of a family table. Args: client (obj): creopyson Client. instance (str): Family Table instance name. colid (str): Column ID. value (depends on data type): Cell value. `file_` (str, optional): File name (usually an assembly). Defaults is currently active model. Returns: None """ data = { "instance": instance, "colid": colid, "value": value, } if file_ is not None: data["file"] = file_ else: active_file = client.file_get_active() if active_file: data["file"] = active_file["file"] return client._creoson_post("familytable", "set_cell", data)
b1617484a3a710046cda5daaf6bbe9b376f83418
622
def find_bounds(particles): """ Find the maximum and minimum bounds describing a set of particles. """ min_bound = np.array( [np.min(particles[:, 0]), np.min(particles[:, 1]), np.min(particles[:, 2])] ) max_bound = np.array( [np.max(particles[:, 0]), np.max(particles[:, 1]), np.max(particles[:, 2])] ) return max_bound, min_bound
2640ce6aa79cbe4392d2e044bddf46a94f6b76af
623
def get_tags_date(link, default_date=None): """Extract tags and date from the link.""" tags = ["links"] date = "" fltr = [ "Bookmarks Menu", "Bookmark Bar", "Personal Toolbar Folder", "Importierte Lesezeichen", "Bookmarks Toolbar", "Kein Label vorhanden", "Unsorted Bookmarks", "Unsortierte Lesezeichen", "Recently Bookmarked", "Recent Tags", ] for parent in link.parents: if parent.name == "dl": for sibling in parent.previous_siblings: if sibling.name == "h3": tags += sibling.get_text().split(">") datestr = ( sibling.get("add_date", None) or sibling.get("last_visit", None) or sibling.get("last_modified", None) or default_date ) date = convert_date(datestr) for sibling in parent.next_siblings: if sibling.name == "h3": tags += sibling.get_text().split(">") datestr = ( sibling.get("add_date", None) or sibling.get("last_visit", None) or sibling.get("last_modified", None) or default_date ) date = convert_date(datestr) break return ([standardize_tag(i) for i in tags if i not in fltr], date)
b9f28a1f2f819cdfcc794ce3dc507ff4df288906
624
from datetime import datetime def _is_future(time, time_ref=None): """ check if `time` is in future (w.r.t. `time_ref`, by default it is now) Parameters ---------- time : int or datetime the time to check (if int it's considered a timestamp, see :py:meth:`datetime.timestamp`) time_ref : int or datetime the time reference (if int it's considered a timestamp, see :py:meth:`datetime.timestamp`), if None use the present time (default: None) Returns ------- bool is in future or not """ time = _parse_time_from_input(time, "time") if time_ref is None: time_ref = datetime.now() else: time_ref = _parse_time_from_input(time_ref, "time_ref") return time > time_ref
ece5121ee0e49c77a260b117cb0f251a35aa289b
625
from datetime import datetime def create_and_train_model(x_learn, y_learn, model, n_cores): """General method to create and train model""" print(model.fit(x_learn, y_learn)) start_time = datetime.now() c_val = cross_val_score(model, x_learn, y_learn, cv=10, n_jobs=n_cores) end_time = datetime.now() print(type(model).__name__, "with n_jobs =", n_cores, "took:", (end_time.second - start_time.second), "seconds") print(type(model).__name__, "cross_val_score:", c_val.mean()) return model, c_val
babef20c893c39a09fe4a0e0f777b2ec326b694c
626
def cardidolizedimageurl(context, card, idolized, english_version=False): """ Returns an image URL for a card in the context of School Idol Contest """ prefix = 'english_' if english_version else '' if card.is_special or card.is_promo: idolized = True if idolized: if getattr(card, prefix + 'round_card_idolized_image'): return _imageurl(getattr(card, prefix + 'round_card_idolized_image'), context=context) if getattr(card, prefix + 'card_idolized_image'): return _imageurl(getattr(card, prefix + 'card_idolized_image'), context=context) return _imageurl('static/default-' + card.attribute + '.png', context=context) if getattr(card, prefix + 'round_card_image'): return _imageurl(getattr(card, prefix + 'round_card_image'), context=context) if getattr(card, prefix + 'card_image'): return _imageurl(getattr(card, prefix + 'card_image'), context=context) return _imageurl('static/default-' + card.attribute + '.png', context=context)
c69e1a4d998d632091fcf1d69a240d68386e0b21
627
def extract_simple_tip(e): """ """ emin = e.min() emax = e.max() indices = [nearest_index(emin), nearest_index(emax)] indices.sort() imin,imax = indices imax +=1 # for python style indexing return imin, imax
c3d215ee34caa733a83b8be54cc92f9071839bef
628
def parse_pipeline_config(pipeline_config_file): """Returns pipeline config and meta architecture name.""" with tf.gfile.GFile(pipeline_config_file, 'r') as config_file: config_str = config_file.read() pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() text_format.Merge(config_str, pipeline_config) meta_arch = pipeline_config.model.WhichOneof('model') return pipeline_config, meta_arch
4e7047c2e7b195bce8cadf83fa19e1b7c1cb16ca
629
import math def get_pwl(time_series, pwl_epsilon): """ This is a wrapper function for getting a bounded piecewise linear approximation of the data """ if not isinstance(pwl_epsilon, (int, float)): raise TypeError("pwl_epsilon must be a numeric type!") if not (isinstance(time_series, pd.DataFrame) or isinstance(time_series, list)): raise TypeError("The argument time_series must be a Pandas Dataframe, or a list!") if isinstance(time_series, pd.DataFrame): # just how hakimis algorithm wants the data polyline_from_data = list(zip(time_series.index.tolist(), time_series[construct_variable_name(1)].values.tolist())) else: polyline_from_data = time_series if math.isclose(pwl_epsilon, 0.0): return polyline_from_data else: approx_grap = create_approximation_graph(timeseries=polyline_from_data, epsilon=pwl_epsilon) shortest_path_gen =\ nx.all_shortest_paths(approx_grap, tuple(polyline_from_data[0]), tuple(polyline_from_data[-1])) # this avoids generating all paths, since we take just the first one (saves memory and time) return next(shortest_path_gen)
431d83e59e4f3faa3cbe7f21106690f030330529
630
def to_array(string): """Converts a string to an array relative to its spaces. Args: string (str): The string to convert into array Returns: str: New array """ try: new_array = string.split(" ") # Convert the string into array while "" in new_array: # Check if the array contains empty strings new_array.remove("") return new_array except: print("The parameter string is not a str") return string
7ee87a2b245a71666939e9ce2e23dc07fcaa0153
631
def convert_atoms_to_pdb_molecules(atoms: t.List[Atom]) -> t.List[str]: """ This function converts the atom list into pdb blocks. Parameters ---------- atoms : t.List[Atom] List of atoms Returns ------- t.List[str] pdb strings of that molecule """ # 1) GROUP ATOMS BT MOLECULES molecules = defaultdict(list) for a in atoms: molecules[a.resi].append(a) # 2) CONSTUCT PDB BLOCKS #ref: https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html pdb_format = "ATOM {:>5d} {:<2}{:1}{:>3} {:1}{:>3d}{:1} {:>7.3f}{:>7.3f}{:>7.3f}{:>5}{:>6}{:<3}{:>2} {:>2d}" dummy_occupancy= dummy_bfactor= dummy_charge = 0.0 dummy_alt_location= dummy_chain= dummy_insertion_code= dummy_segment = "" pdb_molecules: t.List[str] = [] for m_ID in sorted(molecules): m = molecules[m_ID] atoms_as_lines: t.List[str] = [] for a in sorted(m, key= lambda x: x.id): atoms_as_lines.append(pdb_format.format(int(a.id), a.name, dummy_alt_location, a.resn, dummy_chain, int(a.resi), dummy_insertion_code, a.x, a.y, a.z, dummy_occupancy, dummy_bfactor, dummy_segment, a.elem, int(dummy_charge))) # Sort by Id: => convert str up do first space to int #atoms_as_lines = sorted(atoms_as_lines, key=lambda x: int(x[:x.index('\t')])) molecule_as_str = "TITLE "+a.resn+"\n"+'\n'.join(atoms_as_lines) + '\nEND' # molecule_as_str = molecule_as_str.replace('\t',' ') pdb_molecules.append(molecule_as_str) print(pdb_molecules[-1]) return pdb_molecules
3f073818b92ce1db7b2e8c4aaf0724afb546beba
632
def unvoiced_features(sig,fs,vcont,sil_cont): """ Unvoiced segment features. Requires voiced and silence/pauses segment detection. """ #Unvoiced features uv_seg,_,_ = unvoiced_seg(sig,fs,vcont,sil_cont) lunvoiced = [] for uv in uv_seg: lunvoiced.append(len(uv)/fs)#Length of unvoiced segment uunvoiced = np.mean(lunvoiced)#Average length # sunvoiced = np.std(lunvoiced)#variation of length uvrate = (len(uv_seg)*fs)/len(sig)#Unvoiced segments per second numuv = len(uv_seg) rPVI,nPVI = get_pvi(lunvoiced) pGPI,dGPI = get_gpi(lunvoiced,len(sig)/fs) # feats_unvoiced = np.hstack([numuv,uvrate,uunvoiced,rPVI,nPVI,pGPI,dGPI]) feats_unvoiced = {'Unvoiced_counts':numuv, 'Unvoiced_rate':uvrate, 'Unvoiced_duration':uunvoiced, 'Unvoiced_rPVI':rPVI, 'Unvoiced_nPVI':nPVI, 'Unvoiced_dGPI':dGPI} return feats_unvoiced
bb6f5fc0c939a7d838140b7a7eadda2ff32e5592
633
def civic_methods(method001, method002, method003): """Create test fixture for methods.""" return [method001, method002, method003]
63913e2cfe866c65d9a1e7d5d3ba2e081b8e12f6
634
def _generate_tags(encoding_type, number_labels=4): """ :param encoding_type: 例如BIOES, BMES, BIO等 :param number_labels: 多少个label,大于1 :return: """ vocab = {} for i in range(number_labels): label = str(i) for tag in encoding_type: if tag == 'O': if tag not in vocab: vocab['O'] = len(vocab) + 1 continue vocab['{}-{}'.format(tag, label)] = len(vocab) + 1 # 其实表达的是这个的count return vocab
36125c684be9dc1d0abc522d536276be7e3d7328
635
def delete_link_tag(api_client, link_id, tag_key, **kwargs): # noqa: E501 """delete_link_tag # noqa: E501 Delete link tag by key This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> response = await api.delete_link_tag(client, link_id, tag_key, async_req=True) :param link_id str: str of link. e.g. lnk0 :param tag_key str: key of tag :param async_req bool: execute request asynchronously :param bool sorted: Sort resources :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: APIResponse or awaitable if async """ local_var_params = locals() request_params = [] # noqa: E501 collection_formats = {} path_params = {"link_id": link_id, "tag_key": tag_key} query_params = [] for param in [p for p in request_params if local_var_params.get(p) is not None]: query_params.append((param, local_var_params[param])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params["Accept"] = api_client.select_header_accept( ["application/json"] ) # noqa: E501 # Authentication setting auth_settings = ["ApiTokenAuth", "basicAuth"] # noqa: E501 return api_client.call_api( "/links/{link_id}/tags/{tag_key}", "DELETE", path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type="object", # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get("async_req"), _return_http_data_only=local_var_params.get( "_return_http_data_only" ), # noqa: E501 _preload_content=local_var_params.get("_preload_content", True), _request_timeout=local_var_params.get("_request_timeout"), collection_formats=collection_formats, )
5e643eaa02b50a733030ac35da5821a494ee2517
636
def infect_graph(g, title): """ Function to infect the graph using SI model. Parameters: g: Graph Returns: G : Infected graph t : Time of diffusion of each node """ G=g # Model selection - diffusion time model = ep.SIModel(G) nos = 1/len(G) # Model Configuration config = mc.Configuration() config.add_model_parameter('beta', 0.03) config.add_model_parameter("fraction_infected", 0.05) model.set_initial_status(config) # Simulation execution iterations = model.iteration_bunch(200) diffusionTime={} for i in range(1,len(G)): diffusionTime[i]=-1 for i in iterations: for j in i['status']: if(i['status'][j]==1): diffusionTime[j]=i['iteration'] nodeColor = [] source_nodes = [] for i in G.nodes(): if iterations[0]["status"][i]==1: nodeColor.append('red') source_nodes.append(i) else: nodeColor.append('blue') sorted_values = sorted(diffusionTime.values()) # Sort the values sorted_dict = {} for i in sorted_values: for k in diffusionTime.keys(): if diffusionTime[k] == i: sorted_dict[k] = diffusionTime[k] plt.clf() nx.draw(G, node_color=nodeColor, with_labels=True) plt.title('Intial Phase') plt.savefig(f'./plots/{title}_Initial-infect.png') plt.clf() nx.draw(G, node_color=list(x for i,x in diffusionTime.items()),cmap=plt.cm.Reds, with_labels=True) plt.title('Final Phase') plt.savefig(f'./plots/{title}_Final-infect.png') return (G, sorted_dict, source_nodes)
b0c3f5d2518083cabf4de4214acf65027fc623f5
637
def main_func_SHORT(): """ Func. called by the main T """ sleep(SHORT) return True
de5cffd80a74a048f0016e5912dd15b93f0a4dd6
638
from typing import Tuple import math def split_train_test(X: pd.DataFrame, y: pd.Series, train_proportion: float = .75) \ -> Tuple[pd.DataFrame, pd.Series, pd.DataFrame, pd.Series]: """ Randomly split given sample to a training- and testing sample Parameters ---------- X : DataFrame of shape (n_samples, n_features) Data frame of samples and feature values. y : Series of shape (n_samples, ) Responses corresponding samples in data frame. train_proportion: Fraction of samples to be split as training set Returns ------- train_X : DataFrame of shape (ceil(train_proportion * n_samples), n_features) Design matrix of train set train_y : Series of shape (ceil(train_proportion * n_samples), ) Responses of training samples test_X : DataFrame of shape (floor((1-train_proportion) * n_samples), n_features) Design matrix of test set test_y : Series of shape (floor((1-train_proportion) * n_samples), ) Responses of test samples """ no_of_train_rows = math.ceil(train_proportion * X.shape[0]) X : pd.DataFrame = pd.DataFrame.join(X,y) train_data = X.sample(n=no_of_train_rows, axis=0) test_data = X.loc[X.index.difference(train_data.index), ] train_y = train_data[y.name] test_y = test_data[y.name] train_data.drop(columns=y.name,inplace=True) test_data.drop(columns=y.name,inplace=True) # print(train_data.shape) # print(test_data.shape) # print(train_y.shape) # print(test_y.shape) return train_data, train_y, test_data, test_y
2261e72821ab55ac12f4f0b88511ce1f6d9d8d5f
639
def s2sdd(s): """ Converts a 4-port single-ended S-parameter matrix to a 2-port differential mode representation. Reference: https://www.aesa-cortaillod.com/fileadmin/documents/knowledge/AN_150421_E_Single_ended_S_Parameters.pdf """ sdd = np.zeros((2, 2), dtype=np.complex128) sdd[0, 0] = 0.5*(s[0, 0] - s[0, 2] - s[2, 0] + s[2, 2]) sdd[0, 1] = 0.5*(s[0, 1] - s[0, 3] - s[2, 1] + s[2, 3]) sdd[1, 0] = 0.5*(s[1, 0] - s[1, 2] - s[3, 0] + s[3, 2]) sdd[1, 1] = 0.5*(s[1, 1] - s[1, 3] - s[3, 1] + s[3, 3]) return sdd
0d29d2d248a49dd27bab202abd84014aab799907
640
def plot_gdf(gdf, map_f=None, maxitems=-1, style_func_args={}, popup_features=[], tiles='cartodbpositron', zoom=6, geom_col='geometry', control_scale=True): """ :param gdf: GeoDataFrame GeoDataFrame to visualize. :param map_f: folium.Map `folium.Map` object where the GeoDataFrame `gdf` will be plotted. If `None`, a new map will be created. :param maxitems: int maximum number of tiles to plot. If `-1`, all tiles will be plotted. :param style_func_args: dict dictionary to pass the following style parameters (keys) to the GeoJson style function of the polygons: 'weight', 'color', 'opacity', 'fillColor', 'fillOpacity', 'radius' :param popup_features: list when clicking on a tile polygon, a popup window displaying the information in the columns of `gdf` listed in `popup_features` will appear. :param tiles: str folium's `tiles` parameter. :param zoom: int initial zoom. :param geom_col: str name of the geometry column of `gdf`. :param control_scale: bool if `True`, add scale information in the bottom left corner of the visualization. The default is `True`. Returns ------- `folium.Map` object with the plotted GeoDataFrame. """ if map_f is None: # initialise map lon, lat = np.mean(np.array(list(gdf[geom_col].apply(utils.get_geom_centroid).values)), axis=0) map_f = folium.Map(location=[lat, lon], tiles=tiles, zoom_start=zoom, control_scale=control_scale) count = 0 for k in gdf.index: g = gdf.loc[k] if type(g[geom_col]) == gpd.geoseries.GeoSeries: for i in range(len(g[geom_col])): map_f = add_to_map(g[geom_col].iloc[i], g.iloc[i], map_f, popup_features=popup_features, style_func_args=style_func_args) else: map_f = add_to_map(g[geom_col], g, map_f, popup_features=popup_features, style_func_args=style_func_args) count += 1 if count == maxitems: break return map_f
80c4002ca82e849a1701c00ead54671729009670
641
def set_catflap_cat_inside(request, catflap_uuid): """GET so it can be used as an email link.""" catflap = CatFlap.objects.get(uuid=catflap_uuid) if not catflap.cat_inside: catflap.cat_inside = True catflap.save() track_manual_intervention(catflap, cat_inside=True) return redirect_to_status_page(request, catflap_uuid)
cb7feabe83ef69598aff9fe6ba9867996312c892
642
import ctypes def feature_list(): """Check the library for compile-time features. The list of features are maintained in libinfo.h and libinfo.cc Returns ------- list List of :class:`.Feature` objects """ lib_features_c_array = ctypes.POINTER(Feature)() lib_features_size = ctypes.c_size_t() check_call(_LIB.MXLibInfoFeatures(ctypes.byref(lib_features_c_array), ctypes.byref(lib_features_size))) features = [lib_features_c_array[i] for i in range(lib_features_size.value)] return features
ec20748fb4aae07898949822b3a7ba9835f4ed57
643
def _symm_herm(C): """To get rid of NaNs produced by _scalar2array, symmetrize operators where C_ijkl = C_jilk*""" nans = np.isnan(C) C[nans] = np.einsum('jilk', C)[nans].conj() return C
bd2e46b3ed751eb380aedd8d280294177fb6b3fd
644
def cat(self, dim=0): """Map of 'cat' pytorch method.""" x = self dim = _dim_explicit(x[0].shape, dim) return P.concat(x, dim)
9eba4de4941ac437e82f98647e0c6dc014b1578f
645
import re def _name_xform(o): """transform names to lowercase, without symbols (except underscore) Any chars other than alphanumeric are converted to an underscore """ return re.sub("\W", "_", o.lower())
8ea563f805493d8885c143d9c2e2e54447ef19e8
646
def runner(app): """创建一个运行器,用于调用应用注册的 Click 命令""" return app.test_cli_runner()
f9ffb3040045e0789a5686eb9a80f3fdef126a9d
647
def create_activation_cache(model): """Creates an activation cache for the tensors of a model.""" input_quantizer = quantized_relu(8, 0) output_cache = {} # If using a Sequential model, the input layer is hidden. Therefore, add the # input quantization to the cache if the first layer is not an input layer if not isinstance(model.layers[0], InputLayer): output_cache[model.layers[0].input.experimental_ref()] = input_quantizer # cache graph tensors' activations for l in model.layers: output_cache[l.output.experimental_ref()] = l if isinstance(l, QActivation) or isinstance(l, QAdaptiveActivation) : output_cache[l.output.experimental_ref()] = l.quantizer elif isinstance(l, InputLayer): # assume the input is 8-bit positive value output_cache[l.output.experimental_ref()] = input_quantizer elif l.__class__.__name__ in [ "QDense", "QConv2D", "QConv1D", "QDepthwiseConv2D" ]: output_cache[l.output.experimental_ref()] = l.activation else: if isinstance(l.input, list): # right now, we just get the first one - we assume this is the leading # one. all_q = [ output_cache.get(l.input[i].experimental_ref()) for i in range(len(l.input)) ] q = all_q[0] else: q = output_cache.get(l.input.experimental_ref(), None) output_cache[l.output.experimental_ref()] = q if q is None: raise ValueError("Unknown operation in {}".format(l.name)) return output_cache
a35c11e95831e3aa51fadce75577e97bd150cc1e
648
def feature_scatterplot(fset_path, features_to_plot): """Create scatter plot of feature set. Parameters ---------- fset_path : str Path to feature set to be plotted. features_to_plot : list of str List of feature names to be plotted. Returns ------- (str, str) Returns (docs_json, render_items) json for the desired plot. """ fset, data = featurize.load_featureset(fset_path) fset = fset[features_to_plot] colors = cycle(palette[5]) plots = np.array([[figure(width=300, height=200) for j in range(len(features_to_plot))] for i in range(len(features_to_plot))]) for (j, i), p in np.ndenumerate(plots): if (j == i == 0): p.title.text = "Scatterplot matrix" p.circle(fset.values[:,i], fset.values[:,j], color=next(colors)) p.xaxis.minor_tick_line_color = None p.yaxis.minor_tick_line_color = None p.ygrid[0].ticker.desired_num_ticks = 2 p.xgrid[0].ticker.desired_num_ticks = 4 p.outline_line_color = None p.axis.visible = None plot = gridplot(plots.tolist(), ncol=len(features_to_plot), mergetools=True, responsive=True, title="Test") # Convert plot to json objects necessary for rendering with bokeh on the # frontend render_items = [{'docid': plot._id, 'elementid': make_id()}] doc = Document() doc.add_root(plot) docs_json_inner = doc.to_json() docs_json = {render_items[0]['docid']: docs_json_inner} docs_json = serialize_json(docs_json) render_items = serialize_json(render_items) return docs_json, render_items
e8e0a545b992042eb334554042c9efa68a4f6a1f
649
def model1(v, va, vb, ka, Wa, Wb, pa): """ A translation of the equation from Sandström's Dynamic NMR Spectroscopy, p. 14, for the uncoupled 2-site exchange simulation. v: frequency whose amplitude is to be calculated va, vb: frequencies of a and b singlets (slow exchange limit) (va > vb) ka: rate constant for state A--> state B pa: fraction of population in state Adv: frequency difference (va - vb) between a and b singlets (slow exchange) T2a, T2b: T2 (transverse relaxation time) for each nuclei returns: amplitude at frequency v """ pi = np.pi pb = 1 - pa tau = pb / ka dv = va - vb Dv = (va + vb) / 2 - v T2a = 1 / (pi * Wa) T2b = 1 / (pi * Wb) P = tau * ((1 / (T2a * T2b)) - 4 * (pi ** 2) * (Dv ** 2) + (pi ** 2) * (dv ** 2)) P += ((pa / T2a) + (pb / T2b)) Q = tau * (2 * pi * Dv - pi * dv * (pa - pb)) R = 2 * pi * Dv * (1 + tau * ((1 / T2a) + (1 / T2b))) R += pi * dv * tau * ((1 / T2b) - (1 / T2a)) + pi * dv * (pa - pb) I = (P * (1 + tau * ((pb / T2a) + (pa / T2b))) + Q * R) / (P ** 2 + R ** 2) return I
c1110cbd16bfcd942a086e8d878bfe3117bf4f99
650
def calculate_laminar_flame_speed( initial_temperature, initial_pressure, species_dict, mechanism, phase_specification="", unit_registry=_U ): """ This function uses cantera to calculate the laminar flame speed of a given gas mixture. Parameters ---------- initial_temperature : pint.Quantity Initial temperature of gas mixture initial_pressure : pint.Quantity Initial pressure of gas mixture species_dict : dict Dictionary with species names (all caps) as keys and moles as values mechanism : str String of mechanism to use (e.g. "gri30.cti") phase_specification : str Phase specification for cantera solution unit_registry : pint.UnitRegistry Unit registry for managing units to prevent conflicts with parent unit registry Returns ------- pint.Quantity Laminar flame speed in m/s as a pint quantity """ gas = ct.Solution(mechanism, phase_specification) quant = unit_registry.Quantity tools.check_pint_quantity( initial_pressure, "pressure", ensure_positive=True ) tools.check_pint_quantity( initial_temperature, "temperature", ensure_positive=True ) # ensure species dict isn't empty if len(species_dict) == 0: raise ValueError("Empty species dictionary") # ensure all species are in the mechanism file bad_species = "" good_species = gas.species_names for species in species_dict: if species not in good_species: bad_species += species + "\n" if len(bad_species) > 0: raise ValueError("Species not in mechanism:\n" + bad_species) gas.TPX = ( initial_temperature.to("K").magnitude, initial_pressure.to("Pa").magnitude, species_dict ) # find laminar flame speed flame = ct.FreeFlame(gas) flame.set_refine_criteria(ratio=3, slope=0.1, curve=0.1) flame.solve(loglevel=0) return quant(flame.u[0], "m/s")
cdceb35dd5313d32e5b7cdfd4af2b842d2019587
651
def extrapolate_coverage(lines_w_status): """ Given the following input: >>> lines_w_status = [ (1, True), (4, True), (7, False), (9, False), ] Return expanded lines with their extrapolated line status. >>> extrapolate_coverage(lines_w_status) == [ (1, True), (2, True), (3, True), (4, True), (5, None), (6, None), (7, False), (8, False), (9, False), ] """ lines = [] prev_lineno = 0 prev_status = True for lineno, status in lines_w_status: while (lineno - prev_lineno) > 1: prev_lineno += 1 if prev_status is status: lines.append((prev_lineno, status)) else: lines.append((prev_lineno, None)) lines.append((lineno, status)) prev_lineno = lineno prev_status = status return lines
e7685359f570ae979f2421c3a64513409b9df352
652
def get_image_features(filename): """ Param: Path to image Returns: Desired features of image in the form of a dictionary (key = feature_name, value = feature_value) """ array, metadata = nrrd.read(filename) return {k: f(array, metadata, filename) for k, f in image_feature_functions.items()}
0f991ebed175f0f41e30654cb4665dea09a1053d
653
def get_DCT_transform_matrix(N): """ Return the normalised N-by-N discrete cosine transform (DCT) matrix. Applying the returned transform matrix to a vector x: D.dot(x) yields the DCT of x. Applying the returned transform matrix to a matrix A: D.dot(A) applies the DCT to the columns of A. Taking D.dot(A.dot(D.T)) applies the DCT to both columns and rows, i.e. a full 2D separable DCT transform. The inverse transform (the 1D IDCT) is D.T. Parameters ---------- N : int The size of the DCT transform matrix to return. Returns ------- D : ndarray The DCT transform matrix. Notes ----- The returned DCT matrix normalised such that is consitutes a orthonormal transform as given by equations (2.119) and (2.120) in [1]_. References ---------- .. [1] A.N. Akansu, R.A. Haddad, and P.R. Haddad, *Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets*, Academic Press, 2000. Examples -------- For example, get a 5-by-5 DCT matrix >>> import numpy as np >>> from magni.imaging.dictionaries import get_DCT_transform_matrix >>> D = get_DCT_transform_matrix(5) >>> np.round(np.abs(D), 4) array([[ 0.4472, 0.4472, 0.4472, 0.4472, 0.4472], [ 0.6015, 0.3717, 0. , 0.3717, 0.6015], [ 0.5117, 0.1954, 0.6325, 0.1954, 0.5117], [ 0.3717, 0.6015, 0. , 0.6015, 0.3717], [ 0.1954, 0.5117, 0.6325, 0.5117, 0.1954]]) and apply the 2D DCT transform to a dummy image >>> np.random.seed(6021) >>> img = np.random.randn(5, 5) >>> img_dct = D.dot(img.dot(D.T)) >>> np.round(img_dct, 4) array([[-0.5247, -0.0225, 0.9098, 0.369 , -0.477 ], [ 1.7309, -0.4142, 1.9455, -0.6726, -1.3676], [ 0.6987, 0.5355, 0.7213, -0.8498, -0.1023], [ 0.0078, -0.0545, 0.3649, -1.4694, 1.732 ], [-1.5864, 0.156 , 0.8932, -0.8091, 0.5056]]) """ @_decorate_validation def validate_input(): _numeric('N', 'integer', range_='[1;inf)') validate_input() nn, rr = np.meshgrid(*map(np.arange, (N, N))) D = np.cos((2 * nn + 1) * rr * np.pi / (2 * N)) D[0, :] /= np.sqrt(N) D[1:, :] /= np.sqrt(N/2) return D
87314407c0836892a79747ea01aa9c369224198b
654
def get_reduce_nodes(name, nodes): """ Get nodes that combine the reduction variable with a sentinel variable. Recognizes the first node that combines the reduction variable with another variable. """ reduce_nodes = None for i, stmt in enumerate(nodes): lhs = stmt.target.name rhs = stmt.value if isinstance(stmt.value, ir.Expr): in_vars = set(v.name for v in stmt.value.list_vars()) if name in in_vars: args = get_expr_args(stmt.value) args.remove(name) assert len(args) == 1 replace_vars_inner(stmt.value, {args[0]: ir.Var(stmt.target.scope, name+"#init", stmt.target.loc)}) reduce_nodes = nodes[i:] break; assert reduce_nodes, "Invalid reduction format" return reduce_nodes
8438829236f9c45986d1e1394cd0c6864caec73f
655
def extract_mesh_descriptor_id(descriptor_id_str: str) -> int: """ Converts descriptor ID strings (e.g. 'D000016') into a number ID (e.g. 16). """ if len(descriptor_id_str) == 0: raise Exception("Empty descriptor ID") if descriptor_id_str[0] != "D": raise Exception("Expected descriptor ID to start with 'D', {}".format(descriptor_id_str)) return int(descriptor_id_str[1:])
9f013eadee9a149b9617e4a1c058bbe67c6dd8ba
656
def process_sources(sources_list): """ This function processes the sources result :param sources_list: A list of dictionaries :return: A list of source objects """ sources_results = [] for sources_item in sources_list: id = sources_item.get('id') name = sources_item.get('name') description = sources_item.get('description') url = sources_item.get('url') category = sources_item.get('category') language = sources_item.get('language') country = sources_item.get('country') print(sources_item) sources_object = Sources(id, name, description, url) sources_results.append(sources_object) return sources_results
7742a721802c66daf525520969f5831f9a497137
657
import math def encrypt(message_text, key): """Method Defined for ENCRYPTION of a Simple \ String message into a Cipher Text Using \ 2x2 Hill Cipher Technique \nPARAMETERS\n message_text: string to be encrypted key: string key for encryption with length <= 4 \nRETURNS\n cipher_text: encrypted Message string """ # for 2x2 Hill Cipher length of key must be <= 4 # print("Warning: All Spaces with be lost!") cipher_text = "" key_matrix = None if len(key) <= 4: key_matrix = string_to_Matrix_Z26(key, 2, 2) else: print("Key Length must be <= 4 in 2x2 Hill Cipher") return pairs = math.ceil((len(message_text)/2)) matrix = string_to_Matrix_Z26(message_text, 2, pairs) key_inverse = matrix_inverse_Z26(key_matrix) if type(key_inverse) == type(None): print("NOTE: The provided Key is NOT Invertible,") print("To avoid failure while decryption,") print("Try again with an invertible Key") return None for i in range(pairs): result_char = (key_matrix*matrix[:, i]) % 26 cipher_text += ENGLISH_ALPHABETS[ result_char[0, 0] ] cipher_text += ENGLISH_ALPHABETS[ result_char[1, 0] ] return cipher_text
2b36ba888980021cc69bffb1316b4e352bd026e8
658
import torch def resnet101(pretrained=False, num_groups=None, weight_std=False, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 23, 3], num_groups=num_groups, weight_std=weight_std, **kwargs) if pretrained: model_dict = model.state_dict() if num_groups and weight_std: pretrained_dict = torch.load('data/R-101-GN-WS.pth.tar') overlap_dict = {k[7:]: v for k, v in pretrained_dict.items() if k[7:] in model_dict} assert len(overlap_dict) == 312 elif not num_groups and not weight_std: pretrained_dict = model_zoo.load_url(model_urls['resnet101']) overlap_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} else: raise ValueError('Currently only support BN or GN+WS') model_dict.update(overlap_dict) model.load_state_dict(model_dict) return model
da4213b280eeef56cf1bdce7bfd05cfc0b8cde7d
659
def cron(cronline, venusian_category='irc3.plugins.cron'): """main decorator""" def wrapper(func): def callback(context, name, ob): obj = context.context crons = obj.get_plugin(Crons) if info.scope == 'class': callback = getattr( obj.get_plugin(ob), func.__name__) else: callback = irc3.utils.wraps_with_context(func, obj) crons.add_cron(cronline, callback) info = venusian.attach(func, callback, category=venusian_category) return func return wrapper
9ffe20fd3e803b1260577ff38122b4912ab4d69a
660
def oauth_type(): """Check if Slack or another OAuth has been configured""" if "OAUTH_TYPE" in current_app.config: return current_app.config["OAUTH_TYPE"].lower() else: return None
d9fe8f77fd502890becd44cbaf802b2e94598a6f
661
import random import string def create_categories(): """Create a group of random strings for each column in the table.""" return [ [ ''.join(random.choices(string.ascii_lowercase, k=random.randint(STR_MIN, STR_MAX))) for _i in range(CAT_COUNT) ] for _j in range(COL_COUNT) ]
8552be3fb45091f404d396f452dd37824a0cae23
663
from typing import Union from typing import Tuple from typing import List from typing import Any def _compute_comm_classes( A: Union[np.ndarray, spmatrix] ) -> Tuple[List[List[Any]], bool]: """Compute communication classes for a graph given by A.""" di_graph = ( nx.from_scipy_sparse_matrix(A, create_using=nx.DiGraph) if issparse(A) else nx.from_numpy_array(A, create_using=nx.DiGraph) ) nx.strongly_connected_components(di_graph) comm_classes = sorted( nx.strongly_connected_components(di_graph), key=len, reverse=True ) is_irreducible = len(comm_classes) == 1 return comm_classes, is_irreducible
15a7025d10855a4644be60d52dba273c526c2b43
665
import typing def parse_lines(lines: typing.List[str], units: Units, use_na: bool = True) -> typing.List[typing.Dict[str, typing.Any]]: """ Returns a list of parsed line dictionaries """ parsed_lines = [] prob = '' while lines: raw_line = lines[0].strip() line = core.sanitize_line(raw_line) # Remove prob from the beginning of a line if line.startswith('PROB'): # Add standalone prob to next line if len(line) == 6: prob = line line = '' # Add to current line elif len(line) > 6: prob = line[:6] line = line[6:].strip() if line: parsed_line = (parse_na_line if use_na else parse_in_line)(line, units) for key in ('start_time', 'end_time'): parsed_line[key] = core.make_timestamp(parsed_line[key]) parsed_line['probability'] = core.make_number(prob[4:]) parsed_line['raw'] = raw_line parsed_line['sanitized'] = prob + ' ' + line if prob else line prob = '' parsed_lines.append(parsed_line) lines.pop(0) return parsed_lines
356b3c4d80a462643ab6c7747d4f1174202129be
666
import random def rand_cutout(np_img, pcts=(0.05, 0.4), depth=(1., 0.), max_k=1): """Cut out from image, and edges of rectangles are smooth. Returns: applied image, cut mask """ cut = np.ones(np_img.shape[:2]) k = random.randint(1, max_k) for _ in range(k): d = random.random() * depth[0] + depth[1] hill = rand_solid_hill((np_img.shape[1], np_img.shape[0]), pcts=pcts) cut = cut * (1 - d * hill) return np_img * cut[..., np.newaxis], (cut < 0.9).astype(np.int8)
fd5b40138314827c3ff69bb571f30453049c073b
667
from typing import List def create_content_list(contents: List[str]) -> str: """Format list of string into markdown list Args: contents: (List[string]), list of string to be formatted Returns: String """ return '\n'.join( [template.LIST_TEMPLATE.format( level='', content=item ) for item in contents])
4080d7540def0bd0199f380a787b49eafc512b6f
668
from typing import Optional import requests import logging def convert(key: str, content: str, output_format: OWLFormat=OWLFormat.func) -> Optional[str]: """ Convert content into output_format :param key: Key of content for error reporting :param content: OWL representation :param output_format: target format :return: Converted information if successful """ try: resp = requests.post('https://www.ldf.fi/service/owl-converter/', data=dict(onto=content, to=output_format.name)) except ConnectionError as e: logging.getLogger().error(f"{key}: {str(e)}") return None if resp.ok: return resp.text logging.getLogger().error(f"{key}: {str(resp)}")
c350a00198489d6224693cf528fb952283c6fc27
669
def _post_single_image(client: Imgur, image_path, title, description=None): """ Limit to 1250 POST requests per hour and 12500 per day """ image = client.image_upload(image_path, title, description) # album_id = client.album_get('Family Photos')['response']['data']['id'] # client.album_add(album_id, image['response']['data']['id']) return image['response']['data']['link']
22b1c5996986616515e8edcfcd22d9c82df1d27b
670
def load_data(path, start=0, end=99999, step=1, returnNames = False): """Load images into a list #Arguments paths: List of strings representing paths to folders containing images that must be named as numbers start,end,step: Refers to the number of name of images. Only loads images with in this range. """ imgs = load_imgs(path,start,end,step,returnNames = returnNames) return imgs
7edaff4bc977a63c22f140b74a86bc9c6fdae604
671
def animated_1d_plot(probe_data_dnf: np.ndarray, probe_data_input1: np.ndarray, probe_data_input2: np.ndarray, interval: ty.Optional[int] = 30) -> None: """Generates an animated plot for examples in the DNF regimes tutorial. Parameters ---------- probe_data_dnf : numpy.ndarray probe data of the DNF probe_data_input1 : numpy.ndarray probe data of the first spiking input probe_data_input2 : numpy.ndarray probe data of the second spiking input interval : int interval to use in matplotlib.animation.FuncAnimation """ probe_data_input = probe_data_input1 + probe_data_input2 probe_data_input = probe_data_input.astype(np.float) probe_data_dnf = probe_data_dnf.astype(np.float) probe_data_input = np.transpose(probe_data_input) probe_data_dnf = np.transpose(probe_data_dnf) num_neurons = np.size(probe_data_input, axis=1) num_time_steps = np.size(probe_data_dnf, axis=0) input_spike_rates = compute_spike_rates(probe_data_input) dnf_spike_rates = compute_spike_rates(probe_data_dnf) fig, ax = plt.subplots(2, 1, figsize=(10, 5)) line0, = ax[0].plot(np.zeros((num_neurons,)), 'bo-') line1, = ax[1].plot(np.zeros((num_neurons,)), 'ro-') im = [line0, line1] ax[0].set_xlabel("") ax[1].set_xlabel("Input neuron idx") ax[0].set_ylabel("Input spike rate") ax[1].set_ylabel("DNF spike rate") ax[0].set_xticks([]) ax[1].set_xticks([0, num_neurons - 1]) ax[0].set_yticks([0, 1]) ax[1].set_yticks([0, 1]) ax[0].set_xlim(-1, num_neurons) ax[1].set_xlim(-1, num_neurons) offset = 0.1 ax[0].set_ylim(np.min(input_spike_rates) - offset, np.max(input_spike_rates) + offset) ax[1].set_ylim(np.min(dnf_spike_rates) - offset, np.max(dnf_spike_rates) + offset) plt.tight_layout() def animate(i: int) -> ty.List: x = range(num_neurons) im[0].set_data(x, input_spike_rates[i, :]) im[1].set_data(x, dnf_spike_rates[i, :]) return im anim = animation.FuncAnimation(fig, animate, frames=num_time_steps, interval=interval, blit=True) html = display.HTML(anim.to_jshtml()) display.display(html) plt.close()
8ec34c6772b728daeb429a2ecf4af52ab673bc96
672
def create_tendencies(params, return_inner_products=False, return_qgtensor=False): """Function to handle the inner products and tendencies tensors construction. Returns the tendencies function :math:`\\boldsymbol{f}` determining the model's ordinary differential equations: .. math:: \dot{\\boldsymbol{x}} = \\boldsymbol{f}(\\boldsymbol{x}) which is for the model's integration. It returns also the linearized tendencies :math:`\\boldsymbol{\mathrm{J}} \equiv \\boldsymbol{\mathrm{D}f} = \\frac{\partial \\boldsymbol{f}}{\partial \\boldsymbol{x}}` (Jacobian matrix) which are used by the tangent linear model: .. math :: \dot{\\boldsymbol{\delta x}} = \\boldsymbol{\mathrm{J}}(\\boldsymbol{x}) \cdot \\boldsymbol{\delta x} Parameters ---------- params: ~params.params.QgParams The parameters fully specifying the model configuration. return_inner_products: bool If True, return the inner products of the model. Default to False. return_qgtensor: bool If True, return the tendencies tensor of the model. Default to False. Returns ------- f: callable The numba-jitted tendencies function. Df: callable The numba-jitted linearized tendencies function. inner_products: (AtmosphericInnerProducts, OceanicInnerProducts) If `return_inner_products` is True, the inner products of the system. qgtensor: QgsTensor If `return_qgtensor` is True, the tendencies tensor of the system. """ if params.ablocks is not None: aip = AtmosphericInnerProducts(params) else: aip = None if params.goblocks is not None and params.gotemperature_params._name == "Oceanic Temperature": oip = OceanicInnerProducts(params) else: oip = None if aip is not None and oip is not None: aip.connect_to_ocean(oip) agotensor = QgsTensor(aip, oip) coo = agotensor.tensor.coords.T val = agotensor.tensor.data @njit def f(t, x): xx = np.concatenate((np.full((1,), 1.), x)) xr = sparse_mul3(coo, val, xx, xx) return xr[1:] jcoo = agotensor.jacobian_tensor.coords.T jval = agotensor.jacobian_tensor.data @njit def Df(t, x): xx = np.concatenate((np.full((1,), 1.), x)) mul_jac = sparse_mul2(jcoo, jval, xx) return mul_jac[1:, 1:] ret = list() ret.append(f) ret.append(Df) if return_inner_products: ret.append((aip, oip)) if return_qgtensor: ret.append(agotensor) return ret
2ca9f8f6c52b72070c8d339a6ec23d7dd52ea66c
673
import re def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: with open(versionfile_abs, "r") as fobj: for line in fobj: if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) if line.strip().startswith("git_date ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["date"] = mo.group(1) except OSError: pass return keywords
ff70ee2690bc36aaf892653040996597750c52da
674