content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import re def ruru_old_log_checker(s): """ 古いログ形式ならTrue、そうでないならFalseを返す :param s: :return: """ time_data_regex = r'[0-9]{4}\/[0-9]{2}\/[0-9]{2}\s[0-9]{2}:[0-9]{2}:[0-9]{2}' # るる鯖新ログ形式なら1つ目のdiv:d12150で時刻が取得可能。そうでないなら取得不可 time_data = re.search(time_data_regex, str(s.find('div', class_='d12150'))) return False if time_data else True
54f6a94dab98ef6947496b8e1f95401d99424ee2
2,500
def get_user_map_best(beatmap_id, user, enabled_mods=0): """ gets users best play on map :param beatmap_id: beatmap id :param user: username :param enabled_mods: mods used :return: list of plays """ response = OSU_API.get('/get_scores', {"b": beatmap_id, "u": user, "mods": enabled_mods}).json() if Config.debug: Log.log(response) # if len(response) == 0: # raise NoScore("Couldn't find user score for this beatmap") for i, j in enumerate(response): response[i] = Play(j) response[i].beatmap_id = beatmap_id return response
545ede7ef7d1133bbbcab9640a9e3edcdcca111f
2,501
def scale_z_by_atom(z, scale, copy=True): """ Parameters ---------- z_ : array, shape (n_trials, n_atoms, n_times - n_times_atom + 1) Can also be a list of n_trials LIL-sparse matrix of shape (n_atoms, n_times - n_times_atom + 1) The sparse activation matrix. scale : array, shape = (n_atoms, ) The scales to apply on z. """ if is_list_of_lil(z): n_trials, n_atoms, n_times_valid = get_z_shape(z) assert n_atoms == len(scale) if copy: z = deepcopy(z) for z_i in z: for k in range(z_i.shape[0]): z_i.data[k] = [zikt * scale[k] for zikt in z_i.data[k]] else: if copy: z = z.copy() z *= scale[None, :, None] return z
b87368c1ea8dcd18fcbfd85ef8cde5450d5fcf33
2,502
def index(): """ example action using the internationalization operator T and flash rendered by views/default/index.html or views/generic.html if you need a simple wiki simply replace the two lines below with: return auth.wiki() """ if auth.is_logged_in(): # # if newly registered user is not in auth_membership add him as an administrator if not db(db.auth_membership.user_id == auth.user_id).count() > 0: auth.add_membership(auth.id_group(ADMIN), auth.user_id) session.user_info = get_user_info() response.user_info = session.user_info if request.user_agent().is_mobile: return response.render('../views/default/index-m.html') else: return response.render('../views/default/index.html')
d48d29ee65ddf064dc2f424f2be9f46da23cbd4a
2,503
def compute_classification_metrics_at_ks(is_match, num_predictions, num_trgs, k_list=[5,10], meng_rui_precision=False): """ :param is_match: a boolean np array with size [num_predictions] :param predicted_list: :param true_list: :param topk: :return: {'precision@%d' % topk: precision_k, 'recall@%d' % topk: recall_k, 'f1_score@%d' % topk: f1, 'num_matches@%d': num_matches} """ assert is_match.shape[0] == num_predictions #topk.sort() if num_predictions == 0: precision_ks = [0] * len(k_list) recall_ks = [0] * len(k_list) f1_ks = [0] * len(k_list) num_matches_ks = [0] * len(k_list) num_predictions_ks = [0] * len(k_list) else: num_matches = np.cumsum(is_match) num_predictions_ks = [] num_matches_ks = [] precision_ks = [] recall_ks = [] f1_ks = [] for topk in k_list: if topk == 'M': topk = num_predictions elif topk == 'G': #topk = num_trgs if num_predictions < num_trgs: topk = num_trgs else: topk = num_predictions if meng_rui_precision: if num_predictions > topk: num_matches_at_k = num_matches[topk-1] num_predictions_at_k = topk else: num_matches_at_k = num_matches[-1] num_predictions_at_k = num_predictions else: if num_predictions > topk: num_matches_at_k = num_matches[topk - 1] else: num_matches_at_k = num_matches[-1] num_predictions_at_k = topk precision_k, recall_k, f1_k = compute_classification_metrics(num_matches_at_k, num_predictions_at_k, num_trgs) precision_ks.append(precision_k) recall_ks.append(recall_k) f1_ks.append(f1_k) num_matches_ks.append(num_matches_at_k) num_predictions_ks.append(num_predictions_at_k) return precision_ks, recall_ks, f1_ks, num_matches_ks, num_predictions_ks
189a6491e1b5d8e3bf8869586b69667eb1b9d9c9
2,504
def coordinatesOfPosition(shape, distance): """Compute the point at a given distance from the beginning of a shape. The shape is a list of points. A point is a sequence of two floats. The returned point is the x- and y-coordinate of the point that has the given distance along the line of the shape from its starting point. The shape must contain at least one point coordinate. If the distance argument is larger than the length of the shape, the last point of the shape is returned. """ prevPoint = shape[0] currentDistance = 0.0 for point in shape: diffX = point[0] - prevPoint[0] diffY = point[1] - prevPoint[1] sectionLength = math.sqrt(diffX * diffX + diffY * diffY) if currentDistance + sectionLength > distance: fraction = (distance - currentDistance) / sectionLength return (prevPoint[0] + diffX * fraction, prevPoint[1] + diffY * fraction) currentDistance += sectionLength if cliArgs.debug: print "coordinatesOfPosition: Exceeded the shape." return point
7ae8c53468d5c8be8fe2daca1d0dfe358ad6c24e
2,505
def compute_dose_median_scores(null_dist_medians, dose_list): """ Align median scores per dose, this function return a dictionary, with keys as dose numbers and values as all median scores for each dose """ median_scores_per_dose = {} for dose in dose_list: median_list = [] for keys in null_distribution_medians: dose_median_list = null_distribution_medians[keys][dose-1] median_list += dose_median_list median_scores_per_dose[dose] = median_list return median_scores_per_dose
ec23f186c10a6921cdae9d4965a51343dc78011e
2,506
def generate_converter(name, taskdep, **options) : """ taskdep 是执行该程序之前应该执行的任务 task_html_generator 表示的是能够生成html的任务,我们需要从这个任务中提取result taskname是生成的任务名 """ converter = options.get('converter', Pandoc("-f", "html", "-t", "markdown", "--wrap=none")) flowdep = options.get('flowdep', taskdep[0]) return lift_process_to_task(name, converter, taskdep, flowdep=flowdep)
3e60abfcdabfb0c35ff8b9692b21b27af2300da8
2,507
def symmetric_product(tensor): """ Symmetric outer product of tensor """ shape = tensor.size() idx = list(range(len(shape))) idx[-1], idx[-2] = idx[-2], idx[-1] return 0.5 * (tensor + tensor.permute(*idx))
4f96ab5f0bd41080352b1e5e806b6a73b3506950
2,508
import torch def prep_image(img, inp_dim): """ Function: Prepare image for inputting to the neural network. Arguments: img -- image it self inp_dim -- dimension for resize the image (input dimension) Return: img -- image after preparing """ img = (letterbox_image(img, (inp_dim, inp_dim))) img = img[:,:,::-1].transpose((2,0,1)).copy() img = torch.from_numpy(img).float().div(255.0).unsqueeze(0) return img
4f32717cb06b32cab2e0b92d3a24a9a665baf27b
2,509
async def auth_check(request): """ No-op view to set the session cookie, this is used by websocket since the "Set-Cookie" header doesn't work with 101 upgrade """ return json_response(status='ok')
60419c8d32bbc41525ebf44d4d7bcabe8a117df0
2,510
def check_constraint(term_freq,top_terms,top_terms_test_freq): """ Check the constraint 12%-30% for the test set term_freq is the dictionnary of all term frequencies top_terms is the list of terms we care about (first 300?) top_terms_freq is an array of frequency of top terms in test set. RETURN True if constraint satisfied, False otherwise """ return check_constraint_12pc(term_freq,top_terms,top_terms_test_freq) and check_constraint_30pc(term_freq,top_terms,top_terms_test_freq)
d2b31c68d1a8cd1a7d8471818cc46de943496aaa
2,511
import os def create_LSTM_model(patient_idx, time_steps, save_model=False, plot_loss=False): """ Trains an LSTM model over a patient @param patient_idx: number @param time_steps: number of concatenated heartbeats per datapoint @param save_model: whether to save the model to h5 file @param plot_loss: whether to plot the loss during training @return: """ orig_data = np.load(os.path.join("Working_Data/Normalized_Fixed_Dim_HBs_Idx" + str(patient_idx) + ".npy")) data = orig_data[0:1000, :, :] # print(data[0:10].reshape(10000,4).shape) X, y = create_lstm_datapoints(data, time_steps) model = Sequential() model.add(LSTM(30, input_shape=(X.shape[1], X.shape[2]))) model.add(Dropout(rate=0.2)) model.add(RepeatVector(X.shape[1])) model.add(LSTM(30, return_sequences=True)) model.add(Dropout(rate=0.2)) model.add(TimeDistributed(Dense(X.shape[2]))) model.compile(optimizer='adam', loss='mse') model.summary() history = model.fit(X, X, epochs=100, batch_size=1, validation_split=0.1, callbacks=[keras.callbacks.EarlyStopping(monitor='loss', patience=3, mode='min')], shuffle=False) if save_model: model.save(f"Working_Data/LSTM_Model_Idx{patient_idx}.h5") if plot_loss: # plot the loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.savefig("Working_Data/lstm_loss.png") plt.show() print("loss of the model is: ") print(history.history['loss']) print(f"Created LSTM model for patient {patient_idx}") return model
8a32e6106602f949000c57445317d7f0ec83102b
2,512
def get_supported_providers() -> list[str]: """ Return the list of supported discussion providers TODO: Load this from entry points? """ providers = [ 'legacy', 'piazza', ] return providers
bea650b51447734ae83949f0d792f850aa3d0aa3
2,513
import pytz def predict_split(history, prediction_length=7*24, hyperparameters={}): """ This function predicts a time series of gas prices by splitting it into a tren and a residual and then applying a feature pipeline and predicting each of them individually. Keyword arguments: history -- the time series to split up prediction_length -- the number of time steps to predict (default 7*24) hyperparameters -- values used for the prediction model (default {}) Return value: 2 time series predicted: trend and residual """ #extract parameters r = hyperparameters["r"] if "r" in hyperparameters else default_hyperparameters["r"] #split data trend, res = split_trend(history) #create index for prediction time series index_pred = pd.date_range( start=history.index.max() + timedelta(hours=1), end=history.index.max() + timedelta(hours=prediction_length), freq="1H", tz=pytz.utc ) #predict the trend trend_pred = predict_ts( (trend - trend.shift(1)).fillna(0.), get_feature_pipeline("trend", hyperparameters), index_pred, hyperparameters=hyperparameters ).cumsum() + trend.iloc[-1] #compute residual prediction res_pred = predict_ts( res.iloc[-r:], get_feature_pipeline("res", hyperparameters), index_pred, hyperparameters=hyperparameters ) #alternative: using AR from statsmodels #res_model = AR(res) #res_results = res_model.fit(disp=-1, maxlag=p) #res_pred = res_results.predict(len(res), len(res) + prediction_length) #return result return trend_pred, res_pred
025d4b753754ad18a04b46f95002f9ab54ccd9bd
2,514
def SFRfromLFIR(LFIR): """ Kennicut 1998 To get Star formation rate from LFIR (8-1000um) LFIR in erg s-1 SFR in Msun /year """ SFR = 4.5E-44 * LFIR return SFR
4adf401bbf2c6547cea817b52eb881531db8c798
2,515
def inc_group_layers(n_list, d_list, c_list): """ Helper function for inc_tmm. Groups and sorts layer information. See coh_tmm for definitions of n_list, d_list. c_list is "coherency list". Each entry should be 'i' for incoherent or 'c' for 'coherent'. A "stack" is a group of one or more consecutive coherent layers. A "stack index" labels the stacks 0,1,2,.... The "within-stack index" counts the coherent layers within the stack 1,2,3... [index 0 is the incoherent layer before the stack starts] An "incoherent layer index" labels the incoherent layers 0,1,2,... An "alllayer index" labels all layers (all elements of d_list) 0,1,2,... Returns info about how the layers relate: * stack_d_list[i] = list of thicknesses of each coherent layer in the i'th stack, plus starting and ending with "inf" * stack_n_list[i] = list of refractive index of each coherent layer in the i'th stack, plus the two surrounding incoherent layers * all_from_inc[i] = j means that the layer with incoherent index i has alllayer index j * inc_from_all[i] = j means that the layer with alllayer index i has incoherent index j. If j = nan then the layer is coherent. * all_from_stack[i1][i2] = j means that the layer with stack index i1 and within-stack index i2 has alllayer index j * stack_from_all[i] = [j1 j2] means that the layer with alllayer index i is part of stack j1 with withinstack-index j2. If stack_from_all[i] = nan then the layer is incoherent * inc_from_stack[i] = j means that the i'th stack comes after the layer with incoherent index j, and before the layer with incoherent index j+1. * stack_from_inc[i] = j means that the layer with incoherent index i comes immediately after the j'th stack. If j=nan, it is not immediately following a stack. * num_stacks = number of stacks * num_inc_layers = number of incoherent layers * num_layers = number of layers total """ if (d_list.ndim != 1): raise ValueError("Problem with n_list or d_list!") if (d_list[0] != np.inf) or (d_list[-1] != np.inf): raise ValueError('d_list must start and end with inf!') if (c_list[0] != 'i') or (c_list[-1] != 'i'): raise ValueError('c_list should start and end with "i"') if not len(n_list) == d_list.size == len(c_list): raise ValueError('List sizes do not match!') inc_index = 0 stack_index = 0 stack_d_list = [] stack_n_list = [] all_from_inc = [] inc_from_all = [] all_from_stack = [] stack_from_all = [] inc_from_stack = [] stack_from_inc = [] stack_in_progress = False for alllayer_index in range(len(n_list)): if c_list[alllayer_index] == 'c': # coherent layer inc_from_all.append(np.nan) if not stack_in_progress: # this layer is starting new stack stack_in_progress = True ongoing_stack_d_list = [np.inf, d_list[alllayer_index]] ongoing_stack_n_list = [n_list[alllayer_index - 1], n_list[alllayer_index]] stack_from_all.append([stack_index, 1]) all_from_stack.append([alllayer_index - 1, alllayer_index]) inc_from_stack.append(inc_index - 1) within_stack_index = 1 else: # another coherent layer in the same stack ongoing_stack_d_list.append(d_list[alllayer_index]) ongoing_stack_n_list.append(n_list[alllayer_index]) within_stack_index += 1 stack_from_all.append([stack_index, within_stack_index]) all_from_stack[-1].append(alllayer_index) elif c_list[alllayer_index] == 'i': # incoherent layer stack_from_all.append(np.nan) inc_from_all.append(inc_index) all_from_inc.append(alllayer_index) if not stack_in_progress: # previous layer was also incoherent stack_from_inc.append(np.nan) else: # previous layer was coherent stack_in_progress = False stack_from_inc.append(stack_index) ongoing_stack_d_list.append(np.inf) stack_d_list.append(ongoing_stack_d_list) ongoing_stack_n_list.append(n_list[alllayer_index]) stack_n_list.append(ongoing_stack_n_list) all_from_stack[-1].append(alllayer_index) stack_index += 1 inc_index += 1 else: raise ValueError("Error: c_list entries must be 'i' or 'c'!") return {'stack_d_list': stack_d_list, 'stack_n_list': stack_n_list, 'all_from_inc': all_from_inc, 'inc_from_all': inc_from_all, 'all_from_stack': all_from_stack, 'stack_from_all': stack_from_all, 'inc_from_stack': inc_from_stack, 'stack_from_inc': stack_from_inc, 'num_stacks': len(all_from_stack), 'num_inc_layers': len(all_from_inc), 'num_layers': len(n_list)}
1b25975169839e54feae58f98b5de98916c51541
2,516
def get_heater_device_json(): """ returns information about the heater in json """ return '{\n "state" : "' + _pretty_state_identifier(brew_logic.heater_state) + '",\n "overridden" : "' + str(brew_logic.heater_override).lower() + '"\n }'
3997e9eee7cbb058adf4900b571c8458e2464e19
2,517
def rfc_deploy(): """This function trains a Random Forest classifier and outputs the out-of-sample performance from the validation and test sets """ df = pd.DataFrame() for pair in pairs: # retrieving the data and preparing the features dataset = gen_feat(pair) dataset.drop(['Open', 'High', 'Low', 'Close', 'volume'], axis=1, inplace=True) # selecting the features to train on cols = list(dataset.columns) feats = cols[2:] #splitting into training, validation and test sets df_train = dataset.iloc[:-100,:] train = df_train.copy() df_test = dataset.iloc[-100:,:] test = df_test.copy() train_f = train.iloc[:-100,:] valid = train.iloc[-100:,:] #training the algorithm m = rfc(train_f[feats], train_f['dir']) # test sets test_pred = m.predict(test[feats]) test_proba = m.predict_proba(test[feats]) df1 = pd.DataFrame(test_pred,columns=['prediction'], index=test.index) proba_short = [] proba_long = [] for x in range(len(test_proba)): proba_short.append(test_proba[x][0]) proba_long.append(test_proba[x][-1]) proba = {'proba_short': proba_short, 'proba_long': proba_long} df2 = pd.DataFrame(proba, index=test.index) df1['probability'] = np.where(df1['prediction'] == 1, df2['proba_long'], np.where(df1['prediction'] == -1, df2['proba_short'], 0)) df1['signal'] = np.where((df1['probability'] >= .7) & (df1['prediction'] == 1), 'Go Long', np.where((df1['probability'] >= 0.7) & (df1['prediction'] == -1), 'Go Short', 'Stand Aside')) df1.reset_index(inplace=True) df1['pair'] = pair df1.set_index('pair', inplace=True) entry_sig = df1[['probability', 'signal']].iloc[-1:] # Merge df = pd.concat([df, entry_sig], axis=0) #output return df
86c4aa5f44d23cce83f6cc9993c0e10cd124c423
2,518
def get_block(block_name): """Get block from BLOCK_REGISTRY based on block_name.""" if not block_name in BLOCK_REGISTRY: raise Exception(NO_BLOCK_ERR.format( block_name, BLOCK_REGISTRY.keys())) block = BLOCK_REGISTRY[block_name] return block
10b86c5045496a865907ef2617b2994d03f1312d
2,519
from pathlib import Path import yaml def _determine_role_name(var_file: Path) -> str: """ Lookup role name from directory or galaxy_info. """ if var_file.is_file(): role_path: Path = var_file.parent / ".." name = str(role_path.resolve().name) meta_path: Path = role_path / 'meta' / 'main.yml' if (meta_path.is_file()): with open(str(meta_path), 'r') as f: meta = yaml.load(f, Loader=SafeLoader) try: role_name = meta['galaxy_info']['role_name'] name = role_name except BaseException: pass return name
59e6d60234cc7988fe6c3005176f1c89cac5b60d
2,520
import six import os def load_table(file_path, metadata_ext='.pklmetadata'): """ Loads a pickled DataFrame from a file along with its metadata. This function loads a DataFrame from a file stored in pickle format. Further, this function looks for a metadata file with the same file name but with an extension given by the user (defaults to '.pklmetadata'. If the metadata file is present, the function will update the metadata for that DataFrame in the catalog. Args: file_path (string): The file path to load the file from. metadata_ext (string): The metadata file extension (defaults to '.pklmetadata') that should be used to generate metadata file name. Returns: If the loading is successful, the function will return a pandas DataFrame read from the file. The catalog will be updated with the metadata read from the metadata file (if the file was present). Raises: AssertionError: If `file_path` is not of type string. AssertionError: If `metadata_ext` is not of type string. Examples: >>> A = em.load_table('./A.pkl') >>> A = em.load_table('./A.pkl', metadata_ext='.pklmeta') See Also: :meth:`~py_entitymatching.save_table` Note: This function is different from read_csv_metadata in two aspects. First, this function currently does not support reading in candidate set tables, where there are more metadata such as ltable, rtable than just 'key', and conceptually the user is expected to provide ltable and rtable information while calling this function. ( this support will be added shortly). Second, this function loads the table stored in a pickle format. """ # Validate input parameters validate_object_type(file_path, six.string_types, error_prefix='Input file path') validate_object_type(metadata_ext, six.string_types) # Load the object from the file path. Note that we use a generic load # object to load in the DataFrame too. data_frame = load_object(file_path) # Load metadata from file path # # Check if the meta data file is present if ps._is_metadata_file_present(file_path, extension=metadata_ext): # Construct the metadata file name, and read it from the disk. # # Get the file name used to load the DataFrame file_name, _ = os.path.splitext(file_path) # # Construct the metadata file name metadata_filename = file_name + metadata_ext # # Load the metadata from the disk metadata_dict = load_object(metadata_filename) # Update the catalog with the properties read from the disk for property_name, property_value in six.iteritems(metadata_dict): if property_name == 'key': # If the property_name is key call set_key as the function # will check for the integrity of key before setting it in # the catalog cm.set_key(data_frame, property_value) else: cm.set_property(data_frame, property_name, property_value) else: # If the metadata file is not present then issue a warning logger.warning('There is no metadata file') # Return the DataFrame return data_frame
ca931b895474e83877d17ca4a9e4054a595acf40
2,521
import os import uvicorn import logging def main() -> int: """Ensure runtime environment is ready, and start the server.""" app.utils.setup_runtime_environment() for safety_check in ( app.utils.ensure_supported_platform, # linux only at the moment app.utils.ensure_local_services_are_running, # mysql (if local) app.utils.ensure_directory_structure, # .data/ & achievements/ dir structure app.utils.ensure_dependencies_and_requirements, # submodules & oppai-ng built ): if (exit_code := safety_check()) != 0: return exit_code """ Server should be safe to start """ # install any debugging hooks from # _testing/runtime.py, if present app.utils._install_debugging_hooks() # check our internet connection status if not app.utils.check_connection(timeout=1.5): log("No internet connection available.", Ansi.LYELLOW) # show info & any contextual warnings. app.utils.display_startup_dialog() # the server supports both inet and unix sockets. if ( app.utils.is_valid_inet_address(app.settings.SERVER_ADDR) and app.settings.SERVER_PORT is not None ): server_arguments = { "host": app.settings.SERVER_ADDR, "port": app.settings.SERVER_PORT, } elif ( app.utils.is_valid_unix_address(app.settings.SERVER_ADDR) and app.settings.SERVER_PORT is None ): server_arguments = { "uds": app.settings.SERVER_ADDR, } # make sure the socket file does not exist on disk and can be bound # (uvicorn currently does not do this for us, and will raise an exc) if os.path.exists(app.settings.SERVER_ADDR): if ( app.utils.processes_listening_on_unix_socket(app.settings.SERVER_ADDR) != 0 ): log( f"There are other processes listening on {app.settings.SERVER_ADDR}.\n" f"If you've lost it, gulag can be killed gracefully with SIGINT.", Ansi.LRED, ) return 1 else: os.remove(app.settings.SERVER_ADDR) else: raise ValueError( "%r does not appear to be an IPv4, IPv6 or Unix address" % app.settings.SERVER_ADDR, ) from None # run the server indefinitely uvicorn.run( "app.api.init_api:asgi_app", reload=app.settings.DEBUG, log_level=logging.WARNING, server_header=False, date_header=False, # TODO: uvicorn calls .lower() on the key & value, # but i would prefer Gulag-Version to keep # with standards. perhaps look into this. headers=(("gulag-version", app.settings.VERSION),), **server_arguments, ) return 0
6aa408cc6e3ef223a63ca073ddad3b3e5325df85
2,522
def coco17_category_info(with_background=True): """ Get class id to category id map and category id to category name map of COCO2017 dataset Args: with_background (bool, default True): whether load background as class 0. """ clsid2catid = { 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9, 10: 10, 11: 11, 12: 13, 13: 14, 14: 15, 15: 16, 16: 17, 17: 18, 18: 19, 19: 20, 20: 21, 21: 22, 22: 23, 23: 24, 24: 25, 25: 27, 26: 28, 27: 31, 28: 32, 29: 33, 30: 34, 31: 35, 32: 36, 33: 37, 34: 38, 35: 39, 36: 40, 37: 41, 38: 42, 39: 43, 40: 44, 41: 46, 42: 47, 43: 48, 44: 49, 45: 50, 46: 51, 47: 52, 48: 53, 49: 54, 50: 55, 51: 56, 52: 57, 53: 58, 54: 59, 55: 60, 56: 61, 57: 62, 58: 63, 59: 64, 60: 65, 61: 67, 62: 70, 63: 72, 64: 73, 65: 74, 66: 75, 67: 76, 68: 77, 69: 78, 70: 79, 71: 80, 72: 81, 73: 82, 74: 84, 75: 85, 76: 86, 77: 87, 78: 88, 79: 89, 80: 90 } catid2name = { 0: 'background', 1: 'person', 2: 'bicycle', 3: 'car', 4: 'motorcycle', 5: 'airplane', 6: 'bus', 7: 'train', 8: 'truck', 9: 'boat', 10: 'traffic light', 11: 'fire hydrant', 13: 'stop sign', 14: 'parking meter', 15: 'bench', 16: 'bird', 17: 'cat', 18: 'dog', 19: 'horse', 20: 'sheep', 21: 'cow', 22: 'elephant', 23: 'bear', 24: 'zebra', 25: 'giraffe', 27: 'backpack', 28: 'umbrella', 31: 'handbag', 32: 'tie', 33: 'suitcase', 34: 'frisbee', 35: 'skis', 36: 'snowboard', 37: 'sports ball', 38: 'kite', 39: 'baseball bat', 40: 'baseball glove', 41: 'skateboard', 42: 'surfboard', 43: 'tennis racket', 44: 'bottle', 46: 'wine glass', 47: 'cup', 48: 'fork', 49: 'knife', 50: 'spoon', 51: 'bowl', 52: 'banana', 53: 'apple', 54: 'sandwich', 55: 'orange', 56: 'broccoli', 57: 'carrot', 58: 'hot dog', 59: 'pizza', 60: 'donut', 61: 'cake', 62: 'chair', 63: 'couch', 64: 'potted plant', 65: 'bed', 67: 'dining table', 70: 'toilet', 72: 'tv', 73: 'laptop', 74: 'mouse', 75: 'remote', 76: 'keyboard', 77: 'cell phone', 78: 'microwave', 79: 'oven', 80: 'toaster', 81: 'sink', 82: 'refrigerator', 84: 'book', 85: 'clock', 86: 'vase', 87: 'scissors', 88: 'teddy bear', 89: 'hair drier', 90: 'toothbrush' } if not with_background: clsid2catid = {k - 1: v for k, v in clsid2catid.items()} return clsid2catid, catid2name
f64be8c09b3372ad75826a6bfdc8a2f0bc4f9e25
2,523
def _parse_parameters(paramdoc): """Parse parameters and return list of (name, full_doc_string) It is needed to remove multiple entries for the same parameter like it could be with adding parameters from the parent class It assumes that previously parameters were unwrapped, so their documentation starts at the begining of the string, like what should it be after _split_out_parameters """ entries = __re_spliter1.split(paramdoc) result = [(__re_spliter2.split(e)[0].strip(), e) for e in entries if e != ''] if __debug__: debug('DOCH', 'parseParameters: Given "%s", we split into %s' % (paramdoc, result)) return result
0a580476cf7aa7c84f2081af7b3bbc224f9c3390
2,524
def example_miller_set(example_crystal): """Generate an example miller set.""" ms = miller.set( crystal_symmetry=example_crystal.get_crystal_symmetry(), indices=flex.miller_index([(1, 1, 1)] * 8 + [(2, 2, 2)]), anomalous_flag=False, ) return ms
516eca404544d8f8af8dd664488006c67bef03b8
2,525
async def get(req): """ Get a complete analysis document. """ db = req.app["db"] analysis_id = req.match_info["analysis_id"] document = await db.analyses.find_one(analysis_id) if document is None: return not_found() sample = await db.samples.find_one({"_id": document["sample"]["id"]}, {"quality": False}) if not sample: return bad_request("Parent sample does not exist") read, _ = virtool.samples.utils.get_sample_rights(sample, req["client"]) if not read: return insufficient_rights() await virtool.subtractions.db.attach_subtraction(db, document) if document["ready"]: document = await virtool.analyses.format.format_analysis(req.app, document) return json_response(virtool.utils.base_processor(document))
e52598d27b73dd9ef5d24aba196f97f85fb47214
2,526
from typing import Union from typing import Mapping from typing import Any def get_cube_point_indexes(cube: xr.Dataset, points: Union[xr.Dataset, pd.DataFrame, Mapping[str, Any]], dim_name_mapping: Mapping[str, str] = None, index_name_pattern: str = DEFAULT_INDEX_NAME_PATTERN, index_dtype=np.float64, cube_asserted: bool = False) -> xr.Dataset: """ Get indexes of given point coordinates *points* into the given *dataset*. :param cube: The cube dataset. :param points: A mapping from column names to column data arrays, which must all have the same length. :param dim_name_mapping: A mapping from dimension names in *cube* to column names in *points*. :param index_name_pattern: A naming pattern for the computed indexes columns. Must include "{name}" which will be replaced by the dimension name. :param index_dtype: Numpy data type for the indexes. If it is a floating point type (default), then *indexes* will contain fractions, which may be used for interpolation. For out-of-range coordinates in *points*, indexes will be -1 if *index_dtype* is an integer type, and NaN, if *index_dtype* is a floating point types. :param cube_asserted: If False, *cube* will be verified, otherwise it is expected to be a valid cube. :return: A dataset containing the index columns. """ if not cube_asserted: assert_cube(cube) dim_name_mapping = dim_name_mapping if dim_name_mapping is not None else {} dim_names = _get_cube_data_var_dims(cube) col_names = [dim_name_mapping.get(dim_name, dim_name) for dim_name in dim_names] _validate_points(points, col_names, param_name="points") indexes = [] for dim_name, col_name in zip(dim_names, col_names): col = points[col_name] coord_indexes = get_dataset_indexes(cube, dim_name, col, index_dtype=index_dtype) indexes.append((index_name_pattern.format(name=dim_name), xr.DataArray(coord_indexes, dims=[INDEX_DIM_NAME]))) return xr.Dataset(dict(indexes))
b1f5eb134ab7119589b54c45b95065c2f57348dc
2,527
def auto_add(): """ 自动添加 1 查找所有amis文件 2 更新记录 3 记录按照app组织,生成dict 4 为每个app生成auto_urls.py :return: """ amis_json_file_list = get_amis_files() cnt = update_rcd(amis_json_file_list) aml_app_dict = get_rcd_by_app_name() add_needed_auto_urls(aml_app_dict) add_urls_needed(aml_app_dict) return cnt
17b6026f56793f3a6f76446145b7f65a6fe29a5a
2,528
from pathlib import Path from typing import Optional def _get_configs(cli_args: CLIArgs, project_root: Path) -> Configs: """ Deal with extra configs for 3rd party tool. Parameters ---------- cli_args Commandline arguments passed to nbqa project_root Root of repository, where .git / .hg / .nbqa.ini file is. Returns ------- Configs Taken from CLI (if given), else from .nbqa.ini. """ cli_config: Configs = Configs.parse_from_cli_args(cli_args) file_config: Optional[Configs] = config_parser.parse_config_from_file( cli_args, project_root ) if file_config is not None: cli_config = cli_config.merge(file_config) return cli_config
d9ef190a99b06f2d17bbc336ace86061ea215d97
2,529
import os def run_gx_test(dataset_path, output_dir, dist_types, ex_config, mp_args): """ The start and end parameter together make an interval that contains the datasets to be included in this experiment :param mp_args: the configuration of the multiprocess backend, go to this site https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-configure.html for the correct Spark configuration with AWS; you only need to worry the configs that are exposed to you -> that is: the number of workers, the max driver memory and the max result size :param dataset_path: the path to the archive datasets :param dataset_soi: (soi: size of interest) a iterable of two integers for binning the experiment :param output_dir: the path to which the result csv's will be saved :param exclude_list: the list of dataset names to be excluded from the experiment archive :param dist_types: a list of strings, must contain at least one item. Items must be ones of the following: eu,ch,ma :param ex_config: a dict contains hyper-parameters for the experiment. They are 'num_sample': int, number of samples to consider in each dataset, set this to math.inf for complete experiment 'query_split': float, a fraction of the dataset to be taken as queries, use 0.2 for the time being '_lb_opt': bool, whether to turn of lower-bounding optimization for DTW, leave it False in not otherwise specified 'radius': int, the length radius for Genex Query, leave it being 1 if not otherwise specified 'use_spark': bool, whether to use the Spark backend, leave it being True if not otherwise specified 'loi_range': float, only consider sequences within a percentage length of the longest sequence, use 0.1 for the time being 'st': float, hyper-parameters that determines the cluster boundary in genex.build, leave it being True if not otherwise specified 'paa_seg': the n segment of PAA, use 3 as a heuristic approach """ valid_dt = ['eu', 'ch', 'ma'] try: assert os.path.isdir(dataset_path) assert os.path.isdir(output_dir) assert 0 < len(dist_types) <= 3 assert np.all([x in valid_dt for x in dist_types]) except AssertionError: raise Exception('Assertion failed in checking parameters') exp_set_list = [generate_ex_set_GENEX(dataset_path, output_dir, dt) for dt in dist_types] return [run_exp_set_GENEX(es, mp_args, **ex_config) for es in exp_set_list]
4d581dfc979a02d429ac02156e0b7b6cf3d108b5
2,530
import os import ctypes def _load_lib(): """Load libary in build/lib.""" curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) lib_path = os.path.join(curr_path, '../../build/lib/') path_to_so_file = os.path.join(lib_path, "libc_runtime_api.so") lib = ctypes.CDLL(path_to_so_file, ctypes.RTLD_GLOBAL) _check_functions(lib, DNNL_LIB) return lib
e7f41afbad42ee485c3a65acc9c9d91f4ab56f97
2,531
from sklearn.preprocessing import RobustScaler def robust_standardize(df: pd.DataFrame, excluded_colnames: list = None) -> pd.DataFrame: """ Applies the RobustScaler from the module sklearn.preprocessing by removing the median and scaling the data according to the quantile range (IQR). This transformation is robust to outliers. Note: In case multiple dataframes are used (i.e., several partitions of the dataset in training and testing), make sure that all of them will be passed to this method at once, and as one single dataframe. Otherwise, the normalization will be carried out on local (as opposed to global) extrema, hence unrepresentative IQR. This is a bad practice. :param df: The dataframe to be normalized. :param excluded_colnames: The name of non-numeric (e.g., TimeStamp, ID etc.) that must be excluded before normalization takes place. They will be added back to the normalized data. :return: The same dataframe as input, with the label column unchanged, except that now the numerical values are transformed into new range determined by IQR. """ excluded_colnames = excluded_colnames if excluded_colnames else [] colnames_original_order = list(df) # Separate data (numeric) from those to be excluded (ids and class_labels) included_cnames = [colname for colname in list(df) if colname not in excluded_colnames] # Exclude all non-numeric columns df_numeric = df[included_cnames].select_dtypes(include=np.number) # set-difference between the original and numeric columns excluded_cnames = list(set(colnames_original_order) - set(list(df_numeric))) df_excluded = df[excluded_cnames] # prepare normalizer and normalize scaler = RobustScaler() res_ndarray = scaler.fit_transform(df_numeric) df_numeric = pd.DataFrame(res_ndarray, columns=list(df_numeric), dtype=float) # Reset the indices (so that they match) df_excluded.reset_index() df_numeric.reset_index() # Add the excluded columns back df_norm = df_excluded.join(df_numeric) # Restore the original oder of columns df_norm = df_norm[colnames_original_order] return df_norm
0727ce390e773405a221c6fb3248ddd5d40445b2
2,532
import math def meanStdDev( valueList, scale ): """Compute the mean and standard deviation of a *non-empty* list of numbers.""" numElements = len(valueList) if numElements == 0: return(None, 0.0) mean = float(sum(valueList)) / numElements variance = 0 for value in valueList: variance += math.pow( value - mean, 2 ) variance = variance / float(numElements) return (scale * mean, scale * math.sqrt(variance))
2970ae1e4382092eb67219373aa26b9ca75226a3
2,533
def audience_filter(digest, audience): """Check whether the current audience level should include that digest.""" return get_split( digest, [ { "key": "audience_{}".format(idx), "size": 1.0 } for idx in range(0, 100) ] ) < audience
811e4e94e68901bfeaedabfec5e16a30de55408c
2,534
def request_specific_data2num(batch_data): """ input: next_batch_requestable request_specific_data[slot]. change the data into processable type for tensorflow :param batch_data: 一个 batch 的训练数据 :return: 直接输入request-specific tracker 模型计算的数据 """ batchsize_request = len(batch_data) x_usr = np.zeros((batchsize_request, max_length, embedding_dim)) x_usr_len = np.zeros((batchsize_request), dtype='int32') x_slot = np.zeros((batchsize_request, embedding_dim)) for batch_id, data in enumerate(batch_data): for word_id, word in enumerate(data[1]): if word in vocab_dict: x_usr[batch_id, word_id, :] = embedding_table[word] else: x_usr[batch_id, word_id, :] = embedding_table['unk'] x_usr_len[batch_id] = len(data[1]) x_slot[batch_id, :] = embedding_table[data[2]] return x_usr, x_usr_len, x_slot
e8a5b414f00e43755719dfadc0b089177cb67152
2,535
def points_from_x0y0x1y1(xyxy): """ Constructs a polygon representation from a rectangle described as a list [x0, y0, x1, y1] """ [x0, y0, x1, y1] = xyxy return "%s,%s %s,%s %s,%s %s,%s" % ( x0, y0, x1, y0, x1, y1, x0, y1 )
8a7d766145dc31e6619b290b8d96a95983f9cc01
2,536
def get_columns(invoice_list, additional_table_columns): """return columns based on filters""" columns = [ _("Invoice") + ":Link/Sales Invoice:120", _("Posting Date") + ":Date:80", _("Status") + "::80", _("Customer") + ":Link/Customer:120", _("Sales Person") + ":Link/Sales Person:100", _("AR Status") + "::75", _("Territory") + ":Link/Territory:100", _("SKU") + ":Link/Item:100", _("Qty") + ":Float:50", _("Price List") + ":Currency/currency:120", _("Discount") + ":Currency/currency:120", _("Net Price") + ":Currency/currency:120", _("Amount") + ":Currency/currency:120" ] columns = columns + [_("Outstanding Amount") + ":Currency/currency:120"] return columns
c9849e62d401ec5cc8de52d266a39eccf4b4dbe8
2,537
def one_norm(a): """ Return the one-norm of the matrix. References: [0] https://www.mathworks.com/help/dsp/ref/matrix1norm.html Arguments: a :: ndarray(N x N) - The matrix to compute the one norm of. Returns: one_norm_a :: float - The one norm of a. """ return anp.max(anp.sum(anp.abs(a), axis=0))
c3e1c83d3776dda8ffa82b9b36d26866f390f6cc
2,538
def remove_nan_inf(df, reindex=True): """ Removes all rows that have NaN, inf or -inf as a value, and then optionally reindexes the dataframe. Parameters ---------- df : pd.DataFrame Dataframe to remove NaNs and Infs from. reindex : bool, optional Reindex the dataframe so that there are no missing indices. Returns ------- df : pd.DataFrame Dataframe with all the NaNs and Infs removed. """ df = df.replace([np.inf, -np.inf], np.nan).dropna() if reindex is True: df = df.reset_index(drop=True) return df
3b9339f2ee1315eac458925e5be5279e147d5c7d
2,539
def contingency_table(seg, gt, ignore_seg=[0], ignore_gt=[0], norm=True): """Return the contingency table for all regions in matched segmentations. Parameters ---------- seg : np.ndarray, int type, arbitrary shape A candidate segmentation. gt : np.ndarray, int type, same shape as `seg` The ground truth segmentation. ignore_seg : list of int, optional Values to ignore in `seg`. Voxels in `seg` having a value in this list will not contribute to the contingency table. (default: [0]) ignore_gt : list of int, optional Values to ignore in `gt`. Voxels in `gt` having a value in this list will not contribute to the contingency table. (default: [0]) norm : bool, optional Whether to normalize the table so that it sums to 1. Returns ------- cont : scipy.sparse.csc_matrix A contingency table. `cont[i, j]` will equal the number of voxels labeled `i` in `seg` and `j` in `gt`. (Or the proportion of such voxels if `norm=True`.) """ segr = seg.ravel() gtr = gt.ravel() ij = np.vstack((segr, gtr)) selector = np.ones(segr.shape, np.bool) data = np.ones(len(gtr)) for i in ignore_seg: selector[segr == i] = 0 for j in ignore_gt: selector[gtr == j] = 0 ij = ij[:, selector] data = data[selector] cont = sparse.coo_matrix((data, ij)).tocsc() if norm: cont /= float(cont.sum()) return cont
47284bb5aaa492b6cbc50794c8ccd8a1e63676b4
2,540
def get_basic_track_info(track): """ Given a track object, return a dictionary of track name, artist name, album name, track uri, and track id. """ # Remember that artist and album artist have different entries in the # spotify track object. name = track["name"] artist = track['artists'][0]['name'] album = track['album']['name'] uri = track["uri"] track_id = track['id'] output = {"name": name, "artist": artist, "album": album, "uri": uri, "id": track_id} return output
925f7bb00482e946ad7a6853bac8b243d24145c7
2,541
def demander_nombre(mini: int = None, maxi: int = None) -> int: """ Demande un nombre à l'utilisateur, situé entre min et max. :param mini: le minimum :param maxi: le maximum :return: le nombre entrée par l'utilisateur """ message = 'Veuillez rentrer un nombre:' if mini is not None and maxi is not None: message = f'Veuillez rentrer un nombre entre {mini} et {maxi}:' elif mini is not None and maxi is None: message = f'Veuillez rentrer un nombre supérieur à {mini}:' while True: nombre = input(message + '\n> ') # On s'assure que l'utilisateur vient de rentrer un nombre try: # On convertit en nombre base 10 nombre = int(nombre) except ValueError: print('Valeur incorrecte.') continue # Le nombre est désormais un entier. On vérifie qu'il coincide avec les valeurs min/max if mini is not None and nombre < mini: print(f'Le nombre entré est trop petit. Il doit valoir au moins {mini}') elif maxi is not None and nombre > maxi: print(f'Le nombre entré est trop grand. Il doit valoir au maximum {maxi}') else: return nombre
ac5b949af1ad4ede2f956c7da5d4c2136dc47b15
2,542
from typing import OrderedDict import yaml def ordered_load(stream, merge_duplicate_keys=False): """ Parse the first YAML document in a stream and produce the corresponding Python object, using OrderedDicts instead of dicts. If merge_duplicate_keys is True, merge the values of duplicate mapping keys into a list, as the uWSGI "dumb" YAML parser would do. Otherwise, following YAML 1.2 specification which says that "each key is unique in the association", raise a ConstructionError exception. """ def construct_mapping(loader, node, deep=False): loader.flatten_mapping(node) mapping = OrderedDict() merged_duplicate = {} for key_node, value_node in node.value: key = loader.construct_object(key_node, deep=deep) value = loader.construct_object(value_node, deep=deep) if key in mapping: if not merge_duplicate_keys: raise ConstructorError("while constructing a mapping", node.start_mark, "found duplicated key (%s)" % key, key_node.start_mark) log.debug("Merging values for duplicate key '%s' into a list", key) if merged_duplicate.get(key): mapping[key].append(value) else: mapping[key] = [mapping[key], value] merged_duplicate[key] = True else: mapping[key] = value return mapping OrderedLoader.add_constructor( yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, construct_mapping) OrderedLoader.add_constructor('!include', OrderedLoader.include) return yaml.load(stream, OrderedLoader)
d863d1026e1a8b1048668a6e9e95e732fc361ffa
2,543
from datetime import datetime def temporal_filter(record_date_time, time_or_period, op): """ Helper function to perform temporal filters on feature set :param record_date_time: datetime field value of a feature :type record_date_time: :class:`datetime.datetime` :param time_or_period: the time instant or time span to use as a filter :type time_or_period: :class:`datetime.datetime` or a tuple of two datetimes or a tuple of one datetime and one :class:`datetime.timedelta` :param op: the comparison operation :type op: str :return: a comparison expression result :rtype: bool """ d = datetime.strptime(record_date_time, "%Y-%m-%dT%H:%M:%SZ") result = None # perform before and after operations if op in ['BEFORE', 'AFTER']: query_date_time = datetime.strptime( time_or_period.value, "%Y-%m-%dT%H:%M:%SZ") if op == 'BEFORE': return d <= query_date_time elif op == 'AFTER': return d >= query_date_time # perform during operation elif 'DURING' in op: low, high = time_or_period low = datetime.strptime(low.value, "%Y-%m-%dT%H:%M:%SZ") high = datetime.strptime(high.value, "%Y-%m-%dT%H:%M:%SZ") result = d >= low and d <= high if 'BEFORE' in op: result = d <= high elif 'AFTER' in op: result = d >= low return result
9f76d6a6eb96da9359c4bbb80f6cfb1dfdcb4159
2,544
from typing import Union from pathlib import Path import os import shutil def package_conda_env(folder: Union[str, Path]) -> Path: """Creates a .rar file of the current conda environment for use in jobs. For efficiency, existing tarred env are not updated. Parameter --------- folder: str/Path folder where the environment must be dumped Returns ------- Path Path of the created .rar file """ # TODO(lowik): could be faster to create tar locally, then copy it folder = Path(folder).expanduser().absolute() env_key = "CONDA_DEFAULT_ENV" if env_key not in os.environ: raise RuntimeError( "This executor requires to be executed from a conda environment. Check out README for help." ) name = os.environ[env_key] env_path = Path(os.environ["CONDA_PREFIX"]) _check_python_inside(env_path) tarred_env = (folder / name).with_suffix(".tar") if tarred_env.exists(): os.remove(str(tarred_env)) output = shutil.make_archive(str(tarred_env.with_suffix("")), "tar", str(env_path)) return Path(output)
6f711ef5fed7c81b87fee0b82d19f8ca660b8960
2,545
import os def get_couchbase_superuser_password(manager, plaintext: bool = True) -> str: """Get Couchbase superuser's password from file (default to ``/etc/gluu/conf/couchbase_superuser_password``). To change the location, simply pass ``GLUU_COUCHBASE_SUPERUSER_PASSWORD_FILE`` environment variable. :params manager: An instance of :class:`~pygluu.containerlib.manager._Manager`. :params plaintext: Whether to return plaintext or encoded password. :returns: Plaintext or encoded password. """ password_file = os.environ.get( "GLUU_COUCHBASE_SUPERUSER_PASSWORD_FILE", "/etc/gluu/conf/couchbase_superuser_password" ) with open(password_file) as f: password = f.read().strip() if not plaintext: password = encode_text(password, manager.secret.get("encoded_salt")).decode() return password
4103733c39c8ac63c022179a19ea988093380604
2,546
import sys import os def GetAvailableDialogs(): """Returns available dialogs in a list""" list_path = sys.path found = 0 for i in range (0,len(list_path)): if os.path.exists(list_path[i]+"/dialogs"): found = 1 break if found == 0: print ("Could not find /dialogs directory!") raise IOError return None list_dlg = os.listdir(list_path[i]+"/dialogs") remove = [] for i in range(len(list_dlg)): list_dlg[i] = "/dialogs/"+list_dlg[i] if not list_dlg[i].endswith(".csv") and not list_dlg[i].endswith(".dlg"): remove.append(i) ## remove non csv files remove.reverse() for i in remove: list_dlg.pop(i) return list_dlg
e5e0b5aeb8ff04b0c640527d8273fc443e046270
2,547
def convert_rgb2gray(image, convert_dic): """convert rgb image to grayscale Parameters ---------- image: array RGB image. Channel order should be RGB. convert_dic: dict dictionary key is str(rgb list), value is grayscale value Returns ------- image_gray: array Grayscale image """ image_r = image[:, :, 0] image_g = image[:, :, 1] image_b = image[:, :, 2] im_shape = image_r.shape image_gray = np.zeros(im_shape) for i in range(im_shape[0]): for j in range(im_shape[1]): image_gray[i, j] = convert_dic[str([image_r[i, j], image_g[i, j], image_b[i, j]])] return image_gray
0132719ef88d139d1d3da4e52312faef25443efd
2,548
def get_external_storage_path(): """Returns the external storage path for the current app.""" return _external_storage_path
a33704c5b3267a7211c94b5a3a8d8d73b3889d68
2,549
def blur(old_img): """ :param old_img: a original image :return: a blurred image """ blur_img = SimpleImage.blank(old_img.width, old_img.height) for x in range(old_img.width): for y in range(old_img.height): if x == 0 and y == 0: # Upper left corner old_pixel_00 = old_img.get_pixel(x, y) # Reference point old_pixel_s = old_img.get_pixel(x, y + 1) # South old_pixel_e = old_img.get_pixel(x + 1, y) # East old_pixel_se = old_img.get_pixel(x + 1, y + 1) # Southeast blur_pixel = blur_img.get_pixel(x, y) blur_pixel.red = (old_pixel_00.red + old_pixel_s.red + old_pixel_e.red + old_pixel_se.red) // 4 blur_pixel.green = (old_pixel_00.green + old_pixel_s.green + old_pixel_e.green + old_pixel_se.green) \ // 4 blur_pixel.blue = (old_pixel_00.blue + old_pixel_s.blue + old_pixel_e.blue + old_pixel_se.blue) // 4 elif x == 0 and y == old_img.height - 1: # Bottom left old_pixel_0h = old_img.get_pixel(x, y) old_pixel_n = old_img.get_pixel(x, y - 1) # North old_pixel_e = old_img.get_pixel(x + 1, y) old_pixel_ne = old_img.get_pixel(x + 1, y - 1) # Northeast blur_pixel = blur_img.get_pixel(x, y) blur_pixel.red = (old_pixel_0h.red + old_pixel_n.red + old_pixel_e.red + old_pixel_ne.red) // 4 blur_pixel.green = (old_pixel_0h.green + old_pixel_n.green + old_pixel_e.green + old_pixel_ne.green) \ // 4 blur_pixel.blue = (old_pixel_0h.blue + old_pixel_n.blue + old_pixel_e.blue + old_pixel_ne.blue) // 4 elif x == old_img.width - 1 and y == 0: # Upper right corner old_pixel_w0 = old_img.get_pixel(x, y) old_pixel_s = old_img.get_pixel(x, y + 1) old_pixel_w = old_img.get_pixel(x - 1, y) # West old_pixel_sw = old_img.get_pixel(x - 1, y + 1) # Southwest blur_pixel = blur_img.get_pixel(x, y) blur_pixel.red = (old_pixel_w0.red + old_pixel_s.red + old_pixel_w.red + old_pixel_sw.red) // 4 blur_pixel.green = (old_pixel_w0.green + old_pixel_s.green + old_pixel_w.green + old_pixel_sw.green) \ // 4 blur_pixel.blue = (old_pixel_w0.blue + old_pixel_s.blue + old_pixel_w.blue + old_pixel_sw.blue) // 4 elif x == old_img.width - 1 and y == old_img.height - 1: # Bottom right corner old_pixel_wh = old_img.get_pixel(x, y) old_pixel_n = old_img.get_pixel(x, y - 1) old_pixel_w = old_img.get_pixel(x - 1, y) old_pixel_nw = old_img.get_pixel(x - 1, y - 1) # Northwest blur_pixel = blur_img.get_pixel(x, y) blur_pixel.red = (old_pixel_wh.red + old_pixel_n.red + old_pixel_w.red + old_pixel_nw.red) // 4 blur_pixel.green = (old_pixel_wh.green + old_pixel_n.green + old_pixel_w.green + old_pixel_nw.green) \ // 4 blur_pixel.blue = (old_pixel_wh.blue + old_pixel_n.blue + old_pixel_w.blue + old_pixel_nw.blue) // 4 elif x == 0 and y != 0 and y != old_img.height - 1: # Left side except for head and tail old_pixel_0y = old_img.get_pixel(x, y) old_pixel_n = old_img.get_pixel(x, y - 1) old_pixel_s = old_img.get_pixel(x, y + 1) old_pixel_ne = old_img.get_pixel(x + 1, y - 1) old_pixel_e = old_img.get_pixel(x + 1, y) old_pixel_se = old_img.get_pixel(x + 1, y + 1) blur_pixel = blur_img.get_pixel(x, y) blur_pixel.red = (old_pixel_0y.red + old_pixel_n.red + old_pixel_s.red + old_pixel_ne.red + old_pixel_e.red + old_pixel_se.red) // 6 blur_pixel.green = (old_pixel_0y.green + old_pixel_n.green + old_pixel_s.green + old_pixel_ne.green + old_pixel_e.green + old_pixel_se.green) // 6 blur_pixel.blue = (old_pixel_0y.blue + old_pixel_n.blue + old_pixel_s.blue + old_pixel_ne.blue + old_pixel_e.blue + old_pixel_se.blue) // 6 elif y == 0 and x != 0 and x != old_img.width - 1: # Top except for head and tail old_pixel_x0 = old_img.get_pixel(x, y) old_pixel_w = old_img.get_pixel(x - 1, y) old_pixel_sw = old_img.get_pixel(x - 1, y + 1) old_pixel_s = old_img.get_pixel(x, y + 1) old_pixel_e = old_img.get_pixel(x + 1, y) old_pixel_se = old_img.get_pixel(x + 1, y + 1) blur_pixel = blur_img.get_pixel(x, y) blur_pixel.red = (old_pixel_x0.red + old_pixel_w.red + old_pixel_s.red + old_pixel_sw.red + old_pixel_e.red + old_pixel_se.red) // 6 blur_pixel.green = (old_pixel_x0.green + old_pixel_w.green + old_pixel_s.green + old_pixel_sw.green + old_pixel_e.green + old_pixel_se.green) // 6 blur_pixel.blue = (old_pixel_x0.blue + old_pixel_w.blue + old_pixel_s.blue + old_pixel_sw.blue + old_pixel_e.blue + old_pixel_se.blue) // 6 elif x == old_img.width - 1 and y != 0 and y != old_img.height - 1: # right side except for head and tail old_pixel_wy = old_img.get_pixel(x, y) old_pixel_n = old_img.get_pixel(x, y - 1) old_pixel_nw = old_img.get_pixel(x - 1, y - 1) old_pixel_w = old_img.get_pixel(x - 1, y) old_pixel_sw = old_img.get_pixel(x - 1, y + 1) old_pixel_s = old_img.get_pixel(x, y + 1) blur_pixel = blur_img.get_pixel(x, y) blur_pixel.red = (old_pixel_wy.red + old_pixel_n.red + old_pixel_s.red + old_pixel_nw.red + old_pixel_w.red + old_pixel_sw.red) // 6 blur_pixel.green = (old_pixel_wy.green + old_pixel_n.green + old_pixel_s.green + old_pixel_nw.green + old_pixel_w.green + old_pixel_sw.green) // 6 blur_pixel.blue = (old_pixel_wy.blue + old_pixel_n.blue + old_pixel_s.blue + old_pixel_nw.blue + old_pixel_w.blue + old_pixel_sw.blue) // 6 elif y == old_img.height - 1 and x != 0 and x != old_img.width - 1: # Bottom except for head and tail old_pixel_xh = old_img.get_pixel(x, y) old_pixel_w = old_img.get_pixel(x - 1, y) old_pixel_nw = old_img.get_pixel(x - 1, y - 1) old_pixel_n = old_img.get_pixel(x, y - 1) old_pixel_ne = old_img.get_pixel(x + 1, y - 1) old_pixel_e = old_img.get_pixel(x + 1, y) blur_pixel = blur_img.get_pixel(x, y) blur_pixel.red = (old_pixel_xh.red + old_pixel_w.red + old_pixel_nw.red + old_pixel_n.red + old_pixel_e.red + old_pixel_ne.red) // 6 blur_pixel.green = (old_pixel_xh.green + old_pixel_w.green + old_pixel_nw.green + old_pixel_n.green + old_pixel_e.green + old_pixel_ne.green) // 6 blur_pixel.blue = (old_pixel_xh.blue + old_pixel_w.blue + old_pixel_nw.blue + old_pixel_n.blue + old_pixel_e.blue + old_pixel_ne.blue) // 6 else: # middle parts having 8 neighbors old_pixel_xy = old_img.get_pixel(x, y) old_pixel_w = old_img.get_pixel(x - 1, y) old_pixel_nw = old_img.get_pixel(x - 1, y - 1) old_pixel_n = old_img.get_pixel(x, y - 1) old_pixel_ne = old_img.get_pixel(x + 1, y - 1) old_pixel_s = old_img.get_pixel(x, y + 1) old_pixel_sw = old_img.get_pixel(x - 1, y + 1) old_pixel_e = old_img.get_pixel(x + 1, y) old_pixel_se = old_img.get_pixel(x + 1, y + 1) blur_pixel = blur_img.get_pixel(x, y) blur_pixel.red = (old_pixel_xy.red + old_pixel_w.red + old_pixel_nw.red + old_pixel_n.red + old_pixel_e.red + old_pixel_ne.red + old_pixel_s.red + old_pixel_sw.red + old_pixel_se.red) // 9 blur_pixel.green = (old_pixel_xy.green + old_pixel_w.green + old_pixel_nw.green + old_pixel_n.green + old_pixel_e.green + old_pixel_ne.green + old_pixel_s.green + old_pixel_sw.green + old_pixel_se.green) // 9 blur_pixel.blue = (old_pixel_xy.blue + old_pixel_w.blue + old_pixel_nw.blue + old_pixel_n.blue + old_pixel_e.blue + old_pixel_ne.blue + old_pixel_s.blue + old_pixel_sw.blue + old_pixel_se.blue) // 9 return blur_img
771a6e906ea8b485d4166de311c17a441f469158
2,550
import re def generate_table_row(log_file, ancestry, official_only, code): """ Takes an imported log and ancestry and converts it into a properly formatted pandas table. Keyword arguments: log_file -- output from import_log() ancestry -- a single ancestry code official_only -- a boolean indicating if all fields should be imported into the table, or only the official ones. Returns: dict of arguments: new values """ # verify that ancestry is correct matches = [l for l in log_file if re.search('Searching for ancestry: ' + \ ancestry, l)] if len(matches) == 0: raise ValueError('ALERT: Incorrect ancestry passed in for code ' + code + '. Passed in value: ' + ancestry) dict_of_vals = {'ancestry': ancestry, 'phenotype_code': code} nrow_orig = num_cols = None for line in log_file: nrow_orig = _parse_single_term(nrow_orig, 'Original number of rows: ([0-9]*)', line, int) num_cols = _parse_single_term(num_cols, 'Found ([0-9]*) ancestry specific columns:', line, int) dict_of_vals.update({'original_nrow': nrow_orig, 'ancestry_specific_ncols': num_cols}) if dict_of_vals['ancestry_specific_ncols'] != 0: tf_boundary = [idx for idx, l in enumerate(log_file) if re.search('Now running LDSC in (vanilla|stratified) mode.',l)] log_file_official = log_file[(tf_boundary[0]+1):(len(log_file)+1)] log_file_unofficial = log_file[0:tf_boundary[0]] if not official_only: unofficial_dict = _parse_unofficial_log(log_file_unofficial) dict_of_vals.update(unofficial_dict) official_dict, error_str = _parse_official_log(log_file_official) else: if not official_only: unofficial_dict = _parse_unofficial_log(log_file) dict_of_vals.update(unofficial_dict) official_dict, _ = _parse_official_log(log_file) error_str = 'No ' + ancestry + '-specific columns found.' dict_of_vals.update(official_dict) if error_str is not None: dict_of_vals.update({'missing_data_note': error_str}) return pd.DataFrame(dict_of_vals, index=[ancestry + ':' + code])
c72bdef2aafbc15c54b80337c80f03ae8d8f1e00
2,551
def read_preflib_file(filename, setsize=1, relative_setsize=None, use_weights=False): """Reads a single preflib file (soi, toi, soc or toc). Parameters: filename: str Name of the preflib file. setsize: int Number of top-ranked candidates that voters approve. In case of ties, more than `setsize` candidates are approved. Paramer `setsize` is ignored if `relative_setsize` is used. relative_setsize: float in (0, 1] Indicates which proportion of candidates of the ranking are approved (rounded up). In case of ties, more candidates are approved. E.g., if a voter has 10 approved candidates and `relative_setsize` is 0.75, then the approval set contains the top 8 candidates. use_weights: bool If False, treat vote count in preflib file as the number of duplicate ballots, i.e., the number of voters that have this approval set. If True, treat vote count as weight and use this weight in class Voter. Returns: profile: abcvoting.preferences.Profile Preference profile extracted from preflib file, including names of candidates """ if setsize <= 0: raise ValueError("Parameter setsize must be > 0") if relative_setsize and (relative_setsize <= 0.0 or relative_setsize > 1.0): raise ValueError("Parameter relative_setsize not in interval (0, 1]") with open(filename, "r") as f: line = f.readline() num_cand = int(line.strip()) candidate_map = {} for _ in range(num_cand): parts = f.readline().strip().split(",") candidate_map[int(parts[0].strip())] = ",".join(parts[1:]).strip() parts = f.readline().split(",") try: voter_count, _, unique_orders = [int(p.strip()) for p in parts] except ValueError: raise PreflibException( f"Number of voters ill specified ({str(parts)}), should be triple of integers" ) approval_sets = [] lines = [line.strip() for line in f.readlines() if line.strip()] if len(lines) != unique_orders: raise PreflibException( f"Expected {unique_orders} lines that specify voters in the input, " f"encountered {len(lines)}" ) for line in lines: parts = line.split(",") if len(parts) < 1: continue try: count = int(parts[0]) except ValueError: raise PreflibException(f"Each ranking must start with count/weight ({line})") ranking = parts[1:] # ranking starts after count if len(ranking) == 0: raise PreflibException("Empty ranking: " + str(line)) if relative_setsize: num_appr = int(ceil(len(ranking) * relative_setsize)) else: num_appr = setsize approval_set = _approval_set_from_preflib_datastructures(num_appr, ranking, candidate_map) approval_sets.append((count, approval_set)) # normalize candidates to 0, 1, 2, ... cand_names = [] normalize_map = {} for cand in candidate_map.keys(): cand_names.append(candidate_map[cand]) normalize_map[cand] = len(cand_names) - 1 profile = Profile(num_cand, cand_names=cand_names) for count, approval_set in approval_sets: normalized_approval_set = [] for cand in approval_set: normalized_approval_set.append(normalize_map[cand]) if use_weights: profile.add_voter(Voter(normalized_approval_set, weight=count)) else: profile.add_voters([normalized_approval_set] * count) if use_weights: if len(profile) != unique_orders: raise PreflibException("Number of voters wrongly specified in preflib file.") else: if len(profile) != voter_count: raise PreflibException("Number of voters wrongly specified in preflib file.") return profile
6feec6e786e47cdc11021021ffa91a1f96597567
2,552
def get_row(client, instance, file_=None): """Get one row of a family table. Args: client (obj): creopyson Client. instance (str): Instance name. `file_` (str, optional): File name. Defaults is currently active model. Returns: (dict): colid (str): Column ID. value (depends on datatype): Cell value. datatype (str): Data type. coltype (str): Column Type; a string corresponding to the Creo column type. """ data = {"instance": instance} if file_ is not None: data["file"] = file_ else: active_file = client.file_get_active() if active_file: data["file"] = active_file["file"] return client._creoson_post("familytable", "get_row", data, "columns")
c8e8c90a81d553d06ce9f78eb1be582e5b034ac6
2,553
def hospitalization_to_removed(clip_low=2, clip_high=32.6, mean=8.6, std=6.7): """ Returns the time for someone to either get removed after being hospitalized in days within range(clip_low, clip_high), of a truncated_norm(mean, std). """ return sample_truncated_norm(clip_low, clip_high, mean, std)
e1da5283e32b5734927436af72fdbd002c0844b1
2,554
def test_inheritance(): """ test inheritance from different module """ # test module test_data = doc.MatObject.matlabify('test_data') test_submodule = test_data.getter('test_submodule') sfdm = test_submodule.getter('super_from_diff_mod') ok_(isinstance(sfdm, doc.MatClass)) eq_(sfdm.bases,['MyAbstractClass', 'MyHandleClass']) bases = sfdm.getter('__bases__') eq_(bases['MyAbstractClass'].module, 'test_data') eq_(bases['MyHandleClass'].module, 'test_data') return sfdm
0f29de2ef67318010feed25ea0ffc08e2dc44162
2,555
from collections import Counter def split_mon_unmon(data, labels): """ Splits into monitored and unmonitored data If a data point only happens once, we also consider it unmonitored @return monitored_data, monitored_label, unmonitored_data """ occurence = Counter(labels) monitored_data, unmonitored_data = [], [] monitored_label = [] for d, l in zip(data, labels): if l == UNKNOWN_WEBPAGE or occurence[l] == 1: unmonitored_data.append(d) else: monitored_data.append(d) monitored_label.append(l) return monitored_data, monitored_label, unmonitored_data
b1d0cac2e12f4386bf04eb355811f230b18f38ca
2,556
import contextlib import os def supress_stdout(func): """Wrapper, makes a function non-verbose. Args: func: function to be silenced """ def wrapper(*a, **ka): with open(os.devnull, "w") as devnull: with contextlib.redirect_stdout(devnull): func(*a, **ka) return wrapper
a617f776df873086c3033416f6ce7bc783fd640b
2,557
def sum_and_count(x, y): """A function used for calculating the mean of a list from a reduce. >>> from operator import truediv >>> l = [15, 18, 2, 36, 12, 78, 5, 6, 9] >>> truediv(*reduce(sum_and_count, l)) == 20.11111111111111 True >>> truediv(*fpartial(sum_and_count)(l)) == 20.11111111111111 True """ try: return (x[0] + y, x[1] + 1) except TypeError: return ((x or 0) + (y or 0), len([i for i in [x, y] if i is not None]))
d43cc8dc39fb35afae4f6a4e32d34221d525f5d3
2,558
def animTempCustom(): """ Temporarily play a custom animation for a set amount of time. API should expect a full `desc` obect in json alongside a timelimit, in ms. """ colorList = request.form.get('colors').split(',') colorsString = "" for colorName in colorList: c = Color(colorName) colorsString += "[{},{},{}],".format( int(255*c.red), int(255*c.green), int(255*c.blue) ) colorsString = colorsString[0:-1] print(colorsString) colors = colorsString bp.newAnim( '$bpa.strip.Twinkle', colors ) return "Animation animation set to RGB!"
2d9cea92d7c1c93d73fcf9b325b7b58225b4ba13
2,559
from unittest.mock import Mock def mock_stripe_invoice(monkeypatch): """Fixture to monkeypatch stripe.Invoice.* methods""" mock = Mock() monkeypatch.setattr(stripe, "Invoice", mock) return mock
a88923ba6d4a6dda9bf3b2fcda3bb717efe36cee
2,560
def read_project(output_dir): """Read existing project data """ try: yaml = YAML() with open(project_yaml_file(output_dir), encoding='utf-8') as project: project_data = yaml.load(project) for key, value in project_data.items(): if value == None: project_data[key] = [] except FileNotFoundError: project_data = { 'name': "Test Project", 'scenario_sets': [], 'narrative_sets': [], 'region_definitions': [], 'interval_definitions': [], 'units': [], 'scenarios': [], 'narratives': [] } return project_data
90cfd7d143176925d8a99f4d577bc7de9eb360e2
2,561
def bytes_to_int(byte_array: bytes) -> int: """ Bytes to int """ return int.from_bytes(byte_array, byteorder='big')
442452faeb1a4e7c346b6f4355095f179701f8f1
2,562
def ask(query, default=None): """Ask a question.""" if default: default_q = ' [{0}]'.format(default) else: default_q = '' inp = input("{query}{default_q}: ".format(query=query, default_q=default_q)).strip() if inp or default is None: return inp else: return default
54564ee00749ddb2e5c409d781552f3ca5fcd847
2,563
def _clean_kwargs(keep_name=False, **kwargs): """ Sanatize the arguments for use with shade """ if "name" in kwargs and not keep_name: kwargs["name_or_id"] = kwargs.pop("name") return __utils__["args.clean_kwargs"](**kwargs)
326d849b030a11ebc21e364f6a05eef9ab019637
2,564
import os def transfer_file(user, source_endpoint, source_path, dest_endpoint, dest_path, label): """ :param user: Must be a Django user with permissions to initiate the transfer :param source_endpoint: Source Endpoint UUID :param source_path: Source path, including the filename :param dest_endpoint: Destination Endpoint UUID :param dest_path: Destination path, including the filename :param label: Label to use for the transfer :return: A globus SDK task object. """ log.debug('transferring {}:{} to {}'.format(source_endpoint, source_path, dest_endpoint)) tc = load_transfer_client(user) tdata = globus_sdk.TransferData(tc, source_endpoint, dest_endpoint, label=label, sync_level="checksum") tdata.add_item(source_path, os.path.join(dest_path, os.path.basename(source_path)) ) return tc.submit_transfer(tdata)
cf3fe2031fac2b06766c213c8c6d5cad477320a9
2,565
def calculate_pnl_per_equity(df_list): """Method that calculate the P&L of the strategy per equity and returns a list of P&L""" pnl_per_equity = [] # initialize the list of P&L per equity for df in df_list: # iterates over the dataframes of equities pnl = df['Strategy Equity'].iloc[-1] - df['Buy and Hold Equity'].iloc[-1] # calculating the difference at the last point pnl_per_equity.append(pnl) return pnl_per_equity
4f6ac1b9f6a949215c6b805f05a65897393f3288
2,566
import http def search(q_str: str) -> dict: """search in genius Args: q_str (str): query string Returns: dict: search response """ data = {'songs': [], 'lyric': []} response = http.get( 'https://genius.com/api/search/multi?per_page=5', params={'q': q_str}, headers=headers).json() sections = response['response']['sections'] if len(sections[1]['hits']) == 0 and len(sections[2]) == 0: return False for section in response['response']['sections'][1:3]: if section['type'] == 'song': for song in section['hits']: music = song['result'] # print(music) if len(data['songs']) == 0: data['songs'].append(dict_builder(music)) if data['songs'][-1]['api_path'] != music['api_path']: data['songs'].append(dict_builder(music)) elif section['type'] == 'lyric': for lyric in section['hits']: music = lyric['result'] if len(data['lyric']) == 0: data['lyric'].append(dict_builder(music)) if data['lyric'][-1]['api_path'] != music['api_path']: data['songs'].append(dict_builder(music)) return data
7421220e43415fb17b29db26f1fc6902e88144a4
2,567
def build_shed_app(simple_kwargs): """Build a Galaxy app object from a simple keyword arguments. Construct paste style complex dictionary. Also setup "global" reference to sqlalchemy database context for tool shed database. """ log.info("Tool shed database connection: %s", simple_kwargs["database_connection"]) # TODO: Simplify global_conf to match Galaxy above... simple_kwargs['__file__'] = 'tool_shed_wsgi.yml.sample' simple_kwargs['global_conf'] = get_webapp_global_conf() app = ToolshedUniverseApplication(**simple_kwargs) log.info("Embedded Toolshed application started") global tool_shed_context tool_shed_context = app.model.context return app
4443d24f4f4341baa3aea22d6f30c6b38eb8af72
2,568
def geocode(level=None, names=None, countries=None, states=None, counties=None, scope=None) -> NamesGeocoder: """ Create a `Geocoder`. Allows to refine ambiguous request with `where()` method, scope that limits area of geocoding or with parents. Parameters ---------- level : {'country', 'state', 'county', 'city'} The level of administrative division. Autodetection by default. names : list or str Names of objects to be geocoded. For 'state' level: 'US-48' returns continental part of United States (48 states) in a compact form. countries : list Parent countries. Should have same size as names. Can contain strings or `Geocoder` objects. states : list Parent states. Should have same size as names. Can contain strings or `Geocoder` objects. counties : list Parent counties. Should have same size as names. Can contain strings or `Geocoder` objects. scope : str or `Geocoder` Limits area of geocoding. If parent country is set then error will be generated. If type is a string - geoobject should have geocoded scope in parents. If type is a `Geocoder` - geoobject should have geocoded scope in parents. Scope should contain only one entry. Returns ------- `NamesGeocoder` Geocoder object specification. Examples -------- .. jupyter-execute:: :linenos: :emphasize-lines: 5 from IPython.display import display from lets_plot import * from lets_plot.geo_data import * LetsPlot.setup_html() states = geocode('state').scope('Italy').get_boundaries(6) display(states.head()) ggplot() + geom_map(data=states) | .. jupyter-execute:: :linenos: :emphasize-lines: 5, 8 from IPython.display import display from lets_plot import * from lets_plot.geo_data import * LetsPlot.setup_html() states = geocode(level='state', scope='US').get_geocodes() display(states.head()) names = ['York'] * len(states.state) cities = geocode(names=names, states=states.state).ignore_not_found().get_centroids() display(cities.head()) ggplot() + \\ geom_livemap() + \\ geom_point(data=cities, tooltips=layer_tooltips().line('@{found name}')) """ return NamesGeocoder(level, names) \ .scope(scope) \ .countries(countries) \ .states(states) \ .counties(counties)
25ab4ff7887d09a41c19b6ec8ee9057151483b2e
2,569
def fpAbs(x): """ Returns the absolute value of the floating point `x`. So: a = FPV(-3.2, FSORT_DOUBLE) b = fpAbs(a) b is FPV(3.2, FSORT_DOUBLE) """ return abs(x)
d69f5f07b651ed4466ff768601c77f90232b8827
2,570
from io import StringIO import json def volumes(container:str) -> list: """ Return list of 'container' volumes (host,cont) """ buf = StringIO() _exec( docker, 'inspect', '-f', "'{{json .Mounts}}'", container, _out=buf ) res = buf.getvalue().strip() vols_list = json.loads(res[1:-1]) # vols = {d['Source']:d['Destination'] for d in vols_list} vols = [(d['Source'],d['Destination']) for d in vols_list] return vols
5191df9ab4aa58a80fba90872da6091bc58f8be2
2,571
def names(): """Return stock summary information""" helper = SQLHelper() conn = helper.getConnection() repo = robinhoodRepository(conn) stockInfo = repo.getAllStocks() return json_response(stockInfo, 200)
d543ab5254e95e903e8b74db1ab5b0266859b083
2,572
def get_bot_group_config(bot_id): """Returns BotGroupConfig for a bot with given ID. Returns: BotGroupConfig or None if not found. Raises: BadConfigError if there's no cached config and the current config at HEAD is not passing validation. """ cfg = _fetch_bot_groups() gr = cfg.direct_matches.get(bot_id) if gr is not None: return gr for prefix, gr in cfg.prefix_matches: if bot_id.startswith(prefix): return gr return cfg.default_group
025b2a9a91f2a744668fd6c438db0f5c4edd0a98
2,573
def add_utm(url_, campaign, source='notification', medium='email'): """Add the utm_* tracking parameters to a URL.""" return urlparams( url_, utm_campaign=campaign, utm_source=source, utm_medium=medium)
d428daf58db7b0b5d5dabfd4bac6f70e900bd311
2,574
def is_forest(G): """Return True if the input graph is a forest Parameters ---------- G : NetworkX Graph An undirected graph. Returns ------- True if the input graph is a forest Notes ----- For undirected graphs only. """ for graph in nx.connected_component_subgraphs(G): if not nx.is_tree(graph): return False return True
6aade3d2407b8af1cd8662b9efdc604d304341fe
2,575
def package_to_pretty_string(package): """ Given a PackageMetadata instance, returns a pretty string.""" template = "{0.name} {0.version}" constraint_kinds = ( (ConstraintKinds.install_requires, package.install_requires), (ConstraintKinds.conflicts, package.conflicts), (ConstraintKinds.provides, package.provides), ) for constraint_kind, constraints in constraint_kinds: # FIXME: perhaps 'provides' just shouldn't include the package name if constraint_kind == ConstraintKinds.provides: constraints = tuple((dist, disjunction) for dist, disjunction in constraints if dist != package.name) if len(constraints) > 0: string = ', '.join(constraints_to_pretty_strings(constraints)) template += "; {} ({})".format(constraint_kind.value, string) return template.format(package)
e3c2432560309057996dcef2296b18572df82a35
2,576
def parse_uri(uri): """ This implies that we are passed a uri that looks something like: proto://username:password@hostname:port/database In most cases, you can omit the port and database from the string: proto://username:password@hostname Also, in cases with no username, you can omit that: proto://:password@hostname:port/database Also supports additional arguments: proto://hostname:port/database?arg1=val&arg2=vals :param str uri: URI to parse :rtype: dict :returns: Dictionary with parsed URL components .. note:: This function may move, as the currently location may not be optimal. Location will be finalized by 1.0.0 stable release. """ proto = uri.split('://')[0] uri = uri.split('://')[1] _host = uri.split('@')[-1] _host = _host.split(':') if len(_host) == 2: host = _host[0] if '/' in _host[1]: port = int(_host[1].split('/')[0]) else: port = int(_host[1]) else: host = _host[0] if '/' in host: host = host.split('/')[0] port = None if "@" in uri: _cred = uri[0:uri.rfind(':'.join(_host)) - 1] _cred = _cred.split(':') if len(_cred) == 2: _user = _cred[0] _pass = _cred[1] else: _user = _cred[0] _pass = None else: _user = None _pass = None database = uri.split('/') if len(database) >= 2: database = database[1] if '?' in database: _db = database.split('?') database = _db[0] args = parse_qs(_db[1], keep_blank_values = True) else: args = None else: database = None args = None return { "protocol": proto, "resource": uri, "host": host, "port": port, "username": _user, "password": _pass, "database": database, "args": args, "uri": "{}://{}".format(proto, uri), }
5204d803a5d0f6995c49883a892bc6b22cef9443
2,577
def pwgen(pw_len=16): """Generate a random password with the given length. Allowed chars does not have "I" or "O" or letters and digits that look similar -- just to avoid confusion. """ return get_random_string( pw_len, 'abcdefghjkmnpqrstuvwxyz' 'ABCDEFGHJKLMNPQRSTUVWXYZ' '23456789' )
3c5a07440a6d3eee7c1bc9162089c434cfe6c45d
2,578
import os def absolute_path(secured_filename: str, curr_file: str = __file__) -> str: """ Prepend `secured_filename` with the current path. Args: secured_filename (str): Safe file name. Can be a sub path without the first '/'. curr_file (str): File name of the module. Returns: str: String which contains the full path to ``secured_filename``. """ return os.path.join(os.path.dirname(os.path.realpath(curr_file)), secured_filename)
6378df580550438e727240924ad2092167ca5394
2,579
def compute_tree_distances(tree): """ Computes the matrix of pairwise distances between leaves of the tree """ num_leaves = len(get_leaves(tree)) - 1 distances = np.zeros([num_leaves, num_leaves]) for leaf in range(num_leaves): distance_dictionary, tmp = nx.multi_source_dijkstra(tree.to_undirected(), [leaf], weight = 'time') for target_leaf in range(num_leaves): distances[leaf, target_leaf] = distance_dictionary[target_leaf] return distances
b4bdd81e0f4c8d5577813f6e68ece9f0a8992e19
2,580
def create_rndm_backgr_selections(annotations, files, length, num, no_overlap=False, trim_table=False): """ Create background selections of uniform length, randomly distributed across the data set and not overlapping with any annotations, including those labelled 0. The random sampling is performed without regard to already created background selections. Therefore, it is in principle possible that some of the created selections will overlap, although in practice this will only occur with very small probability, unless the number of requested selections (num) is very large and/or the (annotation-free part of) the data set is small in size. To avoid any overlap, set the 'no_overlap' to True, but note that this can lead to longer execution times. Args: annotations: pandas DataFrame Annotation table. files: pandas DataFrame Table with file durations in seconds. Should contain columns named 'filename' and 'duration'. length: float Selection length in seconds. num: int Number of selections to be created. no_overlap: bool If True, randomly selected segments will have no overlap. trim_table: bool Keep only the columns prescribed by the Ketos annotation format. Returns: table_backgr: pandas DataFrame Output selection table. Example: >>> import pandas as pd >>> import numpy as np >>> from ketos.data_handling.selection_table import select >>> >>> #Ensure reproducible results by fixing the random number generator seed. >>> np.random.seed(3) >>> >>> #Load and inspect the annotations. >>> df = pd.read_csv("ketos/tests/assets/annot_001.csv") >>> print(df) filename start end label 0 file1.wav 7.0 8.1 1 1 file1.wav 8.5 12.5 0 2 file1.wav 13.1 14.0 1 3 file2.wav 2.2 3.1 1 4 file2.wav 5.8 6.8 1 5 file2.wav 9.0 13.0 0 >>> >>> #Standardize annotation table format >>> df, label_dict = standardize(df, return_label_dict=True) >>> print(df) start end label filename annot_id file1.wav 0 7.0 8.1 2 1 8.5 12.5 1 2 13.1 14.0 2 file2.wav 0 2.2 3.1 2 1 5.8 6.8 2 2 9.0 13.0 1 >>> >>> #Enter file durations into a pandas DataFrame >>> file_dur = pd.DataFrame({'filename':['file1.wav','file2.wav','file3.wav',], 'duration':[18.,20.,15.]}) >>> >>> #Create randomly sampled background selection with fixed 3.0-s length. >>> df_bgr = create_rndm_backgr_selections(df, files=file_dur, length=3.0, num=12, trim_table=True) >>> print(df_bgr.round(2)) start end label filename sel_id file1.wav 0 1.06 4.06 0 1 1.31 4.31 0 2 2.26 5.26 0 file2.wav 0 13.56 16.56 0 1 14.76 17.76 0 2 15.50 18.50 0 3 16.16 19.16 0 file3.wav 0 2.33 5.33 0 1 7.29 10.29 0 2 7.44 10.44 0 3 9.20 12.20 0 4 10.94 13.94 0 """ # compute lengths, and discard segments shorter than requested length c = files[['filename','duration']] if 'offset' in files.columns.names: c['offset'] = files['offset'] else: c['offset'] = 0 c.reset_index(drop=True, inplace=True) c['length'] = c['duration'] - length c = c[c['length'] >= 0] # cumulative length cs = c['length'].cumsum().values.astype(float) cs = np.concatenate(([0],cs)) # output filename, start, end = [], [], [] # randomply sample df = pd.DataFrame() while (len(df) < num): times = np.random.random_sample(num) * cs[-1] for t in times: idx = np.argmax(t < cs) - 1 row = c.iloc[idx] fname = row['filename'] start = t - cs[idx] + row['offset'] end = start + length q = query(annotations, filename=fname, start=start, end=end) if len(q) > 0: continue if no_overlap and len(df) > 0: q = query(df.set_index(df.filename), filename=fname, start=start, end=end) if len(q) > 0: continue x = {'start':start, 'end':end} y = files[files['filename']==fname].iloc[0].to_dict() z = {**x, **y} df = df.append(z, ignore_index=True) if len(df) == num: break # sort by filename and offset df = df.sort_values(by=['filename','start'], axis=0, ascending=[True,True]).reset_index(drop=True) # re-order columns col_names = ['filename','start','end'] if not trim_table: names = df.columns.values.tolist() for name in col_names: names.remove(name) col_names += names df = df[col_names] df['label'] = 0 #add label # transform to multi-indexing df = use_multi_indexing(df, 'sel_id') return df
01eac8bc0a624b56d419ce3cb75744792af1472f
2,581
import methylprep import time from pathlib import Path def to_BED(stats, manifest_or_array_type, save=True, filename='', genome_build=None, columns=None): """Converts & exports manifest and probe p-value dataframe to BED format. - https://en.wikipedia.org/wiki/BED_(file_format) - BED format: [ chromosome number | start position | end position | p-values] Where p-values are the output from diff_meth_pos() comparing probes across two or more groups of samples for genomic differences in methylation. This output is required for combined-pvalues library to read and annotate manhattan plots with the nearest Gene(s) for each significant CpG cluster. manifest_or_array_type: either pass in a Manifest instance from methylprep, or a string that defines which manifest to load. One of {'27k', '450k', 'epic', 'epic+', 'mouse'}. genome_build: pass in 'OLD' to use the older genome build for each respective manifest array type. note: if manifest has probes that aren't mapped to genome, they are omitted in BED file. TODO: incorporate STRAND and OLD_STRAND in calculations. returns a BED formatted dataframe if save is False, or the saved filename if save is True. """ array_types = {'27k', '450k', 'epic', 'epic+', 'mouse'} manifest = None if isinstance(manifest_or_array_type, str) and manifest_or_array_type not in array_types: raise ValueError(f"Specify array type as one of: {array_types}") if isinstance(manifest_or_array_type, str) and manifest_or_array_type in array_types: manifest = methylprep.Manifest(methylprep.ArrayType(manifest_or_array_type)) if not manifest and hasattr(manifest_or_array_type, 'data_frame'): manifest = manifest_or_array_type if not manifest: raise ValueError("Either provide a manifest or specify array_type.") if not isinstance(stats, pd.DataFrame): raise TypeError("stats should be a dataframe with either a PValue or a FDR_QValue column") if not isinstance(manifest.data_frame, pd.DataFrame): raise AttributeError("Expected manifest_or_array_type to be a methylprep manifest with a data_frame attribute but this does not have one.") if "FDR_QValue" in stats: pval = stats['FDR_QValue'] elif "PValue" in stats: pval = stats['PValue'] else: raise IndexError("stats did not contain either a PValue or a FDR_QValue column.") # an unfinished, internal undocumented way to change the column names, if exactly 5 columns in list provided in same order. if columns is None: columns = ['chrom','chromStart','chromEnd','pvalue','name'] renamer = {} else: renamer = dict(zip(['chrom','chromStart','chromEnd','pvalue','name'],columns)) pval = pval.rename("pvalue") genes = manifest_gene_map(manifest, genome_build=genome_build) # finally, inner join and save/return the combined BED data frame. BED = pd.merge(genes[['chrom','chromStart','chromEnd']], pval, left_index=True, right_index=True, how='inner') BED = BED.sort_values(['chrom','chromStart'], ascending=True) BED = BED.reset_index().rename(columns={'index':'name'}) BED = BED[['chrom','chromStart','chromEnd','pvalue','name']] # order matters, so be explicit # omit unmapped CpGs unmapped = len(BED[ BED['chromStart'].isna() ]) BED = BED[ ~BED['chromStart'].isna() ] if renamer != {}: BED = BED.rename(columns=renamer) # cpv / combined-pvalues needs a tab-separated .bed file timestamp = int(time.time()) if save: if isinstance(filename, type(None)): BED.to_csv(f"{timestamp}.bed", index=False, sep='\t') return f"{timestamp}.bed" if not isinstance(filename, Path): filename = f"{filename}.bed" # otherwise, use as is, assuming it is a complete path/filename BED.to_csv(filename, index=False, sep='\t') return filename return BED
6ce2272c6a20c69e4a0e6e5568d2105a8e2dd82b
2,582
def GetPartition(partition_name, target_os): """Return the partition to install to. Args: partition_name: partition name from command-line {'primary', 'secondary', 'other'} target_os: 'fiberos' or 'android' Returns: 0 or 1 Raises: Fatal: if no partition could be determined """ if partition_name == 'other': if target_os == GetOs(): boot = GetBootedPartition() else: boot = GetActivePartitionFromHNVRAM(target_os) assert boot in [None, 0, 1] if boot is None: # Policy decision: if we're booted from NFS, install to secondary return 1 else: return boot ^ 1 elif partition_name in ['primary', 0]: return 0 elif partition_name in ['secondary', 1]: return 1 else: raise Fatal('--partition must be one of: primary, secondary, other')
b3f030779bd29bbe695ba3769372f4af700d7cb7
2,583
import aiohttp import json async def call_dialogflow(message, config, lang=DEFAULT_LANGUAGE): """Call the Dialogflow api and return the response.""" async with aiohttp.ClientSession() as session: payload = { "v": DIALOGFLOW_API_VERSION, "lang": lang, "sessionId": message.connector.name, "query": message.text, } headers = { "Authorization": "Bearer " + config["access-token"], "Content-Type": "application/json", } resp = await session.post( DIALOGFLOW_API_ENDPOINT, data=json.dumps(payload), headers=headers ) result = await resp.json() _LOGGER.info(_("Dialogflow response - %s"), json.dumps(result)) return result
e670748dc4d0318d047b0f0ded6d857597112d49
2,584
def gettgd(sat, eph, type=0): """ get tgd: 0=E5a, 1=E5b """ sys = gn.sat2prn(sat)[0] if sys == uGNSS.GLO: return eph.dtaun * rCST.CLIGHT else: return eph.tgd[type] * rCST.CLIGHT
c7231769b0e9be5287b2b2f76c8dcdc7bd409a89
2,585
def random_sign_uniform(shape, minval=None, maxval=None, dtype=dtypes.float32, seed=None): """Tensor with (possibly complex) random entries from a "sign Uniform". Letting `Z` be a random variable equal to `-1` and `1` with equal probability, Samples from this `Op` are distributed like ``` Z * X, where X ~ Uniform[minval, maxval], if dtype is real, Z * (X + iY), where X, Y ~ Uniform[minval, maxval], if dtype is complex. ``` Args: shape: `TensorShape` or Python list. Shape of the returned tensor. minval: `0-D` `Tensor` giving the minimum values. maxval: `0-D` `Tensor` giving the maximum values. dtype: `TensorFlow` `dtype` or Python dtype seed: Python integer seed for the RNG. Returns: `Tensor` with desired shape and dtype. """ dtype = dtypes.as_dtype(dtype) with ops.name_scope("random_sign_uniform"): unsigned_samples = random_uniform( shape, minval=minval, maxval=maxval, dtype=dtype, seed=seed) if seed is not None: seed += 12 signs = math_ops.sign( random_ops.random_uniform(shape, minval=-1., maxval=1., seed=seed)) return unsigned_samples * math_ops.cast(signs, unsigned_samples.dtype)
b942253c14438c72c19d648a0d0358d8cd280bd0
2,586
def ones_v(n): """ Return the column vector of ones of length n. """ return matrix(1, (n,1), 'd')
46936660025c1b5bd533b78143301d1218b568d7
2,587
def test_encrypt_and_decrypt_two(benchmark: BenchmarkFixture) -> None: """Benchmark encryption and decryption run together.""" primitives.decrypt = pysodium.crypto_aead_xchacha20poly1305_ietf_decrypt primitives.encrypt = pysodium.crypto_aead_xchacha20poly1305_ietf_encrypt def encrypt_and_decrypt() -> bytes: token = version2.encrypt(MESSAGE, KEY, FOOTER) return version2.decrypt(token, KEY, FOOTER) plain_text = benchmark(encrypt_and_decrypt) assert plain_text == MESSAGE
1b632ae28f147fa4d98dcdda982bf3d17b2c17dd
2,588
import os def truncate(fh, length): """Implementation of perl $fh->truncate method""" global OS_ERROR, TRACEBACK, AUTODIE try: if hasattr(fh, 'truncate'): fh.truncate(length) else: os.truncate(fh, length) return True except Exception as _e: OS_ERROR = str(_e) if TRACEBACK: if isinstance(fh, str): cluck(f"truncate({fh}, {length}) failed: {OS_ERROR}",skip=2) else: cluck(f"truncate to {length} failed: {OS_ERROR}",skip=2) if AUTODIE: raise return None
c18ede642efcb37de905bf2a88bb3e1be023c1d7
2,589
def get_fy_parent_nucl(fy_lib): """Gets the list of fission parents from a fission yield dictionnary. Parameters ---------- fy_lib: dict A fission yield dictionnary """ fy_nucl = get_fy_nucl(fy_lib) fy_parent = [] sample_zamid = fy_nucl[0] sample = fy_lib[sample_zamid] for fission_parent in sample: fy_parent.append(fission_parent) return fy_parent
feb2ec2adfda4d9df4993cc89545564e4c0d1a54
2,590
from functools import partial import array def initialize ( is_test, no_cam ) : """job machine Tableをもとに個体、世代の初期設定""" jmTable = getJmTable ( is_test ) MAX_JOBS = jmTable.getJobsCount() MAX_MACHINES = jmTable.getMachinesCount() # makespan最小化 creator.create ( "FitnessMin", base.Fitness, weights=(-1.0,) ) # 個体はジョブ番号のリスト #creator.create ( "Individual", list, fitness=creator.FitnessMin ) creator.create ( "Individual", array.array, typecode='b', fitness=creator.FitnessMin ) # 'b' is signed char toolbox = base.Toolbox() # ゼロからMAX_MACHINES未満までがMAX_JOBS回ランダムに並ぶ個体と設定 gen_ind = partial ( initIndividual, MAX_JOBS, MAX_MACHINES ) toolbox.register ( "individual", tools.initIterate, creator.Individual, gen_ind ) # 初期世代を生成する関数を登録、初期世代はIndividualのリストとして設定 toolbox.register ( "population", tools.initRepeat, list, toolbox.individual ) # 評価関数を登録 toolbox.register ( "evaluate", schedule.eval, jmTable ) # 交叉関数を登録 toolbox.register ( "mate", schedule.crossover ) # 突然変異を登録 toolbox.register ( "mutate", schedule.mutation ) # ルーレット選択を登録 toolbox.register ( "select", tools.selRoulette ) # 置換操作を登録 if no_cam : # 通常の置換操作 toolbox.register ( "getArgWorst", schedule.getArgWorst ) else : # クラスタ平均法(CAM)による置換操作 toolbox.register ( "getArgWorst", schedule.getArgWorstCAM ) return toolbox, jmTable
f306cf9b5400ea92b92709bc6986d6b87ea909b2
2,591
def perform_variants_query(job, **kwargs): """Query for variants. :param job: API to interact with the owner of the variants. :type job: :class:`cibyl.sources.zuul.transactions.JobResponse` :param kwargs: See :func:`handle_query`. :return: List of retrieved variants. :rtype: list[:class:`cibyl.sources.zuul.transactions.VariantResponse`] """ return job.variants().get()
c779080e2ef8c1900c293f70996e17bae932b142
2,592
import torch def get_model(share_weights=False, upsample=False): # pylint: disable=too-many-statements """ Return a network dict for the model """ block0 = [{'conv1_1': [3, 64, 3, 1, 1]}, {'conv1_2': [64, 64, 3, 1, 1]}, {'pool1_stage1': [2, 2, 0]}, {'conv2_1': [64, 128, 3, 1, 1]}, {'conv2_2': [128, 128, 3, 1, 1]}, {'pool2_stage1': [2, 2, 0]}, {'conv3_1': [128, 256, 3, 1, 1]}, {'conv3_2': [256, 256, 3, 1, 1]}, {'conv3_3': [256, 256, 3, 1, 1]}, {'conv3_4': [256, 256, 3, 1, 1]}, {'pool3_stage1': [2, 2, 0]}, {'conv4_1': [256, 512, 3, 1, 1]}, {'conv4_2': [512, 512, 3, 1, 1]}] if share_weights: print("defining network with shared weights") network_dict = get_shared_network_dict() else: network_dict = get_network_dict() def define_base_layers(block, layer_size): layers = [] for i in range(layer_size): one_ = block[i] for k, v in zip(one_.keys(), one_.values()): if 'pool' in k: layers += [nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2])] else: conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4]) layers += [conv2d, nn.ReLU(inplace=True)] return layers def define_stage_layers(cfg_dict): layers = define_base_layers(cfg_dict, len(cfg_dict) - 1) one_ = cfg_dict[-1].keys() k = list(one_)[0] v = cfg_dict[-1][k] conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4]) layers += [conv2d] return nn.Sequential(*layers) # create all the layers of the model base_layers = define_base_layers(block0, len(block0)) pre_stage_layers = define_base_layers(network_dict['block_pre_stage'], len(network_dict['block_pre_stage'])) blocks = {'block0': nn.Sequential(*base_layers), 'block_pre_stage': nn.Sequential(*pre_stage_layers)} if share_weights: shared_layers_s1 = define_base_layers(network_dict['block1_shared'], len(network_dict['block1_shared'])) shared_layers_s2 = define_base_layers(network_dict['block2_shared'], len(network_dict['block2_shared'])) blocks['block1_shared'] = nn.Sequential(*shared_layers_s1) blocks['block2_shared'] = nn.Sequential(*shared_layers_s2) for k, v in zip(network_dict.keys(), network_dict.values()): if 'shared' not in k and 'pre_stage' not in k: blocks[k] = define_stage_layers(v) class PoseModel(nn.Module): """ Pose Model class """ def __init__(self, model_dict, upsample=False): super(PoseModel, self).__init__() self.upsample = upsample self.basemodel = model_dict['block0'] self.pre_stage = model_dict['block_pre_stage'] if share_weights: self.stage1_shared = model_dict['block1_shared'] self.stage1_1 = model_dict['block1_1'] self.stage2_1 = model_dict['block2_1'] # self.stage3_1 = model_dict['block3_1'] # self.stage4_1 = model_dict['block4_1'] # self.stage5_1 = model_dict['block5_1'] # self.stage6_1 = model_dict['block6_1'] if share_weights: self.stage2_shared = model_dict['block2_shared'] self.stage1_2 = model_dict['block1_2'] self.stage2_2 = model_dict['block2_2'] # self.stage3_2 = model_dict['block3_2'] # self.stage4_2 = model_dict['block4_2'] # self.stage5_2 = model_dict['block5_2'] # self.stage6_2 = model_dict['block6_2'] def forward(self, *inputs): out1_vgg = self.basemodel(inputs[0]) out1 = self.pre_stage(out1_vgg) if share_weights: out1_shared = self.stage1_shared(out1) else: out1_shared = out1 out1_1 = self.stage1_1(out1_shared) out1_2 = self.stage1_2(out1_shared) out2 = torch.cat([out1_1, out1_2, out1], 1) if share_weights: out2_shared = self.stage2_shared(out2) else: out2_shared = out2 out2_1 = self.stage2_1(out2_shared) out2_2 = self.stage2_2(out2_shared) # out3 = torch.cat([out2_1, out2_2, out1], 1) # out3_1 = self.stage3_1(out3) # out3_2 = self.stage3_2(out3) # out4 = torch.cat([out3_1, out3_2, out1], 1) # # out4_1 = self.stage4_1(out4) # out4_2 = self.stage4_2(out4) # out5 = torch.cat([out4_1, out4_2, out1], 1) # # out5_1 = self.stage5_1(out5) # out5_2 = self.stage5_2(out5) # out6 = torch.cat([out5_1, out5_2, out1], 1) # # out6_1 = self.stage6_1(out6) # out6_2 = self.stage6_2(out6) if self.upsample: # parameters to check for up-sampling: align_corners = True, mode='nearest' upsampler = nn.Upsample(scale_factor=2, mode='bilinear') out2_1_up = upsampler(out2_1) out2_2_up = upsampler(out2_2) return out1_1, out1_2, out2_1, out2_2, out2_1_up, out2_2_up return out1_1, out1_2, out2_1, out2_2 model = PoseModel(blocks, upsample=upsample) return model
364050799adc3312e4a46081e4a82338407f177b
2,593
def bootstrap(config_uri, request=None, options=None): """ Load a WSGI application from the PasteDeploy config file specified by ``config_uri``. The environment will be configured as if it is currently serving ``request``, leaving a natural environment in place to write scripts that can generate URLs and utilize renderers. This function returns a dictionary with ``app``, ``root``, ``closer``, ``request``, and ``registry`` keys. ``app`` is the WSGI app loaded (based on the ``config_uri``), ``root`` is the traversal root resource of the Pyramid application, and ``closer`` is a parameterless callback that may be called when your script is complete (it pops a threadlocal stack). .. note:: Most operations within :app:`Pyramid` expect to be invoked within the context of a WSGI request, thus it's important when loading your application to anchor it when executing scripts and other code that is not normally invoked during active WSGI requests. .. note:: For a complex config file containing multiple :app:`Pyramid` applications, this function will setup the environment under the context of the last-loaded :app:`Pyramid` application. You may load a specific application yourself by using the lower-level functions :meth:`pyramid.paster.get_app` and :meth:`pyramid.scripting.prepare` in conjunction with :attr:`pyramid.config.global_registries`. ``config_uri`` -- specifies the PasteDeploy config file to use for the interactive shell. The format is ``inifile#name``. If the name is left off, ``main`` will be assumed. ``request`` -- specified to anchor the script to a given set of WSGI parameters. For example, most people would want to specify the host, scheme and port such that their script will generate URLs in relation to those parameters. A request with default parameters is constructed for you if none is provided. You can mutate the request's ``environ`` later to setup a specific host/port/scheme/etc. ``options`` Is passed to get_app for use as variable assignments like {'http_port': 8080} and then use %(http_port)s in the config file. See :ref:`writing_a_script` for more information about how to use this function. """ app = get_app(config_uri, options=options) env = prepare(request) env['app'] = app return env
608629eb380765ebafa4009946a30b9f46de6ff9
2,594
def readSegy(filename) : """ Data,SegyHeader,SegyTraceHeaders=getSegyHeader(filename) """ printverbose("readSegy : Trying to read "+filename,0) data = open(filename).read() filesize=len(data) SH=getSegyHeader(filename) bps=getBytePerSample(SH) ntraces = (filesize-3600)/(SH['ns']*bps+240) # ntraces = 100 printverbose("readSegy : Length of data : " + str(filesize),2) SH["ntraces"]=ntraces; ndummy_samples=240/bps printverbose("readSegy : ndummy_samples="+str(ndummy_samples),6) printverbose("readSegy : ntraces=" + str(ntraces) + " nsamples="+str(SH['ns']),2) # GET TRACE index=3600; nd=(filesize-3600)/bps # READ ALL SEGY TRACE HEADRES SegyTraceHeaders = getAllSegyTraceHeaders(SH,data) printverbose("readSegy : reading segy data",2) # READ ALL DATA EXCEPT FOR SEGY HEADER #Data = zeros((SH['ns'],ntraces)) revision=SH["SegyFormatRevisionNumber"] if (revision==100): revision=1 dsf=SH["DataSampleFormat"] DataDescr=SH_def["DataSampleFormat"]["descr"][revision][dsf] printverbose("readSegy : SEG-Y revision = "+str(revision),1) printverbose("readSegy : DataSampleFormat="+str(dsf)+"("+DataDescr+")",1) if (SH["DataSampleFormat"]==1): printverbose("readSegy : Assuming DSF=1, IBM FLOATS",2) Data1 = getValue(data,index,'ibm',endian,nd) elif (SH["DataSampleFormat"]==2): printverbose("readSegy : Assuming DSF=" + str(SH["DataSampleFormat"]) + ", 32bit INT",2) Data1 = getValue(data,index,'l',endian,nd) elif (SH["DataSampleFormat"]==3): printverbose("readSegy : Assuming DSF=" + str(SH["DataSampleFormat"]) + ", 16bit INT",2) Data1 = getValue(data,index,'h',endian,nd) elif (SH["DataSampleFormat"]==5): printverbose("readSegy : Assuming DSF=" + str(SH["DataSampleFormat"]) + ", IEEE",2) Data1 = getValue(data,index,'float',endian,nd) elif (SH["DataSampleFormat"]==8): printverbose("readSegy : Assuming DSF=" + str(SH["DataSampleFormat"]) + ", 8bit CHAR",2) Data1 = getValue(data,index,'B',endian,nd) else: printverbose("readSegy : DSF=" + str(SH["DataSampleFormat"]) + ", NOT SUPORTED",2) Data = Data1[0] printverbose("readSegy : - reshaping",2) Data=reshape(Data,(ntraces,SH['ns']+ndummy_samples)) printverbose("readSegy : - stripping header dummy data",2) Data=Data[:,ndummy_samples:(SH['ns']+ndummy_samples)] printverbose("readSegy : - transposing",2) Data=transpose(Data) # SOMEONE NEEDS TO IMPLEMENT A NICER WAY DO DEAL WITH DSF=8 if (SH["DataSampleFormat"]==8): for i in arange(ntraces): for j in arange(SH['ns']): if Data[i][j]>128: Data[i][j]=Data[i][j]-256 printverbose("readSegy : read data",2) return Data,SH,SegyTraceHeaders
5e3920255aa49c70e0e898b2d3915c05afc7f869
2,595
def planar_transform(imgs, masks, pixel_coords_trg, k_s, k_t, rot, t, n_hat, a): """transforms imgs, masks and computes dmaps according to planar transform. Args: imgs: are L X [...] X C, typically RGB images per layer masks: L X [...] X 1, indicating which layer pixels are valid pixel_coords_trg: [...] X H_t X W_t X 3; pixel (u,v,1) coordinates of target image pixels. k_s: intrinsics for source cameras, are [...] X 3 X 3 matrices k_t: intrinsics for target cameras, are [...] X 3 X 3 matrices rot: relative rotation, are [...] X 3 X 3 matrices t: [...] X 3 X 1, translations from source to target camera n_hat: L X [...] X 1 X 3, plane normal w.r.t source camera frame a: L X [...] X 1 X 1, plane equation displacement Returns: imgs_transformed: L X [...] X C images in trg frame masks_transformed: L X [...] X 1 masks in trg frame dmaps_trg: L X [...] X 1, indicating per pixel inverse depth Assumes the first dimension corresponds to layers. """ with tf.name_scope('planar_transform'): n_layers = imgs.get_shape().as_list()[0] rot_rep_dims = [n_layers] rot_rep_dims += [1 for _ in range(len(k_s.get_shape()))] cds_rep_dims = [n_layers] cds_rep_dims += [1 for _ in range(len(pixel_coords_trg.get_shape()))] k_s = tf.tile(tf.expand_dims(k_s, axis=0), rot_rep_dims) k_t = tf.tile(tf.expand_dims(k_t, axis=0), rot_rep_dims) t = tf.tile(tf.expand_dims(t, axis=0), rot_rep_dims) rot = tf.tile(tf.expand_dims(rot, axis=0), rot_rep_dims) pixel_coords_trg = tf.tile( tf.expand_dims(pixel_coords_trg, axis=0), cds_rep_dims) ndims_img = len(imgs.get_shape()) imgs_masks = tf.concat([imgs, masks], axis=ndims_img - 1) imgs_masks_trg = homography.transform_plane_imgs( imgs_masks, pixel_coords_trg, k_s, k_t, rot, t, n_hat, a) imgs_trg, masks_trg = tf.split(imgs_masks_trg, [3, 1], axis=ndims_img - 1) dmaps_trg = homography.trg_disp_maps(pixel_coords_trg, k_t, rot, t, n_hat, a) return imgs_trg, masks_trg, dmaps_trg
18f90706b996ee9ba81ab7142313dcaa761cf773
2,596
def convertDynamicRenderStates(data, builder): """ Converts dynamic render states. The data map is expected to contain the following elements: - lineWidth: float width for the line. Defaults to 1. - depthBiasConstantFactor: float value for the depth bias constant factor. Defaults to 0. - depthBiasClamp: float value for the depth bias clamp. Defaults to 0. - depthBiasSlopeFactor: float value for the depth bias slope factor. Defaults to 0. - blendConstants: array of 4 floats for the blend color. Defaults to [0, 0, 0, 0]. - depthBounds: array of 2 floats for the min and max depth value. Defaults to [0, 1]. - stencilCompareMask: int compare mask for both the front and back stencil. Defaults to 0xFFFFFFFF. - frontStencilCompareMask: int compare mask for just the front stencil. - backStencilCompareMask: int compare mask for just the back stencil. - stencilWriteMask: int write mask for both the front and back stencil. Defaults to 0. - frontStencilWriteMask: int write mask for just the front stencil. - backStencilWriteMask: int write mask for just the back stencil. - stencilReference: int reference for both the front and back stencil. Defaults to 0. - frontStencilReference: int reference for just the front stencil. - backStencilReference: int reference for just the back stencil. """ def readFloat(value, name): try: return float(value) except: raise Exception('Invalid ' + name + ' float value "' + str(value) + '".') def readUInt(value, name): try: intVal = int(value) if intVal < 0: raise Exception() return intVal except: raise Exception('Invalid ' + name + ' unsigned int value "' + str(value) + '".') lineWidth = readFloat(data.get('lineWidth', 1.0), 'line width') depthBiasConstantFactor = readFloat(data.get('depthBiasConstantFactor', 0.0), 'depth bias constant factor') depthBiasClamp = readFloat(data.get('depthBiasClamp', 0.0), 'depth bias clamp') depthBiasSlopeFactor = readFloat(data.get('depthBiasSlopeFactor', 0.0), 'depth bias slope factor') colorValue = data.get('blendConstants', [0.0, 0.0, 0.0, 0.0]) try: if len(colorValue) != 4: raise Exception() except: raise Exception('Blend constants value must be an array of 4 floats.') blendConstants = [] for c in colorValue: blendConstants.append(readFloat(c, 'blend constant')) depthBoundsValue = data.get('depthBounds', [0.0, 1.0]) try: if len(depthBoundsValue) != 2: raise Exception() except: raise Exception('Depth bounds value must be an array of 2 floats.') depthBounds = [] for b in depthBoundsValue: depthBounds.append(readFloat(b, 'depth bounds')) stencilCompareMask = data.get('stencilCompareMask', 0xFFFFFFFF) frontStencilCompareMask = readUInt(data.get('frontStencilCompareMask', stencilCompareMask), 'stencil compare mask') backStencilCompareMask = readUInt(data.get('backStencilCompareMask', stencilCompareMask), 'stencil compare mask') stencilWriteMask = data.get('stencilWriteMask', 0) frontStencilWriteMask = readUInt(data.get('frontStencilWriteMask', stencilWriteMask), 'stencil write mask') backStencilWriteMask = readUInt(data.get('backStencilWriteMask', stencilWriteMask), 'stencil write mask') stencilReference = data.get('stencilReference', 0) frontStencilReference = readUInt(data.get('frontStencilReference', stencilReference), 'stencil reference') backStencilReference = readUInt(data.get('backStencilReference', stencilReference), 'stencil reference') DynamicRenderStates.Start(builder) DynamicRenderStates.AddLineWidth(builder, lineWidth) DynamicRenderStates.AddDepthBiasConstantFactor(builder, depthBiasConstantFactor) DynamicRenderStates.AddDepthBiasClamp(builder, depthBiasClamp) DynamicRenderStates.AddDepthBiasSlopeFactor(builder, depthBiasSlopeFactor) DynamicRenderStates.AddBlendConstants(builder, CreateColor4f(builder, *blendConstants)) DynamicRenderStates.AddDepthBounds(builder, CreateVector2f(builder, *depthBounds)) DynamicRenderStates.AddFrontStencilCompareMask(builder, frontStencilCompareMask) DynamicRenderStates.AddBackStencilCompareMask(builder, backStencilCompareMask) DynamicRenderStates.AddFrontStencilWriteMask(builder, frontStencilWriteMask) DynamicRenderStates.AddBackStencilWriteMask(builder, backStencilWriteMask) DynamicRenderStates.AddFrontStencilReference(builder, frontStencilReference) DynamicRenderStates.AddBackStencilReference(builder, backStencilReference) return DynamicRenderStates.End(builder)
5c27ebd4401d8b6c0388bfe6f1973c137404ddf5
2,597
def binary_search(a, search_value): """ @name binary_search @param a array """ N = len(a) l = 0 r = len(a) - 1 while(True): try: result = binary_search_iteration(a, l, r, search_value) l, r = result except TypeError: return -1 if not result else result
5fc2748a76d89c2559cda8bc9dacd16d90b2aa5e
2,598
from typing import Dict from typing import Any from typing import cast def _key_match(d1: Dict[str, Any], d2: Dict[str, Any], key: str) -> bool: """ >>> _key_match({"a": 1}, {"a": 2}, "a") False >>> _key_match({"a": 1}, {"a": 2}, "b") True >>> _key_match({"a": 2}, {"a": 1}, "a") False >>> _key_match({"a": 1}, {"a": 1}, "a") True >>> _key_match({"a": 2}, {"b": 1}, "a") False >>> _key_match({"b": 2}, {"a": 1}, "a") False """ try: return (key not in d1 and key not in d2) or cast(bool, d1[key] == d2[key]) except KeyError: return False
8e76ee70c6209b357b13890a9fcf2b0b7d770c1b
2,599