content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def ui_form_stations(): """ This function lists all stations """ # get _all_ the stations stations = station_get(0) # render stations in HTML template return render_template("stations.html", result=stations)
07f53e694e135e0612c871c279e63432eeedf966
2,300
import json import requests def create_digital_object(obj): """ Create a digitial object for a cilantro object in AtoM. :param Object obj: THE cilantro object :return: str The generated URI for the digital object """ url = f"{atom_uri}/api/digitalobjects" headers = {'REST-API-Key': atom_api_key, 'Content-Type': 'application/json'} data = _get_digital_object_data(obj) json_data = json.dumps(data, indent=4) log.debug(f"Digital object: {json_data}") response = requests.post(url, data=json_data, headers=headers) response.raise_for_status() return f"{atom_uri}/{response.json()['slug']}"
21a803e88330b538e9018116107c680ed6565bc4
2,301
def fitcreds(): """ returns the ['credentials'] dictionary :return: dictionary or None """ return fitcfg().get('credentials', None)
d8c30b43ae3c91fc7f08d2a47b401416da8b7d4b
2,302
import re def brace_expand(str): """Perform brace expansion, a lá bash.""" match = re.search('{(.+?)(,.*?)?}', str) if match: strings = brace_expand(replace_range(str, match.start(), match.end(), match.group(1))) if match.group(2): strings.extend(brace_expand(replace_range(str, match.start(), match.end(), match.group(2)[1:]))) return strings else: # No braces were in the string. return [str]
a4426eb8d1ecfc3ac8d9b9ecff57c8364b372042
2,303
def create(number): """ create() : Add document to Firestore collection with request body. Ensure you pass a custom ID as part of json body in post request, e.g. json={'id': '1', 'title': 'Write a blog post'} """ try: id = request.json['id'] todo_ref = user_ref.document(number).collection("todos") todo_ref.document(id).set(request.json) all_todos = [doc.to_dict() for doc in todo_ref.stream()] return jsonify(all_todos), 200 except Exception as e: return f"An Error Occured: {e}"
94d703a4b310545d895e05dc9e872fb0b64e990b
2,304
def sort_terms(node, parent_children, hierarchy): """Recursively create a list of nodes grouped by category.""" for c in parent_children.get(node, []): hierarchy.append(c) sort_terms(c, parent_children, hierarchy) return hierarchy
5ae737206f3859c01da6b8e9475db688e53a8d13
2,305
def sumPm(mirror): """Returns sum of all mechanical power from active machines""" sysPm = 0.0 # for each area for area in mirror.Area: # reset current sum area.cv['Pm'] = 0.0 # sum each active machine Pm to area agent for mach in area.Machines: if mach.cv['St'] == 1: area.cv['Pm'] += mach.cv['Pm'] # sum area agent totals to system sysPm += area.cv['Pm'] return sysPm
996891a5386f59fb111b5726552537d67e9c419c
2,306
def chunk(rs, n, column=None): """Returns a list of rows in chunks :param rs: a list of rows :param n: - int => returns 3 rows about the same size - list of ints, [0.3, 0.4, 0.3] => returns 3 rows of 30%, 40$, 30% - list of nums, [100, 500, 100] => returns 4 rows with break points\ 100, 500, 1000, but you must pass the column name\ for the break points like chunk(rs, [100, 500, 100], 'col') :param column: column name for break points :returns: a list of rows """ size = len(rs) if isinstance(n, int): start = 0 result = [] for i in range(1, n + 1): end = int((size * i) / n) # must yield anyway result.append(rs[start:end]) start = end return result # n is a list of percentiles elif not column: # then it is a list of percentiles for each chunk assert sum(n) <= 1, "Sum of percentils for chunks must be <= 1.0" ns = [int(x * size) for x in accumulate(n)] result = [] for a, b in zip([0] + ns, ns): result.append(rs[a:b]) return result # n is a list of break points else: rs.sort(key=lambda r: r[column]) start, end = 0, 0 result = [] for bp in n: while (rs[end][column] < bp) and end < size: end += 1 result.append(rs[start:end]) start = end result.append(rs[end:]) return result
cfaad9bd0b973e3bcf7474f46ad14d01b52924cf
2,307
def get_file_detail(traffic_file): """ Args: traffic_file: a name Returns: roadnet_file and flow_file name """ phase = None roadnet_file = None flow_file = None for category in TRAFFIC_CATEGORY: if traffic_file in list(TRAFFIC_CATEGORY[category].keys()): phase = TRAFFIC_CATEGORY[category][traffic_file][0] roadnet_file = TRAFFIC_CATEGORY[category][traffic_file][1] flow_file = TRAFFIC_CATEGORY[category][traffic_file][2] return phase, roadnet_file, flow_file
638efcc7254544d0cd0ab305cea12aed5a0e7ba2
2,308
async def root(): """ :return: welcoming page returning Made by @woosal1337 """ try: return {f"Made by @woosal1337"} except Exception as e: return {f"{e} has happened!"}
3d4e9acf038f60a9d91755eafcfb7e9dcfaa7a71
2,309
def sequence_accuracy_score(y_true, y_pred): """ Return sequence accuracy score. Match is counted only when two sequences are equal. """ total = len(y_true) if not total: return 0 matches = sum(1 for yseq_true, yseq_pred in zip(y_true, y_pred) if yseq_true == yseq_pred) return matches / total
b1345aaa6fd0161f648a1ca5b15c921c2ed635ad
2,310
def load_content(sentence_file): """Load input file with sentences to build LSH. Args: sentence_file (str): Path to input with txt file with sentences to Build LSH. Returns: dict: Dict with strings and version of string in lower case and without comma. """ sentences = {} with open(sentence_file) as content: for line in content: line = line.strip() line_clean = line.replace(",", "") line_clean = line_clean.lower() sentences[line_clean] = line return sentences
31c3104179e995d59cffbea92caf2d32decc572c
2,311
import collections def _analyse_graph(graph): """ Analyses a connected graph to find a set of distinct paths and a topologically ordered sequence. """ # Make a copy without self-cycles to modify g = graph.clean_copy() g0 = g.copy() # Start with the diameter of the graph diameter = g.diameter() if not diameter: # The graph has no edges so return sorted list of isolated vertices return [], sorted(g.isolated, key=graph.sort) diameter_ac = diameter.make_acyclic() # Remove diameter from graph and search the rest g.remove_path(diameter) paths, sequence = [diameter], list(diameter_ac) stack = collections.deque() # Search paths both forwards and backwards # All diverging branches are searched backwards and vice versa stack.extend((v, True) for v in reversed(diameter)) stack.extend((v, False) for v in diameter) while stack: vertex, forward = stack.pop() try: new_paths = g.search_paths(vertex, forward=forward).values() except KeyError: continue if not any(new_paths): continue # Add paths to list longest = max(sorted(new_paths, key=graph.path_sort), key=len) g.remove_path(longest) paths.append(longest) # Merge paths into sequence longest_ac = longest.make_acyclic() index = sequence.index(vertex) if forward: _merge_forward(g0, sequence, longest_ac, index) else: _merge_backward(g0, sequence, longest_ac, index) # Add new paths to stack for searching stack.extendleft((v, True) for v in reversed(longest_ac)) stack.extendleft((v, False) for v in longest_ac) # Maybe another distinct path here - return vertex to queue stack.append((vertex, forward)) if g.vertices: # Expect all vertices and edges to be removed from connected graph. raise ValueError( f"Vertices {g.vertices!r} still left over from graph {g0!r}" ) _rearrange_cycles(g0, sequence) return paths, sequence
19bcc25117b962626db5386e8cf39625e315cd79
2,312
def rare_last_digit(first): """Given a leading digit, first, return all possible last digits of a rare number""" if first == 2: return (2,) elif first == 4: return (0,) elif first == 6: return (0,5) elif first == 8: return (2,3,7,8) else: raise ValueError(f"Invalid first digit of rare number: {first}")
2b15d35a6281d679dce2dedd7c1944d2a93e8756
2,313
def decorrelation_witer(W): """ Iterative MDUM decorrelation that avoids matrix inversion. """ lim = 1.0 tol = 1.0e-05 W = W/(W**2).sum() while lim > tol: W1 = (3.0/2.0)*W - 0.5*dot(dot(W,W.T),W) lim = npmax(npabs(npabs(diag(dot(W1,W.T))) - 1.0)) W = W1 return W
ddc67d5aee68acb6202f7ebd2f5e99a6bf9e3158
2,314
import webbrowser def _open_public_images(username): """ :param username: username of a given person :return: """ try: new_url = "https://www.facebook.com/" + username + "/photos_all" webbrowser.open_new_tab(new_url) return 1 except Exception as e: print(e) return -1
bd488bae2182bd2d529734f94fb6fc2b11ca88d0
2,315
def fermat_number(n: int) -> int: """ https://en.wikipedia.org/wiki/Fermat_number https://oeis.org/A000215 >>> [fermat_number(i) for i in range(5)] [3, 5, 17, 257, 65537] """ return 3 if n == 0 else (2 << ((2 << (n - 1)) - 1)) + 1
4427ab7171fd86b8e476241bc94ff098e0683363
2,316
def get_id_ctx(node): """Gets the id and attribute of a node, or returns a default.""" nid = getattr(node, "id", None) if nid is None: return (None, None) return (nid, node.ctx)
cbca8573b4246d0378297e0680ab05286cfc4fce
2,317
def fitsfile_clumpy(filename,ext=None,header=True,**kwargs): """Read a (CLUMPY) fits file. Parameters: ----------- filename : str Path to the CLUMPY .fits file to be read. ext : {int,str} The FITS extension to be read. Either as EXTVER, specifying the HDU by an integer, or as EXTNAME, giving the HDU by name. For CLUMPY FITS files: 0 or 'imgdata' is the image cube ` 1 or 'clddata' is the projected map of cloud number per ine-of-sight. header : bool If True, the HDU header will also be read. Not used currently. """ if 'hypercubenames' in kwargs: ext = kwargs['hypercubenames'][0] assert (isinstance(ext,(int,str))),\ "'ext' must be either integer or a string, specifying the FITS extension by number or by name, respectively." dataset, header = pyfits.getdata(filename,ext,header=header) # dataset.shape is (Nwave,Nypix,Nxpix) for 3D, and (Nypix,Nxpix) for 2D. x = N.arange(float(header['NAXIS1'])) y = N.arange(float(header['NAXIS2'])) # x = range(header['NAXIS1']) # y = range(header['NAXIS2']) if dataset.ndim == 2: axes = None axnames = ['x','y'] axvals = [x,y] elif dataset.ndim == 3: axes = (0,2,1) wave = N.array([v for k,v in header.items() if k.startswith('LAMB')]) axnames = ['wave','x','y'] axvals = [wave,x,y] dataset = N.transpose(dataset,axes=axes) # now it's (Nwave,Nxpix,Nypix) for 3D, and (Nxpix,Nypix) for 2D. datasets = [dataset] # has to be a list for function 'convert' hypercubenames = kwargs['hypercubenames'] return datasets, axnames, axvals, hypercubenames
70055d193bba1e766a02f522d31eb9f2327ccc64
2,318
from typing import Optional def is_tkg_plus_enabled(config: Optional[dict] = None) -> bool: """ Check if TKG plus is enabled by the provider in the config. :param dict config: configuration provided by the user. :return: whether TKG+ is enabled or not. :rtype: bool """ if not config: try: config = get_server_runtime_config() except Exception: return False service_section = config.get('service', {}) tkg_plus_enabled = service_section.get('enable_tkg_plus', False) if isinstance(tkg_plus_enabled, bool): return tkg_plus_enabled elif isinstance(tkg_plus_enabled, str): return utils.str_to_bool(tkg_plus_enabled) return False
75f1ef48582777ea59d543f33517cf10c2871927
2,319
import math from typing import Sequence def da_cma(max_evaluations = 50000, da_max_evals = None, cma_max_evals = None, popsize=31, stop_fitness = -math.inf): """Sequence differential evolution -> CMA-ES.""" daEvals = np.random.uniform(0.1, 0.5) if da_max_evals is None: da_max_evals = int(daEvals*max_evaluations) if cma_max_evals is None: cma_max_evals = int((1.0-daEvals)*max_evaluations) opt1 = Da_cpp(max_evaluations = da_max_evals, stop_fitness = stop_fitness) opt2 = Cma_cpp(popsize=popsize, max_evaluations = cma_max_evals, stop_fitness = stop_fitness) return Sequence([opt1, opt2])
378d54d0da1e5ec36529ae3fa94fd40b9a2dbecd
2,320
from typing import Set def j_hashset(s: Set = None) -> jpy.JType: """Creates a Java HashSet from a set.""" if s is None: return None r = jpy.get_type("java.util.HashSet")() for v in s: r.add(v) return r
28ad96de2b973d006e38b3e5b3228b81da31f4b6
2,321
def get_year(h5, songidx=0): """ Get release year from a HDF5 song file, by default the first song in it """ return h5.root.musicbrainz.songs.cols.year[songidx]
eabd7cfd63a06448f7ef4c94f39a8d44af0d971e
2,322
def _create_simulation_parametrization(): """Convert named scenarios to parametrization. Each named scenario is duplicated with different seeds to capture the uncertainty in the simulation.. """ named_scenarios = get_named_scenarios() scenarios = [] for name, specs in named_scenarios.items(): is_resumed = specs.get("is_resumed", "fall") save_last_states = specs.get("save_last_states", False) for seed in range(specs["n_seeds"]): produces = { "period_outputs": create_path_to_period_outputs_of_simulation( name, seed ) } if specs.get("save_rapid_test_statistics", False): rapid_test_statistics_path = create_path_to_raw_rapid_test_statistics( name, seed ) produces["rapid_test_statistics"] = rapid_test_statistics_path # since we use "append" mode to build this we need to delete the # present file with every run if rapid_test_statistics_path.exists(): rapid_test_statistics_path.unlink() else: rapid_test_statistics_path = None if save_last_states: produces["last_states"] = create_path_to_last_states_of_simulation( name, seed ) depends_on = get_simulation_dependencies( debug=FAST_FLAG == "debug", is_resumed=is_resumed, ) if is_resumed: depends_on["initial_states"] = create_path_to_last_states_of_simulation( f"{is_resumed}_baseline", seed ) spec_tuple = ( depends_on, specs["sim_input_scenario"], specs["params_scenario"], specs["start_date"], specs["end_date"], save_last_states, produces, 500 + 100_000 * seed, is_resumed, rapid_test_statistics_path, ) scenarios.append(spec_tuple) signature = ( "depends_on, sim_input_scenario, params_scenario, " + "start_date, end_date, save_last_states, produces, seed, " + "is_resumed, rapid_test_statistics_path" ) return signature, scenarios
281dd9c70c9d60f2ffa8b02fb69341ffd3c2ad19
2,323
def calc_buffer(P, T, buffer): """ Master function to calc any buffer given a name. Parameters ---------- P: float Pressure in GPa T: float or numpy array Temperature in degrees K buffer: str Name of buffer Returns ------- float or numpy array logfO2 """ if buffer == 'NNO': return calc_NNO(P, T) elif buffer == 'QFM': return calc_QFM(P, T) elif buffer == 'IW': return calc_IW(P, T) elif buffer == 'CrCr2O3': return calc_CrCr2O3(P, T) elif buffer == 'SiSiO2': return calc_SiSiO2(P, T) elif buffer == 'HM': return calc_HM(P, T) elif buffer == 'CoCoO': return calc_CoCoO(P, T) elif buffer == 'ReReO': return calc_ReReO(P, T) elif buffer == 'Graphite': return calc_Graphite(P, T) elif buffer == 'QIF': return calc_QIF(P, T) elif buffer == 'MoMoO2': return calc_MoMoO2(P,T) elif buffer == 'CaCaO': return calc_CaCaO(P,T) elif buffer == 'AlAl2O3': return calc_AlAl2O3(P,T) elif buffer == 'KK2O': return calc_KK2O(P,T) elif buffer == 'MgMgO': return calc_MgMgO(P,T) elif buffer == 'MnMnO': return calc_MnMnO(P,T) elif buffer == 'NaNa2O': return calc_NaNa2O(P,T) elif buffer == 'TiTiO2': return calc_TiTiO2(P,T) else: raise InputError('Buffer name not recognized')
acb75ec734e0c366d1424bee608ec2b32f4be626
2,324
def printImproperDihedral(dihedral, alchemical = False): """Generate improper dihedral line Parameters ---------- dihedral : dihedral Object dihedral Object Returns ------- dihedralLine : str Improper dihedral line data """ V2 = dihedral.V2*0.5 V2_B = dihedral.V2_B*0.5 label = 'imptors %7s %5s %5s %5s %8.3f %4.1f %2d\n' % \ (dihedral.atomA.typeA, dihedral.atomB.typeA, dihedral.atomC.typeA, dihedral.atomD.typeA, V2, 180.0, 2) if alchemical: label = 'imptors %7s %5s %5s %5s %8.3f %4.1f %2d\n' % \ (dihedral.atomA.typeB, dihedral.atomB.typeB, dihedral.atomC.typeB, dihedral.atomD.typeB, V2_B, 180.0, 2) return label
bcfece212ac6cc0eb476cb96c44e6af910185bc7
2,325
import math def inv_erf(z): """ Inverse error function. :param z: function input :type z: float :return: result as float """ if z <= -1 or z >= 1: return "None" if z == 0: return 0 result = ndtri((z + 1) / 2.0) / math.sqrt(2) return result
7ba55c0a0544f65b95c4af93b4ccdfa7d58faf2b
2,326
from typing import Optional import requests def batch_post( api_key: str, host: Optional[str] = None, gzip: bool = False, timeout: int = 15, **kwargs ) -> requests.Response: """Post the `kwargs` to the batch API endpoint for events""" res = post(api_key, host, "/batch/", gzip, timeout, **kwargs) return _process_response(res, success_message="data uploaded successfully", return_json=False)
18d039f1bd430cb85a2e8ad18777e5a289aef41f
2,327
from typing import List import pickle def load_ste_data(task_name: str) -> List[pd.DataFrame]: """Loads the STE data corresponding to the given task name. Args: task_name (str): The name of the STE data file. Returns: List[pd.DataFrame]: The STE data if found, else empty list. """ # Variant-aware STE task names ste_task_variant_names = get_ste_data_names() # Variant-agnostic STE task names ste_task_base_names = set( [task_name.split("_")[0] for task_name in ste_task_variant_names] ) if task_name in ste_task_variant_names: # Load variant-aware STE data ste_file_name = l2l.get_l2root_base_dirs("taskinfo", task_name + ".pickle") with open(ste_file_name, "rb") as ste_file: ste_data = pickle.load(ste_file) return ste_data elif task_name in ste_task_base_names: ste_data = [] # Load variant-agnostic STE data for ste_variant_file in l2l.get_l2root_base_dirs("taskinfo").glob( task_name + "*.pickle" ): with open(ste_variant_file, "rb") as ste_file: ste_data.extend(pickle.load(ste_file)) # Remove variant label from task names for idx, ste_data_df in enumerate(ste_data): ste_data[idx]["task_name"] = ste_data_df["task_name"].apply( lambda x: x.split("_")[0] ) return ste_data else: return []
71d24a5b16fdd0ae9b0cc8b30a4891388594c519
2,328
def bsplclib_CacheD1(*args): """ * Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects :param U: :type U: float :param Degree: :type Degree: int :param CacheParameter: :type CacheParameter: float :param SpanLenght: :type SpanLenght: float :param Poles: :type Poles: TColgp_Array1OfPnt :param Weights: :type Weights: TColStd_Array1OfReal & :param Point: :type Point: gp_Pnt :param Vec: :type Vec: gp_Vec :rtype: void * Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights ththe CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effectsis just evaluates the current point :param U: :type U: float :param Degree: :type Degree: int :param CacheParameter: :type CacheParameter: float :param SpanLenght: :type SpanLenght: float :param Poles: :type Poles: TColgp_Array1OfPnt2d :param Weights: :type Weights: TColStd_Array1OfReal & :param Point: :type Point: gp_Pnt2d :param Vec: :type Vec: gp_Vec2d :rtype: void """ return _BSplCLib.bsplclib_CacheD1(*args)
41b3834b17b79c0e738338c12e5078cff6cf87ea
2,329
def velocity_filter(freq, corr_spectrum, interstation_distance, cmin=1.0, cmax=5.0, p=0.05): """ Filters a frequency-domain cross-spectrum so as to remove all signal corresponding to a specified velocity range. In practice, the procedure (i) inverse-Fourier transforms the cross spectrum to the time domain; (ii) it zero-pads the resulting time-domain signal at times corresponding to velocities outside the velocity range by applying a cosine taper (the same cosine taper is applied at the two ends of the interval); (iii) a forward-Fourier transform brings back the padded cross correlation to the frequency domain [e.g., Magrini & Boschi 2021]. Parameters ---------- freq : ndarray of shape (n,) Frequency vector cross_spectrum : ndarray of shape (n,) Complex-valued frequency-domain cross_spectrum interstation_distance : float (in km) cmin, cmax : float (in km/s) Velocity range. Default values are 1 and 5 p : float Decimal percentage of cosine taper. Default is 0.05 (5%) Returns ------- corr : ndarray of shape (n,) Filtered cross-spectrum References ---------- Magrini & Boschi 2021, Surface‐Wave Attenuation From Seismic Ambient Noise: Numerical Validation and Application, JGR """ dt = 1 / (2 * freq[-1]) idx_tmin = int((interstation_distance/cmax)/dt * (1-p/2)) # 5percent extra for taper idx_tmax = int((interstation_distance/cmin)/dt * (1+p/2)) # 5% extra for taper vel_filt_window = cosine_taper(idx_tmax-idx_tmin, p=p) tcorr = np.fft.irfft(corr_spectrum) vel_filt = np.zeros(len(tcorr)) vel_filt[idx_tmin : idx_tmax] = vel_filt_window vel_filt[-idx_tmax+1 : -idx_tmin+1] = vel_filt_window #+1 is just for symmetry reasons tcorr *= vel_filt corr = np.fft.rfft(tcorr) return corr
56f460b190b8e3fc4d8936a22d9c677e592d3719
2,330
import io import types def transcribe_file(path, language): """ Translate an PCM_16 encoded audio signal stored in a file using Google's STT API (Google Cloud Speech). This implementation should be changed to transcribe audio-bytes directly. :param path: path to audio file holding audio bytes :param language: language of the text spoken in the audio signal :return: string holding the transcription generated by Google Cloud Speech or empty string if no transcription was found """ client = speech.SpeechClient() with io.open(path, 'rb') as audio_file: content = audio_file.read() audio = types.RecognitionAudio(content=content) language_code = LANGUAGE_CODES[language] config = types.RecognitionConfig( encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16, sample_rate_hertz=16000, language_code=language_code) # Detects speech in the audio file response = client.recognize(config, audio) if response and response.results: return response.results[0].alternatives[0].transcript return ''
0dcee8c1987c897b14eb25e58612be5d7b284f1b
2,331
def make_aware(dt): """Appends tzinfo and assumes UTC, if datetime object has no tzinfo already.""" return dt if dt.tzinfo else dt.replace(tzinfo=timezone.utc)
4894449548c19fc6aef7cd4c98a01f49043b3013
2,332
import torch def train(model, tokenizer, train_dataset, batch_size, lr, adam_epsilon, epochs): """ :param model: Bert Model to train :param tokenizer: Bert Tokenizer to train :param train_dataset: :param batch_size: Stick to 1 if not using using a high end GPU :param lr: Suggested learning rate from paper is 5e-5 :param adam_epsilon: Used for weight decay fixed suggested parameter is 1e-8 :param epochs: Usually a single pass through the entire dataset is satisfactory :return: Loss """ train_sampler = RandomSampler(train_dataset) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, batch_size=batch_size) t_total = len(train_dataloader) // batch_size # Total Steps # Prepare optimizer and schedule (linear warmup and decay) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in model.named_parameters() if any( nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=lr, eps=adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, 0, t_total) # ToDo Case for fp16 # Start of training loop logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Batch size = %d", batch_size) model.train() global_step = 0 tr_loss, logging_loss = 0.0, 0.0 model.resize_token_embeddings(len(tokenizer)) model.zero_grad() train_iterator = trange(int(epochs), desc="Epoch") for _ in train_iterator: epoch_iterator = tqdm_notebook(train_dataloader, desc="Iteration") for batch in epoch_iterator: inputs, labels = mask_tokens(batch, tokenizer) inputs = inputs.to('cuda') # Don't bother if you don't have a gpu labels = labels.to('cuda') outputs = model(inputs, masked_lm_labels=labels) # model outputs are always tuple in transformers (see doc) loss = outputs[0] loss.backward() tr_loss += loss.item() # if (step + 1) % 1 == 0: # 1 here is a placeholder for gradient # accumulation steps torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1) optimizer.step() scheduler.step() model.zero_grad() global_step += 1 logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) return model, tokenizer
7b2ca610b0e52011b55fc8f8bf66f0129001ea1d
2,333
def fastqcounter(infile): """ Returns the number of unique sequences in a fastq file """ #check if file is derep'd using DerepCheck() derep = reptools.DerepCheck(infile) n=0 if derep: with open(infile) as fn: for title,seq,qual in reptools.FASTQparser(fn): n+=reptools.DerepCount(title) else: with open(infile) as fn: for title,seq,qual in reptools.FASTQparser(fn): n+=1 return(n)
49b9704d77c3422bb82968bc23c0fa8b77b012a3
2,334
def raichuMoves(board,player): """"Generate All raichu Successors""" piece = "@" if player == "w" else "$" possible_boards = [] raichu_locs=[(row_i,col_i) for col_i in range(len(board[0])) for row_i in range(len(board)) if board[row_i][col_i]==piece] for each_raichu in raichu_locs: new_boards = raichu_move(board, player, piece, each_raichu[0], each_raichu[1]) if len(new_boards) == 0: continue possible_boards.extend(new_boards) return possible_boards
a015d9f2d9505677e2fecf6df4e2dd4142c67a82
2,335
def check_supported(): """返回模块是否可用""" return True
6575a81d5ad30a3bb9bb857bbdead2cd2e4ff340
2,336
def tf_batch_propagate(hamiltonian, hks, signals, dt, batch_size): """ Propagate signal in batches Parameters ---------- hamiltonian: tf.tensor Drift Hamiltonian hks: Union[tf.tensor, List[tf.tensor]] List of control hamiltonians signals: Union[tf.tensor, List[tf.tensor]] List of control signals, one per control hamiltonian dt: float Length of one time slice batch_size: int Number of elements in one batch Returns ------- """ if signals is not None: batches = int(tf.math.ceil(signals.shape[0] / batch_size)) batch_array = tf.TensorArray( signals.dtype, size=batches, dynamic_size=False, infer_shape=False ) for i in range(batches): batch_array = batch_array.write( i, signals[i * batch_size : i * batch_size + batch_size] ) else: batches = int(tf.math.ceil(hamiltonian.shape[0] / batch_size)) batch_array = tf.TensorArray( hamiltonian.dtype, size=batches, dynamic_size=False, infer_shape=False ) for i in range(batches): batch_array = batch_array.write( i, hamiltonian[i * batch_size : i * batch_size + batch_size] ) dUs_array = tf.TensorArray(tf.complex128, size=batches, infer_shape=False) for i in range(batches): x = batch_array.read(i) if signals is not None: result = tf_propagation_vectorized(hamiltonian, hks, x, dt) else: result = tf_propagation_vectorized(x, None, None, dt) dUs_array = dUs_array.write(i, result) return dUs_array.concat()
76ef9633312fd81f47c04d028940febf6625c787
2,337
def noise_dither_bayer(img:np.ndarray) -> np.ndarray: """Adds colored bayer dithering noise to the image. Args: img: Image to be dithered. Returns: version of the image with dithering applied. """ imgtype = img.dtype size = img.shape #Note: these are very slow for large images, must crop first before applying. # Bayer works more or less. I think it's missing a part of the image, the # dithering pattern is apparent, but the quantized (color palette) is not there. # Still enough for models to learn dedithering bayer_matrix = np.array([[0, 8, 2, 10], [12, 4, 14, 6], [3, 11, 1, 9], [15, 7, 13, 5]]) #/256 #4x4 Bayer matrix bayer_matrix = bayer_matrix*16 red = img[:,:,2] #/255. green = img[:,:,1] #/255. blue = img[:,:,0] #/255. img_split = np.zeros((img.shape[0], img.shape[1], 3), dtype = imgtype) for values, color, channel in zip((red, green, blue), ('red', 'green', 'blue'), (2,1,0)): for i in range(0, values.shape[0]): for j in range(0, values.shape[1]): x = np.mod(i, 4) y = np.mod(j, 4) if values[i, j] > bayer_matrix[x, y]: img_split[i,j,channel] = 255 #1 dithered = img_split #*255. return dithered
9b752e6ef09c9c3b8a3ff276cbef796c96609535
2,338
def get_match_rank(track, tagged_file): """ :param track: :param files: :type track: TrackMetadata :return: """ filenames = [filter_filename(os.path.splitext(os.path.basename(filename.path))[0]) for filename in tagged_file] rank1 = [0]*len(tagged_file) # Alphabetically closest lowest = 100000 index = -1 values = [0]*len(tagged_file) for filename in filenames: value = levenshtein(track.title, filename) values[filenames.index(filename)] = value if value < lowest: lowest = value index = filenames.index(filename) print index closest = get_close_matches(track.title, filenames) if index != -1: rank1[index] = 1 rank2 = [0]*len(tagged_file) closest = min(tagged_file, key=lambda x: abs(track.get_duration_in_seconds() - x.length)) rank2[tagged_file.index(closest)] = 1 final_ranks = [0.5*rank1[i] + 0.5*rank2[i] for i in xrange(0, len(rank1))] return final_ranks
446b0a25f7466d2ce46d51637588ff2e2d49a681
2,339
import os import random def execshell_withpipe_ex(cmd, b_printcmd=True): """ Deprecated. Recommand using ShellExec. """ strfile = '/tmp/%s.%d.%d' % ( 'shell_env.py', int(os.getpid()), random.randint(100000, 999999) ) os.mknod(strfile) cmd = cmd + ' 1>' + strfile + ' 2>/dev/null' os.system(cmd) if True == b_printcmd: print(cmd) fphandle = open(strfile, 'r') lines = fphandle.readlines() fphandle.close() os.unlink(strfile) return lines
36191036aebef1af26a2471735cc8a6f45e13d27
2,340
def parseData(file_name, delimiter=None, header_size=0, col_types=None, ret_array=False): """ Parse data form a text file Arguments: file_name: [str] Name of the input file. Keyword arguments: delimiter: [str] Data delimiter (often a comma of a semicolon). None by default, i.e. space/tab delimited data header_size: [int] Number of lines in the header of the file. 0 by defualt. col_types: [type, or list of types] Define which columns are of which type. E.g. if all colums contain floating point data, then you can specify: col_types=float. On the other hand, if the first colum contains integer values, and second column contains floating point values, you can specify: col_types=[int, float] This argument is None by default, meaning that values will be left as strings. ret_array: [bool] If True, the function returns a numpy array. If False, it returns a Pyhon list. Be aware that if col_types are specified, and one of the types is float, the whole array will be a float array. Furthermore, if some values in the read data are strings, the all values in the numpy array will be strings are well. Returns: data_list: Python list if ret_array is False, numpy array if ret_array is True """ with open(file_name) as f: # Skip header for i in range(header_size): next(f) data_list = [] # Go through every line of the file for line in f: line = line.replace('\n', '').replace('\r', '') # Split the line by the given delimiter if delimiter is None: line = line.split() else: line = line.split(delimiter) # Convert the columns to given types if col_types is not None: if not isinstance(col_types, list): col_types = [col_types]*len(line) if len(line) == len(col_types): for i, (tp, entry) in enumerate(zip(col_types, line)): line[i] = tp(entry) data_list.append(line) # Convert the data to a numpy array if ret_array: data_list = np.array(data_list) return data_list
184ba8a3176991c033bf339517650205089b4493
2,341
from typing import Dict from typing import Any from typing import List def file_command(client: Client, args: Dict[str, Any], params: Dict[str, Any]) -> List[CommandResults]: """ Returns file's reputation """ files = argToList(args.get('file')) since = convert_string_to_epoch_time(args.get('since'), arg_name='since') until = convert_string_to_epoch_time(args.get('until'), arg_name='until') limit = arg_to_number(args.get('limit'), arg_name='limit') headers = argToList(args.get('headers')) reliability = params.get('feedReliability') results: List[CommandResults] = list() for file in files: if get_hash_type(file) not in ('sha256', 'sha1', 'md5'): # check file's validity raise ValueError(f'Hash "{file}" is not of type SHA-256, SHA-1 or MD5') try: raw_response = client.file(file, since, until, limit) except Exception as exception: # If anything happens, handle like there are no results err_msg = f'Could not process file: "{file}"\n {str(exception)}' demisto.debug(err_msg) raw_response = {} if data := raw_response.get('data'): score = calculate_dbot_score(reputation_data=data, params=params) malicious_description = get_malicious_description(score, data, params) dbot_score = Common.DBotScore( indicator=file, indicator_type=DBotScoreType.FILE, integration_name=VENDOR_NAME, score=score, reliability=reliability, malicious_description=malicious_description ) if not headers: headers = ['description', 'status', 'share_level', 'added_on', 'review_status', 'id', 'password', 'sample_size', 'sample_size_compressed', 'sample_type', 'victim_count', 'md5', 'sha1', 'sha256', 'sha3_384', 'ssdeep'] readable_output = tableToMarkdown(f'{CONTEXT_PREFIX} Result for file hash {file}', data, headers=headers) data_entry = data[0] file_indicator = Common.File( dbot_score=dbot_score, file_type=data_entry.get('sample_type'), size=data_entry.get('sample_size'), md5=data_entry.get('md5'), sha1=data_entry.get('sha1'), sha256=data_entry.get('sha256'), ssdeep=data_entry.get('ssdeep'), tags=data_entry.get('tags') ) else: # no data dbot_score = Common.DBotScore( indicator=file, indicator_type=DBotScoreType.FILE, integration_name=VENDOR_NAME, score=Common.DBotScore.NONE, reliability=reliability ) readable_output = f'{CONTEXT_PREFIX} does not have details about file: {file} \n' file_indicator = Common.File( dbot_score=dbot_score ) result = CommandResults( outputs_prefix=f'{CONTEXT_PREFIX}.File', outputs_key_field='id', outputs=data, indicator=file_indicator, readable_output=readable_output, raw_response=raw_response ) results.append(result) return results
3b1313607efe26c8736562d937dd99130b2e8cd8
2,342
import subprocess def run_task(client, cmd, cwd, prerequire=[], shell=False, quiet=False): """ run cmd, in cwd cmd should be a list (*args), if shell is False when wildcards are used, shell should be Ture, and cmd is just a string prerequire is a list of futures that must be gathered before the cmd can run """ if not quiet: print(f"starting job {cmd} in {cwd}") client.gather(prerequire) return client.submit(subprocess.run, cmd, stdout=subprocess.PIPE,stderr=subprocess.STDOUT, shell=shell, check=True, cwd=cwd, key=create_uid())
8c2aeeccfd36fcfa6fd72c5215f68a1f8946c032
2,343
import scipy def Kane_2D_builder(N,dis,mu,B=0, params={},crystal='zincblende', mesh=0, sparse='yes'): """ 2D 8-band k.p Hamiltonian builder. It obtaines the Hamiltoninan for a 3D wire which is infinite in one direction, decribed using 8-band k.p theory. Parameters ---------- N: int or arr Number of sites. dis: int or arr Distance (in nm) between sites. mu: float or arr Chemical potential. If it is an array, each element is the on-site chemical potential. B: float Magnetic field along the wire's direction. params: dic or str Kane/Luttinger parameters of the k.p Hamiltonian. 'InAs', 'InSb', 'GaAs' and 'GaSb' selects the defult parameters for these materials. crystal: {'zincblende','wurtzite','minimal'} Crystal symmetry along the nanowire growth. 'minimal' is a minimal model in which the intra-valence band coupling are ignored. mesh: mesh If the discretization is homogeneous, mesh=0. Otherwise, mesh provides a mesh with the position of the sites in the mesh. sparse: {"yes","no"} Sparsety of the built Hamiltonian. "yes" builds a dok_sparse matrix, while "no" builds a dense matrix. Returns ------- H: arr Hamiltonian matrix. """ if (params=={} or params=='InAs') and crystal=='minimal': gamma0, gamma1, gamma2, gamma3 = 1, 0,0,0 P, m_eff = 919.7, 1.0 EF, Ecv, Evv, Ep = 0, -417, -390, (cons.hbar**2/(2*m_eff*cons.m_e)/cons.e*1e3*(1e9)**2)**(-1)*P**2 elif (params=={} or params=='InSb') and crystal=='minimal': gamma0, gamma1, gamma2, gamma3 = 1, 0,0,0 P, m_eff = 940.2, 1.0 EF, Ecv, Evv, Ep = 0, -235, -810, (cons.hbar**2/(2*m_eff*cons.m_e)/cons.e*1e3*(1e9)**2)**(-1)*P**2 elif (params=={} or params=='InAs') and (crystal=='zincblende'): gamma0, gamma1, gamma2, gamma3 = 1, 20.4, 8.3, 9.1 P, m_eff = 919.7, 1.0 EF, Ecv, Evv, Ep = 0, -417, -390, (cons.hbar**2/(2*m_eff*cons.m_e)/cons.e*1e3*(1e9)**2)**(-1)*P**2 gamma1, gamma2, gamma3 = gamma1-np.abs(Ep/(3*Ecv)), gamma2-np.abs(Ep/(6*Ecv)), gamma3-np.abs(Ep/(6*Ecv)) elif (params=={} or params=='InSb') and (crystal=='zincblende'): gamma0, gamma1, gamma2, gamma3 = 1, 34.8, 15.5, 16.5 P, m_eff = 940.2, 1.0 EF, Ecv, Evv, Ep = 0, -235, -810, (cons.hbar**2/(2*m_eff*cons.m_e)/cons.e*1e3*(1e9)**2)**(-1)*P**2 gamma1, gamma2, gamma3 = gamma1-np.abs(Ep/(3*Ecv)), gamma2-np.abs(Ep/(6*Ecv)), gamma3-np.abs(Ep/(6*Ecv)) elif (params=={} or params=='GaAs') and (crystal=='zincblende'): gamma0, gamma1, gamma2, gamma3 = 1, 6.98, 2.06, 2.93 P, m_eff = 1097.45, 1.0 EF, Ecv, Evv, Ep = 0, -1519, -341, (cons.hbar**2/(2*m_eff*cons.m_e)/cons.e*1e3*(1e9)**2)**(-1)*P**2 Ep=3/(0.063)/(3/np.abs(Ecv)+1/np.abs(Ecv+Evv)) gamma1, gamma2, gamma3 = gamma1-np.abs(Ep/(3*Ecv)), gamma2-np.abs(Ep/(6*Ecv)), gamma3-np.abs(Ep/(6*Ecv)) elif (params=={} or params=='GaSb') and (crystal=='zincblende'): gamma0, gamma1, gamma2, gamma3 = 1, 13.4, 4.7, 6.0 P, m_eff = 971.3, 1.0 EF, Ecv, Evv, Ep = 0, -812, -760, (cons.hbar**2/(2*m_eff*cons.m_e)/cons.e*1e3*(1e9)**2)**(-1)*P**2 gamma1, gamma2, gamma3 = gamma1-np.abs(Ep/(3*Ecv)), gamma2-np.abs(Ep/(6*Ecv)), gamma3-np.abs(Ep/(6*Ecv)) elif (params=={} or params=='InAs') and (crystal=='wurtzite'): m_eff = 1.0 D1,D2,D3,D4=100.3,102.3,104.1,38.8 A1,A2,A3,A4,A5,A6,A7=-1.5726,-1.6521,-2.6301,0.5126,0.1172,1.3103,-49.04 B1,B2,B3=-2.3925,2.3155,-1.7231 e1,e2=-3.2005,0.6363 P1,P2=838.6,689.87 alpha1,alpha2,alpha3=-1.89,-28.92,-51.17 beta1,beta2=-6.95,-21.71 gamma1,Ec, Ev=53.06,0,-664.9 elif crystal=='minimal' or crystal=='zincblende': gamma0, gamma1, gamma2, gamma3 = params['gamma0'], params['gamma1'], params['gamma2'], params['gamma3'] P, m_eff = params['P'], params['m_eff'] EF, Ecv, Evv = params['EF'], params['Ecv'], params['Evv'] if crystal=='zincblende': Ep=(cons.hbar**2/(2*m_eff*cons.m_e)/cons.e*1e3*(1e9)**2)**(-1)*P**2 gamma1, gamma2, gamma3 = gamma1-np.abs(Ep/(3*Ecv)), gamma2-np.abs(Ep/(6*Ecv)), gamma3-np.abs(Ep/(6*Ecv)) ## Make sure that the onsite parameters are arrays: Nx, Ny = N[0], N[1] if np.ndim(dis)==0: dis_x, dis_y = dis, dis else: dis_x, dis_y = dis[0], dis[1] if np.isscalar(mesh): xi_x, xi_y = np.ones(N), np.ones(N) elif len(mesh)==2: xi_x, xi_y = dis_x/mesh[0]*np.ones(N), dis_y/mesh[1]*np.ones(N) else: xi_x, xi_y = dis_x/mesh[0], dis_y/mesh[1] if np.isscalar(mu): mu = mu * np.ones((Nx,Ny)) #Number of bands and sites m_b = 8 * Nx * Ny m_s = Nx * Ny #Obtain the eigenenergies: tx=cons.hbar**2/(2*m_eff*cons.m_e*(dis_x*1e-9)**2)/cons.e*1e3*(xi_x[1::,:]+xi_x[:-1,:])/2 ty=cons.hbar**2/(2*m_eff*cons.m_e*(dis_y*1e-9)**2)/cons.e*1e3*(xi_y[:,1::]+xi_y[:,:-1])/2 txy=cons.hbar**2/(2*m_eff*cons.m_e*(dis_x*1e-9)*(dis_y*1e-9))/cons.e*1e3*np.append(np.zeros((1,Ny)),xi_x[1::,:]+xi_x[:-1,:],axis=0)/2*np.append(np.zeros((Nx,1)),xi_y[:,1::]+xi_y[:,:-1],axis=1)/2 txy=txy[1::,1::] ax=(xi_x[1::,:]+xi_x[:-1,:])/2/(2*dis_x) ay=(xi_y[:,1::]+xi_y[:,:-1])/2/(2*dis_y) e = np.append(2*tx[0,:].reshape(1,Ny),np.append(tx[1::,:]+tx[:-1,:],2*tx[-1,:].reshape(1,Ny),axis=0),axis=0) em = e - np.append(2*ty[:,0].reshape(Nx,1),np.append(ty[:,1::]+ty[:,:-1],2*ty[:,-1].reshape(Nx,1),axis=1),axis=1) e += np.append(2*ty[:,0].reshape(Nx,1),np.append(ty[:,1::]+ty[:,:-1],2*ty[:,-1].reshape(Nx,1),axis=1),axis=1) ty=np.insert(ty,np.arange(Ny-1,(Ny-1)*Nx,(Ny-1)),np.zeros(Nx-1)) ay=np.insert(ay,np.arange(Ny-1,(Ny-1)*Nx,(Ny-1)),np.zeros(Nx-1)) txy=np.insert(txy,np.arange(Ny-1,(Ny-1)*Nx,(Ny-1)),np.zeros(Nx-1)) e, em, mu, tx, ty = e.flatten(), em.flatten(), mu.flatten(), tx.flatten(), ty.flatten() ax,ay=ax.flatten(),ay.flatten() if not(B==0): x, y = np.zeros(N), np.zeros(N) if np.isscalar(mesh) and mesh==0: mesh=np.ones((2,Nx,Ny))*dis[0] for i in range(Nx): for j in range(Ny): x[i,j]=np.sum(mesh[0,0:i+1,j])-(Nx-1)*dis_x/2 y[i,j]=np.sum(mesh[1,i,0:j+1])-(Ny-1)*dis_y/2 for i in range(int((Nx-1)/2)): x[Nx-i-1,:]=-x[i,:] x[int((Nx-1)/2),:]=0 x=x/np.abs(x[0,0])*(Nx-1)*dis_x/2 for j in range(int((Ny-1)/2)): y[:,Ny-j-1]=-y[:,j] y[:,int((Ny-1)/2)]=0 y=y/np.abs(y[0,0])*(Ny-1)*dis_y/2 fact_B=cons.e/cons.hbar*1e-18 Mx, My = -fact_B*y/2*B, fact_B*x/2*B Mx_kx, My_ky = (xi_x[1::,:]*Mx[1::,:]+xi_x[:-1,:]*Mx[:-1,:])/2/(2*dis_x), (xi_y[:,1::]*My[:,1::]+xi_y[:,:-1]*My[:,:-1])/2/(2*dis_y) My_ky=np.insert(My_ky,np.arange(Ny-1,(Ny-1)*Nx,(Ny-1)),np.zeros(Nx-1)) Mm_kx, Mm_ky = (xi_x[1::,:]*(Mx[1::,:]-1j*My[1::,:])+xi_x[:-1,:]*(Mx[:-1,:]-1j*My[:-1,:]))/2/(2*dis_x), -(xi_y[:,1::]*(Mx[:,1::]+1j*My[:,1::])+xi_y[:,:-1]*(Mx[:,:-1]+1j*My[:,:-1]))/2/(2*dis_y) Mm_ky=np.insert(Mm_ky,np.arange(Ny-1,(Ny-1)*Nx,(Ny-1)),np.zeros(Nx-1)) Mx, My = Mx.flatten(), My.flatten() Mx_kx, My_ky = Mx_kx.flatten(), My_ky.flatten() Mm_kx, Mm_ky = Mm_kx.flatten(), Mm_ky.flatten() ## Built the Hamiltonian: if crystal=='zincblende': T=(concatenate((e,-tx,-tx,-ty,-ty)), concatenate((diagonal(m_s),diagonal(m_s,k=Ny),diagonal(m_s,k=-Ny),diagonal(m_s,k=1),diagonal(m_s,k=-1)))) G1=(concatenate((P/np.sqrt(6)*ay,-P/np.sqrt(6)*ay,-1j*P/np.sqrt(6)*ax,1j*P/np.sqrt(6)*ax)), concatenate((diagonal(m_s,k=1),diagonal(m_s,k=-1),diagonal(m_s,k=Ny),diagonal(m_s,k=-Ny)))) O1=(concatenate(((-1/np.sqrt(3)*(gamma2+2*gamma3))*em,-tx*(-1/np.sqrt(3)*(gamma2+2*gamma3)),-tx*(-1/np.sqrt(3)*(gamma2+2*gamma3)), (ty*(-1/np.sqrt(3)*(gamma2+2*gamma3))),ty*(-1/np.sqrt(3)*(gamma2+2*gamma3)),-1j*txy[0:-1]/2*(-1/np.sqrt(3)*(gamma2+2*gamma3)), (1j*txy/2*(-1/np.sqrt(3)*(gamma2+2*gamma3))),1j*txy/2*(-1/np.sqrt(3)*(gamma2+2*gamma3)),-1j*txy[0:-1]/2*(-1/np.sqrt(3)*(gamma2+2*gamma3)))), concatenate((diagonal(m_s),diagonal(m_s,k=Ny),diagonal(m_s,k=-Ny),diagonal(m_s,k=1),diagonal(m_s,k=-1),diagonal(m_s,k=Ny+1),diagonal(m_s,k=Ny-1,init=1),diagonal(m_s,k=-Ny+1,init=1),diagonal(m_s,k=-Ny-1)))) if not(B==0): B_m=((Mx-1j*My),(diagonal(m_s))) B_s=(((Mx**2+My**2)*cons.hbar**2/(2*m_eff*cons.m_e*1e-18)/cons.e*1e3),(diagonal(m_s))) B_k=(concatenate((-2*1j*My_ky*cons.hbar**2/(2*m_eff*cons.m_e*1e-18)/cons.e*1e3, 2*1j*My_ky*cons.hbar**2/(2*m_eff*cons.m_e*1e-18)/cons.e*1e3, -2*1j*Mx_kx*cons.hbar**2/(2*m_eff*cons.m_e*1e-18)/cons.e*1e3, 2*1j*Mx_kx*cons.hbar**2/(2*m_eff*cons.m_e*1e-18)/cons.e*1e3)),concatenate((diagonal(m_s,k=1),diagonal(m_s,k=-1),diagonal(m_s,k=Ny),diagonal(m_s,k=-Ny)))) B_s_m=(((Mx**2-My**2-2*1j*Mx*My)*cons.hbar**2/(2*m_eff*cons.m_e*1e-18)/cons.e*1e3),(diagonal(m_s))) B_k_m=(concatenate((2*Mm_ky*cons.hbar**2/(2*m_eff*cons.m_e*1e-18)/cons.e*1e3, -2*Mm_ky*cons.hbar**2/(2*m_eff*cons.m_e*1e-18)/cons.e*1e3, -2*1j*Mm_kx*cons.hbar**2/(2*m_eff*cons.m_e*1e-18)/cons.e*1e3, 2*1j*Mm_kx*cons.hbar**2/(2*m_eff*cons.m_e*1e-18)/cons.e*1e3)),concatenate((diagonal(m_s,k=1),diagonal(m_s,k=-1),diagonal(m_s,k=Ny),diagonal(m_s,k=-Ny)))) ### Upper diagonal: ## row 0: # (0,2) args=G1[0] index=(G1[1][0]+0,G1[1][1]+2*m_s) # (0,4) args=np.append(args,np.conj(G1[0])*np.sqrt(3)) index=(np.append(index[0],G1[1][1]+0),np.append(index[1],G1[1][0]+4*m_s)) # (0,7) args=np.append(args,G1[0]*np.sqrt(2)) index=(np.append(index[0],G1[1][0]+0),np.append(index[1],G1[1][1]+7*m_s)) ## row 1: # (1,3) args=np.append(args,-G1[0]*np.sqrt(3)) index=(np.append(index[0],G1[1][0]+m_s), np.append(index[1],G1[1][1]+3*m_s)) # (1,5) args=np.append(args,-np.conj(G1[0])) index=(np.append(index[0],G1[1][1]+m_s),np.append(index[1],G1[1][0]+5*m_s)) # (1,6) args=np.append(args,np.sqrt(2)*np.conj(G1[0])) index=(np.append(index[0],G1[1][1]+m_s), np.append(index[1],G1[1][0]+6*m_s)) ## row 2: # (2,4) args=np.append(args,O1[0]) index=(np.append(index[0],O1[1][0]+2*m_s),np.append(index[1],O1[1][1]+4*m_s)) # (2,7) args=np.append(args,-np.sqrt(2)*T[0]*gamma3) index=(np.append(index[0],T[1][0]+2*m_s),np.append(index[1],T[1][1]+7*m_s)) ## row 3: # (3,5) args=np.append(args,O1[0]) index=(np.append(index[0],O1[1][0]+3*m_s),np.append(index[1],O1[1][1]+5*m_s)) # (3,6) args=np.append(args,-np.sqrt(2)*np.conj(O1[0])) index=(np.append(index[0],O1[1][1]+3*m_s),np.append(index[1],O1[1][0]+6*m_s)) ## row 4: # (4,7) args=np.append(args,np.sqrt(2)*np.conj(O1[0])) index=(np.append(index[0],O1[1][1]+4*m_s),np.append(index[1],O1[1][0]+7*m_s)) ## row 5: # (5,6) args=np.append(args,np.sqrt(2)*T[0]*gamma3) index=(np.append(index[0],T[1][0]+5*m_s),np.append(index[1],T[1][1]+6*m_s)) # # If there is magentic field: if not(B==0): ## row 0: # (0,2) args=np.append(args,P/np.sqrt(6)*np.conj(B_m[0])) index=(np.append(index[0],B_m[1][1]+0),np.append(index[1],B_m[1][0]+2*m_s)) # (0,4) args=np.append(args,P/np.sqrt(2)*B_m[0]) index=(np.append(index[0],B_m[1][0]+0),np.append(index[1],B_m[1][1]+4*m_s)) # (0,7) args=np.append(args,P/np.sqrt(3)*np.conj(B_m[0])) index=(np.append(index[0],B_m[1][1]+0),np.append(index[1],B_m[1][0]+7*m_s)) ## row 1: # (1,3) args=np.append(args,-P/np.sqrt(2)*np.conj(B_m[0])) index=(np.append(index[0],B_m[1][1]+m_s),np.append(index[1],B_m[1][0]+3*m_s)) # (1,5) args=np.append(args,-P/np.sqrt(6)*B_m[0]) index=(np.append(index[0],B_m[1][0]+m_s),np.append(index[1],B_m[1][1]+5*m_s)) # (1,6) args=np.append(args,P/np.sqrt(3)*B_m[0]) index=(np.append(index[0],B_m[1][0]+m_s),np.append(index[1],B_m[1][1]+6*m_s)) ## row 2: # (2,7) args=np.append(args,-np.sqrt(2)*gamma3*B_s[0]) index=(np.append(index[0],B_s[1][0]+2*m_s),np.append(index[1],B_s[1][1]+7*m_s)) args=np.append(args,-np.sqrt(2)*gamma3*B_k[0]) index=(np.append(index[0],B_k[1][0]+2*m_s),np.append(index[1],B_k[1][1]+7*m_s)) # (2,4) args=np.append(args,-1/np.sqrt(3)*(gamma2+2*gamma3)*B_s_m[0]) index=(np.append(index[0],B_s_m[1][0]+2*m_s),np.append(index[1],B_s_m[1][1]+4*m_s)) args=np.append(args,-1/np.sqrt(3)*(gamma2+2*gamma3)*B_k_m[0]) index=(np.append(index[0],B_k_m[1][0]+2*m_s),np.append(index[1],B_k_m[1][1]+4*m_s)) ## row 3: # (3,5) args=np.append(args,-1/np.sqrt(3)*(gamma2+2*gamma3)*B_s_m[0]) index=(np.append(index[0],B_s_m[1][0]+3*m_s),np.append(index[1],B_s_m[1][1]+5*m_s)) args=np.append(args,-1/np.sqrt(3)*(gamma2+2*gamma3)*B_k_m[0]) index=(np.append(index[0],B_k_m[1][0]+3*m_s),np.append(index[1],B_k_m[1][1]+5*m_s)) # (3,6) args=np.append(args,np.sqrt(2/3)*(gamma2+2*gamma3)*np.conj(B_s_m[0])) index=(np.append(index[0],B_s_m[1][1]+3*m_s),np.append(index[1],B_s_m[1][0]+6*m_s)) args=np.append(args,np.sqrt(2/3)*(gamma2+2*gamma3)*np.conj(B_k_m[0])) index=(np.append(index[0],B_k_m[1][1]+3*m_s),np.append(index[1],B_k_m[1][0]+6*m_s)) ## row 4: # (4,7) args=np.append(args,-np.sqrt(2/3)*(gamma2+2*gamma3)*np.conj(B_s_m[0])) index=(np.append(index[0],B_s_m[1][1]+4*m_s),np.append(index[1],B_s_m[1][0]+7*m_s)) args=np.append(args,-np.sqrt(2/3)*(gamma2+2*gamma3)*np.conj(B_k_m[0])) index=(np.append(index[0],B_k_m[1][1]+4*m_s),np.append(index[1],B_k_m[1][0]+7*m_s)) ## row 5: # (5,6) args=np.append(args,np.sqrt(2)*gamma3*B_s[0]) index=(np.append(index[0],B_s[1][0]+5*m_s),np.append(index[1],B_s[1][1]+6*m_s)) args=np.append(args,np.sqrt(2)*gamma3*B_k[0]) index=(np.append(index[0],B_k[1][0]+5*m_s),np.append(index[1],B_k[1][1]+6*m_s)) ### Lower diagonal: args=np.append(args,np.conj(args)) index=(np.append(index[0],index[1]),np.append(index[1],index[0])) ### Diagonal: # (0,0) args=np.append(args,T[0]) index=(np.append(index[0],T[1][0]+0),np.append(index[1],T[1][1]+0)) # (1,1) args=np.append(args,T[0]) index=(np.append(index[0],T[1][0]+m_s),np.append(index[1],T[1][1]+m_s)) # (2,2) args=np.append(args,(gamma3-gamma1)*T[0]) index=(np.append(index[0],T[1][0]+2*m_s),np.append(index[1],T[1][1]+2*m_s)) # (3,3) args=np.append(args,-(gamma3+gamma1)*T[0]) index=(np.append(index[0],T[1][0]+3*m_s),np.append(index[1],T[1][1]+3*m_s)) # (4,4) args=np.append(args,-(gamma3+gamma1)*T[0]) index=(np.append(index[0],T[1][0]+4*m_s),np.append(index[1],T[1][1]+4*m_s)) # (5,5) args=np.append(args,(gamma3-gamma1)*T[0]) index=(np.append(index[0],T[1][0]+5*m_s),np.append(index[1],T[1][1]+5*m_s)) # (6,6) args=np.append(args,-gamma1*T[0]) index=(np.append(index[0],T[1][0]+6*m_s),np.append(index[1],T[1][1]+6*m_s)) # (7,7) args=np.append(args,-gamma1*T[0]) index=(np.append(index[0],T[1][0]+7*m_s),np.append(index[1],T[1][1]+7*m_s)) if not(B==0): # (0,0) args=np.append(args,B_s[0]) index=(np.append(index[0],B_s[1][0]+0),np.append(index[1],B_s[1][1]+0)) args=np.append(args,B_k[0]) index=(np.append(index[0],B_k[1][0]+0),np.append(index[1],B_k[1][1]+0)) # (1,1) args=np.append(args,B_s[0]) index=(np.append(index[0],B_s[1][0]+m_s),np.append(index[1],B_s[1][1]+m_s)) args=np.append(args,B_k[0]) index=(np.append(index[0],B_k[1][0]+m_s),np.append(index[1],B_k[1][1]+m_s)) # (2,2) args=np.append(args,(gamma3-gamma1)*B_s[0]) index=(np.append(index[0],B_s[1][0]+2*m_s),np.append(index[1],B_s[1][1]+2*m_s)) args=np.append(args,(gamma3-gamma1)*B_k[0]) index=(np.append(index[0],B_k[1][0]+2*m_s),np.append(index[1],B_k[1][1]+2*m_s)) # (3,3) args=np.append(args,-(gamma3+gamma1)*B_s[0]) index=(np.append(index[0],B_s[1][0]+3*m_s),np.append(index[1],B_s[1][1]+3*m_s)) args=np.append(args,-(gamma3-gamma1)*B_k[0]) index=(np.append(index[0],B_k[1][0]+3*m_s),np.append(index[1],B_k[1][1]+3*m_s)) # (4,4) args=np.append(args,-(gamma3+gamma1)*B_s[0]) index=(np.append(index[0],B_s[1][0]+4*m_s),np.append(index[1],B_s[1][1]+4*m_s)) args=np.append(args,-(gamma3-gamma1)*B_k[0]) index=(np.append(index[0],B_k[1][0]+4*m_s),np.append(index[1],B_k[1][1]+4*m_s)) # (5,5) args=np.append(args,(gamma3-gamma1)*B_s[0]) index=(np.append(index[0],B_s[1][0]+5*m_s),np.append(index[1],B_s[1][1]+5*m_s)) args=np.append(args,(gamma3-gamma1)*B_k[0]) index=(np.append(index[0],B_k[1][0]+5*m_s),np.append(index[1],B_k[1][1]+5*m_s)) # (6,6) args=np.append(args,-gamma1*B_s[0]) index=(np.append(index[0],B_s[1][0]+6*m_s),np.append(index[1],B_s[1][1]+6*m_s)) args=np.append(args,-gamma1*B_k[0]) index=(np.append(index[0],B_k[1][0]+6*m_s),np.append(index[1],B_k[1][1]+6*m_s)) # (7,7) args=np.append(args,-gamma1*B_s[0]) index=(np.append(index[0],B_s[1][0]+7*m_s),np.append(index[1],B_s[1][1]+7*m_s)) args=np.append(args,-gamma1*B_k[0]) index=(np.append(index[0],B_k[1][0]+7*m_s),np.append(index[1],B_k[1][1]+7*m_s)) ### Built matrix: H=scipy.sparse.csc_matrix((args,index),shape=(m_b,m_b)) if sparse=='no': H=H.todense() ### Add potential and band edges: H[diagonal(m_b)]+=-np.tile(mu,8) + concatenate((EF*np.ones(2*m_s),Ecv*np.ones(4*m_s),(Ecv+Evv)*np.ones(2*m_s))) elif crystal=='wurtzite': Kc=(concatenate((e,-tx,-tx,-ty,-ty)), concatenate((diagonal(m_s),diagonal(m_s,k=Ny),diagonal(m_s,k=-Ny),diagonal(m_s,k=1),diagonal(m_s,k=-1)))) Kp=(concatenate((ay,-ay,-1j*ax,1j*ax)), concatenate((diagonal(m_s,k=1),diagonal(m_s,k=-1),diagonal(m_s,k=Ny),diagonal(m_s,k=-Ny)))) Kpc=(concatenate((em,-tx,-tx,ty,ty,-1j*txy[0:-1]/2,1j*txy/2,1j*txy/2,-1j*txy[0:-1]/2)), concatenate((diagonal(m_s),diagonal(m_s,k=Ny),diagonal(m_s,k=-Ny),diagonal(m_s,k=1),diagonal(m_s,k=-1),diagonal(m_s,k=Ny+1),diagonal(m_s,k=Ny-1,init=1),diagonal(m_s,k=-Ny+1,init=1),diagonal(m_s,k=-Ny-1)))) ### Upper diagonal: ## row 0: # (0,1) args=-A5*np.conj(Kpc[0]) index=(Kpc[1][1]+0,Kpc[1][0]+m_s) # (0,2) args=np.append(args,1j*(A7-alpha1/np.sqrt(2))*np.conj(Kp[0])) index=(np.append(index[0],Kp[1][1]+0),np.append(index[1],Kp[1][0]+2*m_s)) # (0,4) args=np.append(args,-1j*alpha2*np.conj(Kp[0])) index=(np.append(index[0],Kp[1][1]+0),np.append(index[1],Kp[1][0]+4*m_s)) # (0,6) args=np.append(args,-(P2-beta1)/np.sqrt(2)*np.conj(Kp[0])) index=(np.append(index[0],Kp[1][1]+0),np.append(index[1],Kp[1][0]+6*m_s)) ## row 1: # (1,2) args=np.append(args,-1j*(A7+alpha1/np.sqrt(2))*Kp[0]) index=(np.append(index[0],Kp[1][0]+m_s),np.append(index[1],Kp[1][1]+2*m_s)) # (1,3) args=np.append(args,-1j*alpha2*np.conj(Kp[0])) index=(np.append(index[0],Kp[1][1]+m_s),np.append(index[1],Kp[1][0]+3*m_s)) # (1,5) args=np.append(args,np.sqrt(2)*D3*np.ones(m_s)) index=(np.append(index[0],diagonal(m_s)[0]+m_s),np.append(index[1],diagonal(m_s)[1]+5*m_s)) # (1,6) args=np.append(args,(P2+beta1)/np.sqrt(2)*Kp[0]) index=(np.append(index[0],Kp[1][0]+m_s),np.append(index[1],Kp[1][1]+6*m_s)) # (1,7) args=np.append(args,1j*np.sqrt(2)*D4*np.ones(m_s)) index=(np.append(index[0],diagonal(m_s)[0]+m_s),np.append(index[1],diagonal(m_s)[1]+7*m_s)) ## row 2: # (2,4) args=np.append(args,np.sqrt(2)*D3*np.ones(m_s)) index=(np.append(index[0],diagonal(m_s)[0]+2*m_s),np.append(index[1],diagonal(m_s)[1]+4*m_s)) # (2,5) args=np.append(args,-1j*alpha3*np.conj(Kp[0])) index=(np.append(index[0],Kp[1][1]+2*m_s),np.append(index[1],Kp[1][0]+5*m_s)) # (2,6) args=np.append(args, 1j*B2*Kc[0]) index=(np.append(index[0],Kc[1][0]+2*m_s),np.append(index[1],Kc[1][1]+6*m_s)) # (2,7) args=np.append(args, beta2*np.conj(Kp[0])) index=(np.append(index[0],Kp[1][1]+2*m_s),np.append(index[1],Kp[1][0]+7*m_s)) ## row 3: # (3,4) args=np.append(args,-A5*Kpc[0]) index=(np.append(index[0],Kpc[1][0]+3*m_s),np.append(index[1],Kpc[1][1]+4*m_s)) # (3,5) args=np.append(args,-1j*(A7-alpha1/np.sqrt(2))*Kp[0]) index=(np.append(index[0],Kp[1][0]+3*m_s),np.append(index[1],Kp[1][1]+5*m_s)) # (3,7) args=np.append(args,(P2-beta1)/np.sqrt(2)*Kp[0]) index=(np.append(index[0],Kp[1][0]+3*m_s),np.append(index[1],Kp[1][1]+7*m_s)) ## row 4: # (4,5) args=np.append(args,1j*(A7+alpha1/np.sqrt(2))*np.conj(Kp[0])) index=(np.append(index[0],Kp[1][1]+4*m_s),np.append(index[1],Kp[1][0]+5*m_s)) # (4,6) args=np.append(args,1j*np.sqrt(2)*D4*np.ones(m_s)) index=(np.append(index[0],diagonal(m_s)[0]+4*m_s),np.append(index[1],diagonal(m_s)[1]+6*m_s)) # (4,7) args=np.append(args,-(P2+beta1)/np.sqrt(2)*np.conj(Kp[0])) index=(np.append(index[0],Kp[1][1]+4*m_s),np.append(index[1],Kp[1][0]+7*m_s)) ## row 5: # (5,6) args=np.append(args,-beta2*Kp[0]) index=(np.append(index[0],Kp[1][0]+5*m_s),np.append(index[1],Kp[1][1]+6*m_s)) # (5,7) args=np.append(args, 1j*B2*Kc[0]) index=(np.append(index[0],Kc[1][0]+5*m_s),np.append(index[1],Kc[1][1]+7*m_s)) ## row 6: # (6,7) args=np.append(args,-1j*gamma1*np.conj(Kp[0])) index=(np.append(index[0],Kp[1][1]+6*m_s),np.append(index[1],Kp[1][0]+7*m_s)) ### Lower diagonal: args=np.append(args,np.conj(args)) index=(np.append(index[0],index[1]),np.append(index[1],index[0])) ### Diagonal: # (0,0) args=np.append(args,(A2+A4)*Kc[0]) index=(np.append(index[0],Kc[1][0]+0),np.append(index[1],Kc[1][1]+0)) # (1,1) args=np.append(args,(A2+A4)*Kc[0]) index=(np.append(index[0],Kc[1][0]+m_s),np.append(index[1],Kc[1][1]+m_s)) # (2,2) args=np.append(args,(A2)*Kc[0]) index=(np.append(index[0],Kc[1][0]+2*m_s),np.append(index[1],Kc[1][1]+2*m_s)) # (3,3) args=np.append(args,(A2+A4)*Kc[0]) index=(np.append(index[0],Kc[1][0]+3*m_s),np.append(index[1],Kc[1][1]+3*m_s)) # (4,4) args=np.append(args,(A2+A4)*Kc[0]) index=(np.append(index[0],Kc[1][0]+4*m_s),np.append(index[1],Kc[1][1]+4*m_s)) # (5,5) args=np.append(args,(A2)*Kc[0]) index=(np.append(index[0],Kc[1][0]+5*m_s),np.append(index[1],Kc[1][1]+5*m_s)) # (6,6) args=np.append(args,(e2)*Kc[0]) index=(np.append(index[0],Kc[1][0]+6*m_s),np.append(index[1],Kc[1][1]+6*m_s)) # (7,7) args=np.append(args,(e2)*Kc[0]) index=(np.append(index[0],Kc[1][0]+7*m_s),np.append(index[1],Kc[1][1]+7*m_s)) ### Built matrix: H=scipy.sparse.csc_matrix((args,index),shape=(m_b,m_b)) if sparse=='no': H=H.todense() ### Add potential and band edges: H[diagonal(m_b)]+=-np.tile(mu,8) + concatenate(((D1+D2+Ev)*np.ones(m_s),(D1-D2+Ev)*np.ones(m_s),(Ev)*np.ones(m_s), (D1+D2+Ev)*np.ones(m_s),(D1-D2+Ev)*np.ones(m_s),(Ev)*np.ones(m_s), (Ec)*np.ones(m_s),(Ec)*np.ones(m_s))) elif crystal=='minimal': T=(concatenate((e,-tx,-tx,-ty,-ty)), concatenate((diagonal(m_s),diagonal(m_s,k=Ny),diagonal(m_s,k=-Ny),diagonal(m_s,k=1),diagonal(m_s,k=-1)))) G1=(concatenate((P/np.sqrt(6)*ay,-P/np.sqrt(6)*ay,-1j*P/np.sqrt(6)*ax,1j*P/np.sqrt(6)*ax)), concatenate((diagonal(m_s,k=1),diagonal(m_s,k=-1),diagonal(m_s,k=Ny),diagonal(m_s,k=-Ny)))) if not(B==0): B_m=((Mx-1j*My),(diagonal(m_s))) B_s=(((Mx**2+My**2)*cons.hbar**2/(2*m_eff*cons.m_e*1e-18)/cons.e*1e3),(diagonal(m_s))) B_k=(concatenate((-2*1j*My_ky*cons.hbar**2/(2*m_eff*cons.m_e*1e-18)/cons.e*1e3, 2*1j*My_ky*cons.hbar**2/(2*m_eff*cons.m_e*1e-18)/cons.e*1e3, -2*1j*Mx_kx*cons.hbar**2/(2*m_eff*cons.m_e*1e-18)/cons.e*1e3, 2*1j*Mx_kx*cons.hbar**2/(2*m_eff*cons.m_e*1e-18)/cons.e*1e3)),concatenate((diagonal(m_s,k=1),diagonal(m_s,k=-1),diagonal(m_s,k=Ny),diagonal(m_s,k=-Ny)))) ### Upper diagonal: ## row 0: # (0,2) args=G1[0] index=(G1[1][0]+0,G1[1][1]+2*m_s) # (0,4) args=np.append(args,np.conj(G1[0])*np.sqrt(3)) index=(np.append(index[0],G1[1][1]+0),np.append(index[1],G1[1][0]+4*m_s)) # (0,7) args=np.append(args,G1[0]*np.sqrt(2)) index=(np.append(index[0],G1[1][0]+0),np.append(index[1],G1[1][1]+7*m_s)) ## row 1: # (1,3) args=np.append(args,-G1[0]*np.sqrt(3)) index=(np.append(index[0],G1[1][0]+m_s), np.append(index[1],G1[1][1]+3*m_s)) # (1,5) args=np.append(args,-np.conj(G1[0])) index=(np.append(index[0],G1[1][1]+m_s),np.append(index[1],G1[1][0]+5*m_s)) # (1,6) args=np.append(args,np.sqrt(2)*np.conj(G1[0])) index=(np.append(index[0],G1[1][1]+m_s), np.append(index[1],G1[1][0]+6*m_s)) ## If there is magentic field: if not(B==0): ## row 0: # (0,2) args=np.append(args,P/np.sqrt(6)*np.conj(B_m[0])) index=(np.append(index[0],B_m[1][1]+0),np.append(index[1],B_m[1][0]+2*m_s)) # (0,4) args=np.append(args,P/np.sqrt(2)*B_m[0]) index=(np.append(index[0],B_m[1][0]+0),np.append(index[1],B_m[1][1]+4*m_s)) # (0,7) args=np.append(args,P/np.sqrt(3)*np.conj(B_m[0])) index=(np.append(index[0],B_m[1][1]+0),np.append(index[1],B_m[1][0]+7*m_s)) ## row 1: # (1,3) args=np.append(args,-P/np.sqrt(2)*np.conj(B_m[0])) index=(np.append(index[0],B_m[1][1]+m_s),np.append(index[1],B_m[1][0]+3*m_s)) # (1,5) args=np.append(args,-P/np.sqrt(6)*B_m[0]) index=(np.append(index[0],B_m[1][0]+m_s),np.append(index[1],B_m[1][1]+5*m_s)) # (1,6) args=np.append(args,P/np.sqrt(3)*B_m[0]) index=(np.append(index[0],B_m[1][0]+m_s),np.append(index[1],B_m[1][1]+6*m_s)) ### Lower diagonal: args=np.append(args,np.conj(args)) index=(np.append(index[0],index[1]),np.append(index[1],index[0])) ### Diagonal: # (0,0) args=np.append(args,gamma0*T[0]) index=(np.append(index[0],T[1][0]+0),np.append(index[1],T[1][1]+0)) # (1,1) args=np.append(args,gamma0*T[0]) index=(np.append(index[0],T[1][0]+m_s),np.append(index[1],T[1][1]+m_s)) # (2,2) args=np.append(args,-gamma1*T[0]) index=(np.append(index[0],T[1][0]+2*m_s),np.append(index[1],T[1][1]+2*m_s)) # (3,3) args=np.append(args,-gamma1*T[0]) index=(np.append(index[0],T[1][0]+3*m_s),np.append(index[1],T[1][1]+3*m_s)) # (4,4) args=np.append(args,-gamma1*T[0]) index=(np.append(index[0],T[1][0]+4*m_s),np.append(index[1],T[1][1]+4*m_s)) # (5,5) args=np.append(args,-gamma1*T[0]) index=(np.append(index[0],T[1][0]+5*m_s),np.append(index[1],T[1][1]+5*m_s)) # (6,6) args=np.append(args,-gamma1*T[0]) index=(np.append(index[0],T[1][0]+6*m_s),np.append(index[1],T[1][1]+6*m_s)) # (7,7) args=np.append(args,-gamma1*T[0]) index=(np.append(index[0],T[1][0]+7*m_s),np.append(index[1],T[1][1]+7*m_s)) if not(B==0): # (0,0) args=np.append(args,gamma0*B_s[0]) index=(np.append(index[0],B_s[1][0]+0),np.append(index[1],B_s[1][1]+0)) args=np.append(args,gamma0*B_k[0]) index=(np.append(index[0],B_k[1][0]+0),np.append(index[1],B_k[1][1]+0)) # (1,1) args=np.append(args,gamma0*B_s[0]) index=(np.append(index[0],B_s[1][0]+m_s),np.append(index[1],B_s[1][1]+m_s)) args=np.append(args,gamma0*B_k[0]) index=(np.append(index[0],B_k[1][0]+m_s),np.append(index[1],B_k[1][1]+m_s)) # (2,2) args=np.append(args,-gamma1*B_s[0]) index=(np.append(index[0],B_s[1][0]+2*m_s),np.append(index[1],B_s[1][1]+2*m_s)) args=np.append(args,-gamma1*B_k[0]) index=(np.append(index[0],B_k[1][0]+2*m_s),np.append(index[1],B_k[1][1]+2*m_s)) # (3,3) args=np.append(args,-gamma1*B_s[0]) index=(np.append(index[0],B_s[1][0]+3*m_s),np.append(index[1],B_s[1][1]+3*m_s)) args=np.append(args,-gamma1*B_k[0]) index=(np.append(index[0],B_k[1][0]+3*m_s),np.append(index[1],B_k[1][1]+3*m_s)) # (4,4) args=np.append(args,-gamma1*B_s[0]) index=(np.append(index[0],B_s[1][0]+4*m_s),np.append(index[1],B_s[1][1]+4*m_s)) args=np.append(args,-gamma1*B_k[0]) index=(np.append(index[0],B_k[1][0]+4*m_s),np.append(index[1],B_k[1][1]+4*m_s)) # (5,5) args=np.append(args,-gamma1*B_s[0]) index=(np.append(index[0],B_s[1][0]+5*m_s),np.append(index[1],B_s[1][1]+5*m_s)) args=np.append(args,-gamma1*B_k[0]) index=(np.append(index[0],B_k[1][0]+5*m_s),np.append(index[1],B_k[1][1]+5*m_s)) # (6,6) args=np.append(args,-gamma1*B_s[0]) index=(np.append(index[0],B_s[1][0]+6*m_s),np.append(index[1],B_s[1][1]+6*m_s)) args=np.append(args,-gamma1*B_k[0]) index=(np.append(index[0],B_k[1][0]+6*m_s),np.append(index[1],B_k[1][1]+6*m_s)) # (7,7) args=np.append(args,-gamma1*B_s[0]) index=(np.append(index[0],B_s[1][0]+7*m_s),np.append(index[1],B_s[1][1]+7*m_s)) args=np.append(args,-gamma1*B_k[0]) index=(np.append(index[0],B_k[1][0]+7*m_s),np.append(index[1],B_k[1][1]+7*m_s)) ### Built matrix: H=scipy.sparse.csc_matrix((args,index),shape=(m_b,m_b)) if sparse=='no': H=H.todense() ### Add potential and band edges: H[diagonal(m_b)]+=-np.tile(mu,8) + concatenate((EF*np.ones(2*m_s),Ecv*np.ones(4*m_s),(Ecv+Evv)*np.ones(2*m_s))) return (H)
237a706dc3047353b021538a2cf1a75ef6c2768b
2,344
def has_loop(edges, threshold=2): """ check if a list of edges representing a directed graph contains a loop args: edges: list of edge sets representing a directed graph i.e. [(1, 2), (2, 1)] threshold: min number of nodes contained in loop returns: bool """ g = nx.DiGraph() g.add_edges_from(edges) return any(len(comp) >= threshold for comp in strongly_connected_components(g))
5442524bf75fb75cc5639ae4f7412b8935234413
2,345
def connect(host=None, dbname=None, user=None, password=None, minconn=1, maxconn=4): """ Attempts to connect to Postgres. """ if not any((host, dbname, user, password)): host, dbname, user, password = get_db_env() if not any((host, dbname, user, password)): raise Exception('No database connection provided or configured.') return ThreadedConnectionPool(minconn, maxconn, host=host, dbname=dbname, user=user, password=password)
f8aea382b473023f5ea280be55a5b463b52eba49
2,346
def animate( data_cube, slit_data=None, slit_cmap="viridis", raster_pos=None, index_start=None, index_stop=None, interval_ms=50, gamma=0.4, figsize=(7,7), cutoff_percentile=99.9, save_path=None ): """ Creates an animation from the individual images of a data cube. This function can be pretty slow and take 1-2 minutes. Faster alternatives than matplotlib will be researched in the future. Parameters ---------- data_cube : iris_data_cube instance of sji_cube or raster_cube slit_data : numpy.array array with shape [n_steps, n_y] that is drawn on the slit for each step slit_cmap : str colormap to use for the visualisation of slit_data raster_pos : int If not None, only display images at raster postion *raster_pos* index_start : int index where to start animation (defaults to None -> will be set to 0) index_stop : int index where to stop animation (defaults to None -> will be set to n) interval_ms : int number of milliseconds between two frames gamma : float gamma correction for plotting: number between 0 (infinitely gamma correction) and 1 (no gamma correction) figsize : tuple figure size: (width,height) cutoff_percentile : float Often the maximum pixels shine out everything else, even after gamma correction. In order to reduce this effect, the percentile at which to cut the intensity off can be specified with cutoff_percentile in a range between 0 and 100. save_path : str path to file where animation output will be written to (use .mp4 extension) Returns ------- IPython.HTML : HTML object with the animation """ # get number of steps if raster_pos is None: n = data_cube.shape[0] else: n = data_cube.get_raster_pos_steps( raster_pos ) # set default values for index_start and index_stop if index_start is None: index_start=0 if index_stop is None: index_stop=n # raise exception if there is a problem with i_start / i_stop if index_stop > n or index_stop <= index_start: raise Exception("Please make sure that index_start < index_stop < n_steps") # release a duration warning if index_stop-index_start > 100 and ir.config.verbosity_level >= 1: print( "Creating animation with {} frames (this may take while)".format(index_stop-index_start) ) # initialize plot fig = plt.figure( figsize=figsize ) image = data_cube.get_image_step( 0, raster_pos ).clip(min=0.01)**gamma vmax = np.percentile( image, cutoff_percentile ) im = plt.imshow( image, cmap="gist_heat", vmax=vmax, origin='lower', interpolation="none" ) if slit_data is not None: slit_pos = data_cube.get_slit_pos(0) line = plt.scatter( [slit_pos]*image.shape[0], np.arange(image.shape[0]), c=slit_data[0,:], s=5, cmap=slit_cmap, marker='_', vmin=np.min(slit_data), vmax=np.max(slit_data) ) plt.colorbar() # do nothing in the initialization function def init(): return im, # animation function def animate(i, index_start): xcenix = data_cube.headers[i+index_start]['XCENIX'] ycenix = data_cube.headers[i+index_start]['YCENIX'] date_obs = data_cube.headers[i+index_start]['DATE_OBS'] im.axes.set_title( "Frame {}: {}\nXCENIX: {:.3f}, YCENIX: {:.3f}".format( i+index_start, date_obs, xcenix, ycenix ) ) im.set_data( data_cube.get_image_step( i+index_start, raster_pos ).clip(min=0.01)**gamma ) if slit_data is not None: slit_pos = data_cube.get_slit_pos(i) line_data = np.vstack([[slit_pos]*image.shape[0], np.arange(image.shape[0])]).T line.set_offsets(line_data) line.set_array(slit_data[i,:]) return im, # Call the animator. blit=True means only re-draw the parts that have changed. anim = animation.FuncAnimation(fig, lambda i: animate(i, index_start), init_func=init, frames=index_stop-index_start, interval=interval_ms, blit=True) # Close the plot plt.close(anim._fig) # Save animation if requested if save_path is not None: anim.save( save_path ) return HTML(anim.to_html5_video())
af5649258a31280b7cfbca8d14794b0f8e6bd807
2,347
def tau_profile(ncols,vshifts,vdop,which_line,wave_cut_off=2.0): """ Computes a Lyman-alpha Voigt profile for HI or DI given column density, velocity centroid, and b parameter. """ ## defining rest wavelength, oscillator strength, and damping parameter if which_line == 'h1': lam0s,fs,gammas=1215.67,0.4161,6.26e8 elif which_line == 'd1': lam0s,fs,gammas=1215.3394,0.4161,6.27e8 elif which_line == 'mg2_h': lam0s,fs,gammas=2796.3543,6.155E-01,2.625E+08 elif which_line == 'mg2_k': lam0s,fs,gammas=2803.5315,3.058E-01,2.595E+08 else: raise ValueError("which_line can only equal 'h1' or 'd1'!") Ntot=10.**ncols # column density of H I gas nlam=4000 # number of elements in the wavelength grid xsections_onesided=np.zeros(nlam) # absorption cross sections as a # fun<D-O>ction of wavelength (one side of transition) u_parameter=np.zeros(nlam) # Voigt "u" parameter nu0s=ccgs/(lam0s*1e-8) # wavelengths of Lyman alpha in frequency nuds=nu0s*vdop/c_km # delta nus based off vdop parameter a_parameter = np.abs(gammas/(4.*np.pi*nuds) ) # Voigt "a" parameter -- damping parameter xsections_nearlinecenter = np.sqrt(np.pi)*(e**2)*fs*lam0s/(me*ccgs*vdop*1e13) # cross-sections # near Lyman line center wave_edge=lam0s - wave_cut_off # define wavelength cut off - this is important for the brightest lines and should be increased appropriately. wave_symmetrical=np.zeros(2*nlam-1) # huge wavelength array centered around a Lyman transition wave_onesided = np.zeros(nlam) # similar to wave_symmetrical, but not centered # around a Lyman transition lamshifts=lam0s*vshifts/c_km # wavelength shifts from vshifts parameter ## find end point for wave_symmetrical array and create wave_symmetrical array num_elements = 2*nlam - 1 first_point = wave_edge mid_point = lam0s end_point = 2*(mid_point - first_point) + first_point wave_symmetrical = np.linspace(first_point,end_point,num=num_elements) wave_onesided = np.linspace(lam0s,wave_edge,num=nlam) freq_onesided = ccgs / (wave_onesided*1e-8) ## convert "wave_onesided" array to a frequency array u_parameter = (freq_onesided-nu0s)/nuds ## Voigt "u" parameter -- dimensionless frequency offset xsections_onesided=xsections_nearlinecenter*voigt.voigt(a_parameter,u_parameter) ## cross-sections # single sided ## can't do symmetrical xsections_onesided_flipped = xsections_onesided[::-1] ## making the cross-sections symmetrical xsections_symmetrical=np.append(xsections_onesided_flipped[0:nlam-1],xsections_onesided) deltalam=np.max(wave_symmetrical)-np.min(wave_symmetrical) dellam=wave_symmetrical[1]-wave_symmetrical[0] nall=np.round(deltalam/dellam) wave_all=deltalam*(np.arange(nall)/(nall-1))+wave_symmetrical[0] tau_all = np.interp(wave_all,wave_symmetrical+lamshifts,xsections_symmetrical*Ntot) return wave_all,tau_all
bc420a23397650ed19623338a7d45068621218e8
2,348
import logging import sys import requests import os def main(args): """ chandl's entry point. :param args: Command-line arguments, with the program in position 0. """ args = _parse_args(args) # sort out logging output and level level = util.log_level_from_vebosity(args.verbosity) root = logging.getLogger() root.setLevel(level) handler = logging.StreamHandler(sys.stdout) handler.setLevel(level) handler.setFormatter(logging.Formatter('%(levelname)s %(message)s')) root.addHandler(handler) if level != logging.DEBUG: requests.packages.urllib3.disable_warnings() logger.debug(args) try: thread = Thread.from_url(args.url) except (ValueError, IOError) as e: _print_error('Error retrieving thread: {0}'.format(e)) return 1 posts = thread.posts logger.debug('Thread contains %d posts', len(posts)) posts = _remove_unwanted(posts, args) logger.debug('Will download %d posts', len(posts)) # check whether we still have anything to do if not posts: print('All files are either filtered out or excluded') return 0 # use the first post to validate the --name try: post = posts[0] args.name.format(**post.__dict__) except KeyError as e: _print_error('Invalid file name specifier: {0}'.format(e)) return 2 # set an appropriate thread_dir if one was not specified if not args.thread_dir: args.thread_dir = util.make_filename(thread.title) # create --thread-dir write_dir = os.path.abspath(os.path.join(args.output_dir, args.thread_dir)) if not os.path.isdir(write_dir): try: os.mkdir(write_dir, 0o700) except OSError as e: _print_error( 'Failed to create the thread directory at {0}: {1}'.format( write_dir, e)) return 3 # show a relative path is there is a common directory (below root) between # the `pwd` and the write_dir, otherwise show the absolute path display_path = write_dir \ if os.path.dirname(os.path.commonprefix([write_dir, os.getcwd()])) == '/' \ else os.path.relpath(write_dir, os.getcwd()) # download the files print('Saving \'{0}\' to \'{1}\''.format(thread.title, display_path)) downloader = Downloader(write_dir, args.name, args.parallelism) print(downloader.download(posts, level >= logging.WARNING)) return 0
57bdf9d8a9da0725192b5f9f5e539d35a0fcad47
2,349
def welcome_page(): """ On-boarding page """ g.project.update_on_boarding_state() if g.project.on_boarding['import']: return redirect(url_for('data_manager_blueprint.tasks_page')) return flask.render_template( 'welcome.html', config=g.project.config, project=g.project, on_boarding=g.project.on_boarding )
4be4f1447a732a24ecfbee49c3daa7a31a16fec4
2,350
def brokerUrl(host): """We use a different brokerUrl when running the workers than when running within the flask app. Generate an appropriate URL with that in mind""" return '{broker_scheme}://{username}:{password}@{host}:{port}//'.format( host=host, **CONFIG_JOB_QUEUE)
e55d84f818b17680e196b6c013dd1b3972c30df8
2,351
def show_lat_lon_gps( move_data, kind='scatter', figsize=(21, 9), plot_start_and_end=True, return_fig=True, save_fig=False, name='show_gps_points.png', ): """ Generate a visualization with points [lat, lon] of dataset. Parameters ---------- move_data : pymove.core.MoveDataFrameAbstract subclass. Input trajectory data. kind : String, optional, default 'scatter'. Represents chart type_. figsize : tuple, optional, default (21,9). Represents dimensions of figure. plot_start_and_end: boolean Whether to feature the start and end of the trajectory return_fig : bool, optional, default True. Represents whether or not to save the generated picture. save_fig : bool, optional, default True. Represents whether or not to save the generated picture. name : String, optional, default 'show_gps_points.png'. Represents name of a file. Returns ------- matplotlib.pyplot.figure or None The generated picture. """ try: if LATITUDE in move_data and LONGITUDE in move_data: fig = move_data.drop_duplicates([LATITUDE, LONGITUDE]).plot( kind=kind, x=LONGITUDE, y=LATITUDE, figsize=figsize ) if plot_start_and_end: plt.plot( move_data.iloc[0][LONGITUDE], move_data.iloc[0][LATITUDE], 'yo', markersize=10, ) # start point plt.plot( move_data.iloc[-1][LONGITUDE], move_data.iloc[-1][LATITUDE], 'yX', markersize=10, ) # end point if save_fig: plt.savefig(name) if return_fig: return fig except Exception as exception: raise exception
c34f8e868668d01d4214b9a5678440266f8f9a0a
2,352
def filter_seqlets(seqlet_acts, seqlet_intervals, genome_fasta_file, end_distance=100, verbose=True): """ Filter seqlets by valid chromosome coordinates. """ # read chromosome lengths chr_lengths = {} genome_fasta_open = pysam.Fastafile(genome_fasta_file) for chrom in genome_fasta_open.references: chr_lengths[chrom] = genome_fasta_open.get_reference_length(chrom) genome_fasta_open.close() # check coordinates filter_mask = np.zeros(len(seqlet_intervals), dtype='bool') for si, seq_int in enumerate(seqlet_intervals): left_valid = (seq_int.start > end_distance) right_valid = (seq_int.end + end_distance < chr_lengths[seq_int.chr]) filter_mask[si] = left_valid and right_valid if verbose: print('Removing %d seqlets near chromosome ends.' % (len(seqlet_intervals) - filter_mask.sum())) # filter seqlet_acts = seqlet_acts[filter_mask] seqlet_intervals = [seq_int for si, seq_int in enumerate(seqlet_intervals) if filter_mask[si]] return seqlet_acts, seqlet_intervals
6ab32cc2667f0b2e7b9d0dc15f1d3ca7ea2ebe46
2,353
def load_RIMO(path, comm=None): """ Load and broadcast the reduced instrument model, a.k.a. focal plane database. """ # Read database, parse and broadcast if comm is not None: comm.Barrier() timer = Timer() timer.start() RIMO = {} if comm is None or comm.rank == 0: print("Loading RIMO from {}".format(path), flush=True) hdulist = pf.open(path, "readonly") detectors = hdulist[1].data.field("detector").ravel() phi_uvs = hdulist[1].data.field("phi_uv").ravel() theta_uvs = hdulist[1].data.field("theta_uv").ravel() psi_uvs = hdulist[1].data.field("psi_uv").ravel() psi_pols = hdulist[1].data.field("psi_pol").ravel() epsilons = hdulist[1].data.field("epsilon").ravel() fsamples = hdulist[1].data.field("f_samp").ravel() fknees = hdulist[1].data.field("f_knee").ravel() alphas = hdulist[1].data.field("alpha").ravel() nets = hdulist[1].data.field("net").ravel() fwhms = hdulist[1].data.field("fwhm").ravel() for i in range(len(detectors)): phi = (phi_uvs[i]) * degree theta = theta_uvs[i] * degree # Make sure we don't double count psi rotation already # included in phi psi = (psi_uvs[i] + psi_pols[i]) * degree - phi quat = np.zeros(4) # ZYZ conversion from # http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf # Note: The above document has the scalar part of the quaternion at # first position but quaternionarray module has it at the end, we # use the quaternionarray convention # scalar part: quat[3] = np.cos(0.5 * theta) * np.cos(0.5 * (phi + psi)) # vector part quat[0] = -np.sin(0.5 * theta) * np.sin(0.5 * (phi - psi)) quat[1] = np.sin(0.5 * theta) * np.cos(0.5 * (phi - psi)) quat[2] = np.cos(0.5 * theta) * np.sin(0.5 * (phi + psi)) # apply the bore sight rotation to the detector quaternion quat = qa.mult(SPINROT, quat) RIMO[detectors[i]] = DetectorData( detectors[i], phi_uvs[i], theta_uvs[i], psi_uvs[i], psi_pols[i], epsilons[i], fsamples[i], fknees[i], alphas[i], nets[i], fwhms[i], quat, ) hdulist.close() if comm is not None: RIMO = comm.bcast(RIMO, root=0) if comm is None or comm.rank == 0: timer.report_clear("Load and broadcast RIMO") return RIMO
67f2cd7f1a345a801ac65dcb54347863c6c7c64a
2,354
def format_top(data): """ Format "top" output :param data: dict :return: list """ result = [] if data: if 'Titles' in data: result.append(data['Titles']) if 'Processes' in data: for process in data['Processes']: result.append(process) result = tabulate(result, headers='firstrow').split('\n') return result
6fb5a4a18f8a87ee8bfffd30da1d9829024f987b
2,355
def process_arguments(parser): """This function parses the input arguments.""" args = parser.parse_args() # Distribute input arguments request = args.request if "num_tests" in args: num_tests = int(args.num_tests) else: num_tests = None # Test validity of input arguments if request not in ["check", "create"]: raise AssertionError() if num_tests not in [i for i in np.arange(1001)]: raise AssertionError(9) return request, num_tests
19bb444ff578cc92bb99685e4405a25b8f12eaba
2,356
def generate_sections(logdata: pd.DataFrame): """ Generates a list of SectionDescriptors based on iMotions packets SlideStart and SlideEnd. If the first Slide related packet is an End packet, the first descriptor will include all timestamps up to that packet, else it will drop the packets before. The last descriptor will include all packets until end. Assumes that there are SlideStart and SlideEnd packages in data. """ slide_start = logdata.Name == 'SlideStart' slide_end = logdata.Name == 'SlideEnd' slides = slide_start | slide_end log_slides = logdata[slides] time_diffs = log_slides.Timestamp.diff() sections = [] if log_slides.iloc[0].Name == 'SlideStart': # Bootstrap condition sections.append(SectionDescriptor(shortcut.row_index(log_slides.head(1)))) for label, timediff in time_diffs.iteritems(): if not sections: # If first packet is a SlideEnd, we include all data before sections.append(SectionDescriptor(0, label, logdata.loc[label].Timestamp)) elif not sections[-1].end: sections[-1].end = label sections[-1].duration = timediff else: sections.append(SectionDescriptor(label)) last_row = logdata.tail(1).Timestamp last_label = shortcut.row_index(last_row) last_timestamp = last_row.values[0] sections[-1].end = last_label sections[-1].duration = logdata.loc[last_label].Timestamp - logdata.loc[sections[-1].start].Timestamp return sections
3f3d009965449a54a43d4751f15066b798c335d7
2,357
def etree2dict(element): """Convert an element tree into a dict imitating how Yahoo Pipes does it. """ i = dict(element.items()) i.update(_make_content(i, element.text, strip=True)) for child in element: tag = child.tag value = etree2dict(child) i.update(_make_content(i, value, tag)) if element.text and not set(i).difference(['content']): # element is leaf node and doesn't have attributes i = i.get('content') return i
e0c14295fb0d8459b7ab3be300213c6a99a43e5e
2,358
def full_chain(): """ GETing `/chain` will returns the full blockchain. Returns: The node's full blockchain list, as a JSON response. """ logger.info("Received GET request for the full chain") return { "chain": blockchain.chain, "length": len(blockchain.chain), }
9987c95270cbdd89b9578cd987d4be29a2d60433
2,359
from click import _bashcomplete def _patched_is_incomplete_option(all_args, cmd_param): """Patched version of is_complete_option. Fixes issue testing a cmd param against the current list of args. Upstream version does not consider combined short form args and so a command like `guild check -nt <auto>` doesn't work. The patched version considers that `t` above is the current param option. """ if not isinstance(cmd_param, _bashcomplete.Option): return False if cmd_param.is_flag: return False last_option = None for index, arg_str in enumerate( reversed([arg for arg in all_args if arg != _bashcomplete.WORDBREAK]) ): if index + 1 > cmd_param.nargs: break if _bashcomplete.start_of_option(arg_str): last_option = arg_str if not last_option: return False if last_option[:2] == "--": return last_option in cmd_param.opts assert last_option[:1] == "-", last_option for i in range(len(last_option), 0, -1): if "-%s" % last_option[i:] in cmd_param.opts: return True return False
f92fa77c7cfa74fec79f853ba948028951b1f736
2,360
def confirm_install() -> bool: """ Confirms that update should be performed on an empty install """ message = ( "The pack you are trying to update doesn't have a pack-manifest.json file. " "Unless you are doing a first install, *THIS SHOULD NOT HAPPEN*. If you are doing a first install, just click 'OK'\n\n" "Your pack is currently broken from MPM point of view, but should still run." "\nIf you proceed, the udpate process will duplicate mods and add conflicting overrides:" " this *WILL BREAK* your pack for minecraft too. It is advised to cancel" ) root = tk.Tk() root.withdraw() try: return mbox.askokcancel(title="Confirm Update", message=message) finally: root.destroy()
2963e9913c56623064b712e817e6c768a8f600c3
2,361
def f_cv(x, dt): """ state transition function for a constant velocity aircraft""" F = np.array([[1, dt, 0.5*dt*dt, 0, 0, 0], [0, 1, dt, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, dt, 0.5*dt*dt], [0, 0, 0, 0, 1, dt], [0, 0, 0, 0, 0, 1]], dtype=float) return np.dot(F, x)
cfb142101598eaa635a6c4a4e45d411043cd99b9
2,362
import getpass def prompt_for_password(args): """ if no password is specified on the command line, prompt for it """ if not args.password: args.password = getpass.getpass( prompt='Enter password for host %s and user %s: ' % (args.host, args.user)) return args
22fdb01fa07a83e53f0544a23e6ad014f7b21f88
2,363
def update_hparams(hparams, new_hparams): """ Update existing with new hyperparameters """ if new_hparams is None: return hparams if isinstance(new_hparams, str) and new_hparams.endswith('.json'): tf.logging.info("Overriding default hparams from JSON") with open(new_hparams) as fh: hparams.parse_json(fh.read()) elif isinstance(new_hparams, str): tf.logging.info("Overriding default hparams from str:") hparams.parse(new_hparams) elif isinstance(new_hparams, dict): tf.logging.info("Overriding default hparams from dict:") for k, val in new_hparams.items(): if k in hparams: tf.logging.info(" {} -> {}".format(k, val)) hparams.set_hparam(k, val) elif isinstance(new_hparams, Namespace): tf.logging.info("Overriding default hparams from Namespace:") for k, val in vars(new_hparams).items(): if k in hparams and val is not None: tf.logging.info(" {} -> {}".format(k, val)) hparams.set_hparam(k, val) else: raise ValueError(new_hparams) return hparams
fa134d1c5b8d9cf406fc9e3133303b9897a59970
2,364
from typing import Any import importlib def relative_subpackage_import(path: str, package: str) -> Any: """[summary] Args: path (str): [description] package (str): [description]. Returns: Any: [description] """ if not path.startswith('.'): path = '.' + path return importlib.import_module(path, package = package)
2345267b60947f57098b0678dce845d858f2d2a8
2,365
def convertToNpArray(train,test): """ Converts the data into numpy arrays :param train: training data csv path :param test: test data csv path :return: training data and labels, test data and labels """ train_data = pd.read_csv(train, delimiter=',', quotechar='"', dtype=None, encoding="ISO-8859-1", usecols=[0, 5]) train_array = create_train_data_subset(train_data) np.random.shuffle(train_array) train_target_array = train_array[:, 0] train_target_array = np.reshape(train_target_array, (len(train_target_array), 1)) train_data_array = train_array[:, 1] train_data_array = np.reshape(train_data_array, (len(train_data_array), 1)) test_data = pd.read_csv(test, delimiter=',', quotechar='"', dtype=None, encoding="ISO-8859-1", usecols=[0, 5], names=['label', 'tweet']) test_data = test_data[test_data.label != 2] test_data = test_data.values test_data = np.append(test_data, create_test_data_subset(train_data), axis=0) np.random.shuffle(test_data) test_target = test_data[:, 0] test_target_array = np.array(test_target) test_target_array = np.reshape(test_target_array, (len(test_target_array), 1)) test_data = test_data[:, 1] test_data_array = np.reshape(test_data, (len(test_data), 1)) return train_data_array,test_data_array,train_target_array,test_target_array
bc375946802e6dc75f9f52cd7b1665fe820287e7
2,366
import json def attachment_to_multidim_measurement(attachment, name=None): """Convert an OpenHTF test record attachment to a multi-dim measurement. This is a best effort attempt to reverse, as some data is lost in converting from a multidim to an attachment. Args: attachment: an `openhtf.test_record.Attachment` from a multi-dim. name: an optional name for the measurement. If not provided will use the name included in the attachment. Returns: An multi-dim `openhtf.Measurement`. """ data = json.loads(attachment.data) name = name or data.get('name') # attachment_dimn are a list of dicts with keys 'uom_suffix' and 'uom_code' attachment_dims = data.get('dimensions', []) # attachment_value is a list of lists [[t1, x1, y1, f1], [t2, x2, y2, f2]] attachment_values = data.get('value') attachment_outcome_str = data.get('outcome') if attachment_outcome_str not in TEST_RUN_STATUS_NAME_TO_MEASUREMENT_OUTCOME: # Fpr backward compatibility with saved data we'll convert integers to str try: attachment_outcome_str = test_runs_pb2.Status.Name( int(attachment_outcome_str)) except ValueError: attachment_outcome_str = None # Convert test status outcome str to measurement outcome outcome = TEST_RUN_STATUS_NAME_TO_MEASUREMENT_OUTCOME.get( attachment_outcome_str) # convert dimensions into htf.Dimensions _lazy_load_units_by_code() dims = [] for d in attachment_dims: # Try to convert into htf.Dimension including backwards compatibility. unit = UNITS_BY_CODE.get(d.get('uom_code'), units.NONE) description = d.get('name', '') dims.append(measurements.Dimension(description=description, unit=unit)) # Attempt to determine if units are included. if attachment_values and len(dims) == len(attachment_values[0]): # units provided units_ = dims[-1].unit dimensions = dims[:-1] else: units_ = None dimensions = dims # created dimensioned_measured_value and populate with values. measured_value = measurements.DimensionedMeasuredValue( name=name, num_dimensions=len(dimensions) ) for row in attachment_values: coordinates = tuple(row[:-1]) val = row[-1] measured_value[coordinates] = val measurement = measurements.Measurement( name=name, units=units_, dimensions=tuple(dimensions), measured_value=measured_value, outcome=outcome ) return measurement
ff758924e1dfab00c49e97eefe6548a0de73c257
2,367
import torch def similarity_iou_2d(pred_boxes, true_boxes): """ Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (cx, cy, w, h) format. Arguments: pred_boxes (Tensor[B, 4, N]) true_boxes (Tensor[B, 4, M]) Returns: iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2 """ def area(boxes): return (boxes[:, :, 2] - boxes[:, :, 0]) * (boxes[:, :, 3] - boxes[:, :, 1]) pred_boxes = convert_to_corners(pred_boxes).transpose(1, 2) # BN4 true_boxes = convert_to_corners(true_boxes).transpose(1, 2) # BN4 area1 = area(pred_boxes) # BN area2 = area(true_boxes) # BM lt = torch.max(pred_boxes[:,:, None, :2], true_boxes[:,:, :2]) # BNM2 rb = torch.min(pred_boxes[:,:, None, 2:], true_boxes[:,:, 2:]) # BNM2 wh = (rb - lt).clamp(min=0) # BNM2 inter = wh[:, :, :, 0] * wh[:, :, :, 1] # BNM iou = inter / (area1[:, :, None] + area2 - inter) # BNM return iou
7081906483860e475fbf7ad3c7801182ba8a5efd
2,368
def get_atom_coords_by_names(residue, atom_names): """Given a ProDy Residue and a list of atom names, this attempts to select and return all the atoms. If atoms are not present, it substitutes the pad character in lieu of their coordinates. """ coords = [] pad_coord = np.asarray([GLOBAL_PAD_CHAR] * 3) for an in atom_names: a = residue.select(f"name {an}") if a: coords.append(a.getCoords()[0]) else: coords.append(pad_coord) return coords
7838ab6352a37b3731ee81f7beeebfde7676b24a
2,369
def calculate_chord(radius, arc_degrees): """ Please see the wikipedia link for more information on how this works. https://en.wikipedia.org/wiki/Chord_(geometry) """ # Calculate the arc_degrees in radians. # We need this because sin() expects it. arc_radians = radians(arc_degrees) # Calculate the chord. return radius * (2 * sin(arc_radians / 2))
be59a06d33e69d5232fdea1cbdf6c5cef20f30fc
2,370
def broadcast(right, left, left_fk=None, right_pk=None, keep_right_index=False): """ Re-indexes a series or data frame (right) to align with another (left) series or data frame via foreign key relationship. The index or keys on the right must be unique (i.e. this only supports 1:1 or 1:m relationhips between the right and left). Parameters: ----------- right: pandas.DataFrame or pandas.Series Columns or set of columns to re-project(broadcast) from. left: pandas.Series, pandas.Index or pandas.DataFrame Object to align to. if panadas.Series: Series values are used as the foreign keys. if pandas.Index: The index will be used as the foreign keys. if pandas.DataFrame Use the 'left_fk` argument to specify one or more columns to serve as the foreign keys. left_fk: str or list of str Only applicable if 'left' is a dataframe. Column or list of columns to serve as foreign keys. If not provided the `left's` index will be used. right_pk: str or list of str, default None Column or list of columns that uniquely define each row in the the `right`. If not provided, the `right's` index will be used. keep_right_index: bool, optional, default False If True, and the `right` is a data frame, and a `right_pk` arg is provided, then column(s) containing the `right's` index values will be appended to the result. Returns: -------- pandas.Series or pandas.DataFrame with column(s) from right aligned with the left. """ update_index = True # if we're broadcasting using a data frame , we need to know which column(s) if isinstance(left, pd.DataFrame) and left_fk is None: raise ValueError( 'If the left is a DataFrame, must supply the left_fk (column name to join on)') # if right primary keys are explicitly provided if right_pk: if keep_right_index: right = right.reset_index() right.set_index(right_pk, inplace=True) else: right = right.set_index(right_pk) # ensure that we can align correctly if not right.index.is_unique: raise ValueError("The right's index must be unique!") # decide how to broadcast based on the type of left provided if isinstance(left, pd.Index): update_index = False # for cases where a left_fk is provided as a list with a single element if left_fk: if isinstance(left_fk, list): if len(left_fk) == 1: left_fk = left_fk[0] if isinstance(left, pd.DataFrame): if left_fk: left = left[left_fk] else: left = left.index update_index = False # reindex a = right.reindex(left) # update the index if necessary if update_index: a.index = left.index.copy() return a
0be603caec1530427399a7b816eb63bbad71f239
2,371
def _is_arraylike(arr): """Check if object is an array.""" return ( hasattr(arr, "shape") and hasattr(arr, "dtype") and hasattr(arr, "__array__") and hasattr(arr, "ndim") )
71bfbb7f93116879ee63bb4fc1ad8b3a3d8807c3
2,372
def tokenize_docstring(text): """Tokenize docstrings. Args: text: A docstring to be tokenized. Returns: A list of strings representing the tokens in the docstring. """ en = spacy.load('en') tokens = en.tokenizer(text.decode('utf8')) return [token.text.lower() for token in tokens if not token.is_space]
c58c1dcf62d2b3de1f947cfd33f2c344b03532fb
2,373
def conv_output_length(input_length, filter_size, border_mode, stride, dilation=1): """Determines output length of a convolution given input length. # Arguments input_length: integer. filter_size: integer. border_mode: one of "same", "valid", "full". stride: integer. dilation: dilation rate, integer. # Returns The output length (integer). """ if input_length is None: return None assert border_mode in {'same', 'valid', 'full'} dilated_filter_size = filter_size + (filter_size - 1) * (dilation - 1) if border_mode == 'same': output_length = input_length elif border_mode == 'valid': output_length = input_length - dilated_filter_size + 1 elif border_mode == 'full': output_length = input_length + dilated_filter_size - 1 return (output_length + stride - 1) // stride
9e7f44b44e582f140dafdfd48c363d80fe8c4a46
2,374
import os def source_ccp4(): """Function to return bash command to source CCP4""" if os.name == "nt": return return "source {}".format(os.path.join(os.environ["CCP4"], "bin", "ccp4.setup-sh"))
7b3f2920906ff4e6b680e4696a66a67e56c72d03
2,375
def dblHour(): """(read-only) Array of doubles containgin time value in hours for time-sampled monitor values; Empty if frequency-sampled values for harmonics solution (see dblFreq)""" return get_float64_array(lib.Monitors_Get_dblHour)
a437965873c7764e2ddbebb81163887f6ddfca07
2,376
def select_uuid_like_indexes_on_table(model, cursor): """ Gets a list of database index names for the given model for the uuid-containing fields that have had a like-index created on them. :param model: Django model :param cursor: database connection cursor :return: list of database rows; the first field of each row is an index name """ # VersionedForeignKey fields as well as the id fields have these useless # like indexes field_names = ["'%s'" % f.column for f in model._meta.fields if isinstance(f, VersionedForeignKey)] field_names.append("'id'") sql = """ select i.relname as index_name from pg_class t, pg_class i, pg_index ix, pg_attribute a where t.oid = ix.indrelid and i.oid = ix.indexrelid and a.attrelid = t.oid and a.attnum = ANY(ix.indkey) and t.relkind = 'r' and t.relname = '{0}' and a.attname in ({1}) and i.relname like '%_like' """.format(model._meta.db_table, ','.join(field_names)) cursor.execute(sql) return cursor.fetchall()
c63cbf2e45a6c6e2591e627781b92a93cd101e27
2,377
def retrieve_jambalaya(request): """ Retrieve a jambalaya recipe by name or country of origin --- serializer: JambalayaSerializer parameters: - name: name description: name as found in recipe type: string paramType: query required: false - name: origin type: string paramType: query required: false """ if request.method == 'GET': serializer = JambalayaQuerySerializer(data=request.DATA) if serializer.data['name'] is not None: j = Jambalaya.objects.filter(recipe__contains='name=%s' % serializer.data['name']) else: j = Jambalaya.objects.filter(recipe__contains="country=%s" % serializer.data['origin']) serializer = JambalayaSerializer(j, many=True) return Response(serializer.data) else: return Response("", status=status.HTTP_400_BAD_REQUEST)
2263c091b172d9fce5698b40647484e06d2d37bb
2,378
from typing import Union def get_pymatgen(optimade_structure: OptimadeStructure) -> Union[Structure, Molecule]: """Get pymatgen `Structure` or `Molecule` from OPTIMADE structure. This function will return either a pymatgen `Structure` or `Molecule` based on the periodicity or periodic dimensionality of OPTIMADE structure. For bulk, three-dimensional structures, a pymatgen `Structure` is returned. This means, if the [`dimension_types`][optimade.models.structures.StructureResourceAttributes.dimension_types] attribute is comprised of all `1`s (or [`Periodicity.PERIODIC`][optimade.models.structures.Periodicity.PERIODIC]s). Otherwise, a pymatgen `Molecule` is returned. Parameters: optimade_structure: OPTIMADE structure. Returns: A pymatgen `Structure` or `Molecule` based on the periodicity of the OPTIMADE structure. """ if "optimade.adapters" in repr(globals().get("Structure")): warn(PYMATGEN_NOT_FOUND, AdapterPackageNotFound) return None if all(optimade_structure.attributes.dimension_types): return _get_structure(optimade_structure) return _get_molecule(optimade_structure)
7cb4dbd9395b57931a27db87516c587062e65bb3
2,379
import torch def get_meshgrid_samples(lower, upper, mesh_size: tuple, dtype) ->\ torch.Tensor: """ Often we want to get the mesh samples in a box lower <= x <= upper. This returns a torch tensor of size (prod(mesh_size), sample_dim), where each row is a sample in the meshgrid. """ sample_dim = len(mesh_size) assert (len(upper) == sample_dim) assert (len(lower) == sample_dim) assert (len(mesh_size) == sample_dim) meshes = [] for i in range(sample_dim): meshes.append( torch.linspace(lower[i], upper[i], mesh_size[i], dtype=dtype)) mesh_tensors = torch.meshgrid(*meshes) return torch.cat( [mesh_tensors[i].reshape((-1, 1)) for i in range(sample_dim)], dim=1)
98a2c7b064d7b23824b547d0fc0a16eb37cb0923
2,380
from datetime import datetime import random def draw_nodes(start, nodes_list, cores, minute_scale, space_between_minutes, colors): """ Function to return the html-string of the node drawings for the gantt chart Parameters ---------- start : datetime.datetime obj start time for first node nodes_list : list a list of the node dictionaries cores : integer the number of cores given to the workflow via the 'n_procs' plugin arg total_duration : float total duration of the workflow execution (in seconds) minute_scale : integer the scale, in minutes, at which to plot line markers for the gantt chart; for example, minute_scale=10 means there are lines drawn at every 10 minute interval from start to finish space_between_minutes : integer scale factor in pixel spacing between minute line markers colors : list a list of colors to choose from when coloring the nodes in the gantt chart Returns ------- result : string the html-formatted string for producing the minutes-based time line markers """ # Init variables result = "" scale = space_between_minutes / minute_scale space_between_minutes = space_between_minutes / scale end_times = [ datetime.datetime( start.year, start.month, start.day, start.hour, start.minute, start.second ) for core in range(cores) ] # For each node in the pipeline for node in nodes_list: # Get start and finish times node_start = node["start"] node_finish = node["finish"] # Calculate an offset and scale duration offset = ( (node_start - start).total_seconds() / 60 ) * scale * space_between_minutes + 220 # Scale duration scale_duration = (node["duration"] / 60) * scale \ * space_between_minutes if scale_duration < 5: scale_duration = 5 scale_duration -= 2 # Left left = 60 for core in range(len(end_times)): if end_times[core] < node_start: left += core * 30 end_times[core] = datetime.datetime( node_finish.year, node_finish.month, node_finish.day, node_finish.hour, node_finish.minute, node_finish.second, ) break # Get color for node object color = random.choice(colors) if "error" in node: color = "red" # Setup dictionary for node html string insertion node_dict = { "left": left, "offset": offset, "scale_duration": scale_duration, "color": color, "node_name": node.get("name", node.get("id", "")), "node_dur": node["duration"] / 60.0, "node_start": node_start.strftime("%Y-%m-%d %H:%M:%S"), "node_finish": node_finish.strftime("%Y-%m-%d %H:%M:%S"), } # Create new node string new_node = ( "<div class='node' style='left:%(left)spx;top:%(offset)spx;" "height:%(scale_duration)spx;background-color:%(color)s;'" "title='%(node_name)s\nduration:%(node_dur)s\n" "start:%(node_start)s\nend:%(node_finish)s'></div>" % node_dict ) # Append to output result result += new_node # Return html string for nodes return result
83ed57f8d494154d815ec189c002ff86393b2992
2,381
def has_understood_request( sys_nlu: dict, slot: str, domain: str, lowercase_slots: bool = True ) -> bool: """Check if the system has understood a user request in a particular domain.""" # assume perfect system if NLU not available if not sys_nlu: return True sys_nlu_requested = get_turn_action_params( sys_nlu, act_patterns=metadata.REQUEST_ACT_PATTERNS, service_patterns=[domain], include_values=False, use_lowercase=lowercase_slots, )[ domain ] # type: list[str] assert all("-" not in slt for slt in sys_nlu_requested) sys_nlu_requested = [f"{domain}-{slt}" for slt in sys_nlu_requested] return slot in sys_nlu_requested
676e11fe996bd88562d1e1404dd1bdd29f3e7d62
2,382
def lengthOfLongestSubstring(s): """ :type s: str :rtype: int """ res = "" n = 0 for i in s: if i not in res: res = res + i else: indexofi = res.find(i) res = res[indexofi+1::] + i k = len(res) if k > n: n = k print(res) return n
951366d46a47030c5d37026bd6712eeb73c34af9
2,383
async def get_sequence_metadata(checksum: str, accept: str = ""): """Return Refget sequence metadata based on checksum value.""" headers = Headers() url_path = "sequence/" + checksum + "/metadata" try: result = await create_request_coroutine( url_list=metadata_url_list(checksum), url_path=url_path, headers=headers, params={accept: accept}, ) if result == "": return HTTPException(status_code=HTTP_404_NOT_FOUND, detail="Not Found") return result except Exception as e: logger.log("DEBUG", "Unhandled exception in get_sequence_metadata: " + str(e))
afe591946644d4723142971519926fcacb2a8aa4
2,384
from functools import reduce def getattrs(o, *attrs, **kwargs): """ >>> getattrs((), '__iter__', '__name__', 'strip')('_') 'iter' >>> getattrs((), 'foo', 'bar', default=0) 0 """ if 'default' in kwargs: default = kwargs['default'] c = o for attr in attrs: try: c = getattr(c, attr) except AttributeError: return default return c else: return reduce(getattr, attrs, o)
64d55154d2399c7097476a8335eae81749588286
2,385
def maria_create_account(params): """root user and dbuser are created at startup. grant all to dbuser is all we need to do after the DB starts :type params: dict """ error_msg = 'ERROR: mariadb_util; maria_create_account; ' error_msg += 'action: %s user: %s error: %s' password = Config.accounts[params['dbtype']]['admin_pass'] iport = int(params['port']) try: conn = pymysql.connect(host=Config.container_host, port=iport, user='root', password=password) except pymysql.err.OperationalError as e: print("ERROR: maria_create_account, connect: %s" % e) return "connect error" cur = conn.cursor() sql_cmd = "GRANT ALL PRIVILEGES ON *.* TO '%s'@'%%' " % params['dbuser'] sql_cmd += "WITH GRANT OPTION" try: cur.execute(sql_cmd) except pymysql.err.InternalError as e: print(error_msg % ('grant', params['dbuser'], e)) conn.commit() cur.close() conn.close() return 'ok'
e26ba5044689f772b93cdd426d9d2995547ada3a
2,386
def compute_coef_xz(y_val, coef_3d): """ compute the 2D polynoimal coefficients for a given x :param x_val: value of x :param coef_3d: the original 3D polynomials :return: """ coef_xz = np.zeros((coef_3d.shape[1], coef_3d.shape[2]), dtype=coef_3d.dtype) max_degree_y = coef_3d.shape[0] - 1 for y_power in range(max_degree_y + 1): coef_xz += coef_3d[y_power, :, :] * y_val ** (max_degree_y - y_power) return coef_xz
f65353f41bc142b16578750d15a098ae03458fd1
2,387
def bbox_overlaps(bboxes1, bboxes2, mode='iou'): """Calculate the ious between each bbox of bboxes1 and bboxes2. Args: bboxes1(ndarray): shape (n, 4) bboxes2(ndarray): shape (k, 4) mode(str): iou (intersection over union) or iof (intersection over foreground) Returns: ious(ndarray): shape (n, k) """ assert mode in ['iou', 'iof'] bboxes1 = bboxes1.astype(np.float32) bboxes2 = bboxes2.astype(np.float32) rows = bboxes1.shape[0] cols = bboxes2.shape[0] ious = np.zeros((rows, cols), dtype=np.float32) if rows * cols == 0: return ious exchange = False if bboxes1.shape[0] > bboxes2.shape[0]: bboxes1, bboxes2 = bboxes2, bboxes1 ious = np.zeros((cols, rows), dtype=np.float32) exchange = True area1 = (bboxes1[:, 2] - bboxes1[:, 0] + 1) * (bboxes1[:, 3] - bboxes1[:, 1] + 1) area2 = (bboxes2[:, 2] - bboxes2[:, 0] + 1) * (bboxes2[:, 3] - bboxes2[:, 1] + 1) for i in range(bboxes1.shape[0]): x_start = np.maximum(bboxes1[i, 0], bboxes2[:, 0]) y_start = np.maximum(bboxes1[i, 1], bboxes2[:, 1]) x_end = np.minimum(bboxes1[i, 2], bboxes2[:, 2]) y_end = np.minimum(bboxes1[i, 3], bboxes2[:, 3]) overlap = np.maximum(x_end - x_start + 1, 0) * np.maximum( y_end - y_start + 1, 0) if mode == 'iou': union = area1[i] + area2 - overlap else: union = area1[i] if not exchange else area2 ious[i, :] = overlap / union if exchange: ious = ious.T return ious
665e9478b66b398536de48b250ee21aec16f4be0
2,388
def me_length_filter(me_iv_pairs, min_length=100): """Returns list of (InsertionVertices, InsertionVertices) tuples with those containing paths going backwards through the ME sequence filtered out """ filtered = [] for iv_pair in me_iv_pairs: enter_iv, exit_iv = iv_pair me_seq_len = exit_iv.exit_ref.pos - enter_iv.enter_ref.pos if me_seq_len > min_length: filtered.append(iv_pair) return filtered
9c344ee913f60aace3b8d94d04500d95166e67d6
2,389
def build_big_map_schema(data, schema: Schema) -> BigMapSchema: """ Generate Big_map schema from the contract storage :param data: Raw storage (Micheline expression) :param schema: Storage schema :returns: Mappings: Big_map id to JSON path and vice versa :rtype: BigMapSchema """ bin_to_id = dict() id_to_bin = dict() def scan_big_map_ids(node, path): if len(path) == 0: assert node.get('int'), (node, path) yield int(node['int']) elif isinstance(node, list): for item in node: yield from scan_big_map_ids(item, path) else: assert node.get('args'), (node, path) yield from scan_big_map_ids(node['args'][int(path[0])], path[1:]) for bin_path, prim in schema.bin_types.items(): if prim == 'big_map': for big_map_id in scan_big_map_ids(data, bin_path[1:]): bin_to_id[bin_path], id_to_bin[big_map_id] = big_map_id, bin_path return BigMapSchema(bin_to_id, id_to_bin)
370936598263897e5c0b2416e44bccfdfb151e6c
2,390
import requests def _get(session, urlTail): # type: (Session, str) -> Dict """Make an HTTP(s) GET request to Batfish coordinator. :raises SSLError if SSL connection failed :raises ConnectionError if the coordinator is not available """ headers = {CoordConsts.HTTP_HEADER_BATFISH_APIKEY: session.apiKey, CoordConsts.HTTP_HEADER_BATFISH_VERSION: pybatfish.__version__} url = session.get_base_url2() + urlTail response = requests.get(url, headers=headers, verify=session.verifySslCerts) response.raise_for_status() return dict(response.json())
2f7fb16117670465f4462cd0259932f1bfcb6e48
2,391
import functools def compose(fns): """Creates a function composition.""" def composition(*args, fns_): res = fns_[0](*args) for f in fns_[1:]: res = f(*res) return res return functools.partial(composition, fns_=fns)
5c791f52f70707078e941fe169679ddc80a32782
2,392
import os def load_participants_file(): """ Load participants.tsv file and build pandas DF of participants This function assumes that the file participants.tsv is present in the -path-results :return: participants: pandas dataframe """ participants = pd.read_csv(os.path.join('participants.tsv'), sep="\t") return participants
f55c32789563150fc574c8a98df2780c6a5903da
2,393
def clr_tilcmt(*args): """ clr_tilcmt(ea) """ return _ida_nalt.clr_tilcmt(*args)
d1edcaee63ac58f6d82249ceb3a5fc9e35224fe9
2,394
import copy def canarize_service(args, input_yaml, labels={}): """ Create a canary for an existing Service. We do this by: - adding a '-canary' suffix to the name of the Service - adding a '-canary' suffix to all the labels in the Service selector """ res = [] # append the -canary to the Service name output_yaml = copy.deepcopy(input_yaml) canary_service_name = input_yaml["metadata"]["name"] + args.suffix output_yaml["metadata"]["name"] = canary_service_name print(f"# Creating canary Service {canary_service_name}") # append the -canary to all the labels in the selector for (k, v) in input_yaml["spec"]["selector"].items(): output_yaml["spec"]["selector"][k] = v + args.suffix if args.namespace: output_yaml["metadata"]["namespace"] = args.namespace res += [output_yaml] if args.gen_mapping: canary_service_name = output_yaml["metadata"]["name"] print( f"# Creating Mapping for Service {canary_service_name} (weight: {args.canary_weight})") res += [gen_mapping(args, canary_service_name, weight=args.canary_weight, labels=labels)] if len(labels) > 0: if len(output_yaml["metadata"]["labels"]) > 0: output_yaml["metadata"]["labels"].update(labels) else: output_yaml["metadata"]["labels"] = labels return res
835d4f2dfd31d5db57254d97645bdd790c3d17dd
2,395
def get_query_results(query): """ Get the data with common fields from the Close using the provided query. :param query: Any Close search query eg. 'lead_status:Potential has:emails' :return: 2D array with a header and results """ api = Client(CLOSE_API_KEY) leads = api.get('lead', params={'query': query}) values = [[ 'id', 'display_name', 'lead_name', 'description', 'url', 'status_id', 'status_label', 'primary_contact_name', 'primary_contact_first_name', 'primary_contact_last_name', 'primary_contact_title', 'primary_contact_primary_phone', 'primary_contact_primary_phone_type', 'primary_contact_other_phones', 'primary_contact_primary_email', 'primary_contact_primary_email_type', 'primary_contact_other_emails', 'primary_contact_primary_url', 'primary_contact_other_urls', 'created_by', 'created_by_name', 'updated_by', 'updated_by_name', 'date_created', 'date_updated', 'html_url' ]] for lead in leads['data']: primary_contact = lead['contacts'][0] if lead['contacts'] else None id = lead['id'] display_name = lead['display_name'] lead_name = lead['name'] description = lead['description'] url = lead['url'] status_id = lead['status_id'] status_label = lead['status_label'] created_by = lead['created_by'] created_by_name = lead['created_by_name'] updated_by = lead['updated_by'] updated_by_name = lead['updated_by_name'] date_created = lead['date_created'] date_updated = lead['date_updated'] html_url = lead['html_url'] primary_contact_name = None primary_contact_first_name = None primary_contact_last_name = None primary_contact_title = None primary_contact_primary_phone = None primary_contact_primary_phone_type = None primary_contact_other_phones = None primary_contact_email = None primary_contact_email_type = None primary_contact_other_emails = None primary_contact_primary_url = None primary_contact_other_urls = None if primary_contact: primary_contact_name = primary_contact['name'] if primary_contact else None primary_contact_title = primary_contact['title'] if primary_contact else None if 'name' in primary_contact: primary_contact_first_name = primary_contact['name'].split(' ')[0] if len(primary_contact['name'].split(' ')) > 1: primary_contact_last_name = primary_contact['name'].split(' ')[1] if primary_contact['phones']: primary_contact_primary_phone = primary_contact['phones'][0]['phone'] primary_contact_primary_phone_type = primary_contact['phones'][0]['type'] if len(primary_contact['phones']) > 1: primary_contact_other_phones = ", ".join(o['phone'] for o in primary_contact['phones'][1:]) if primary_contact['emails']: primary_contact_email = primary_contact['emails'][0]['email'] primary_contact_email_type = primary_contact['emails'][0]['type'] if len(primary_contact['emails']) > 1: primary_contact_other_emails = ", ".join(o['email'] for o in primary_contact['emails'][1:]) if primary_contact['urls']: primary_contact_primary_url = primary_contact['urls'][0]['url'] if len(primary_contact['urls']) > 1: primary_contact_other_urls = ", ".join(o['url'] for o in primary_contact['urls'][1:]) values.append([ id, display_name, lead_name, description, url, status_id, status_label, primary_contact_name, primary_contact_first_name, primary_contact_last_name, primary_contact_title, primary_contact_primary_phone, primary_contact_primary_phone_type, primary_contact_other_phones, primary_contact_email, primary_contact_email_type, primary_contact_other_emails, primary_contact_primary_url, primary_contact_other_urls, created_by, created_by_name, updated_by, updated_by_name, date_created, date_updated, html_url ]) return values
826b6a3fa522a53c9d486aed7fdc38638f12eef0
2,396
def width_pcc_dmera_2d(n, D, supp): """ Optimal width of the circuit for the pcc after compression Args: n(int): Number of scales D(int): Number of cycles per scale supp(list): List of integers Returns: int: Optimal width """ supp_con = [convert_2d_to_1d(c,n) for c in supp] return optimal_width_freeze(pcc_dmera_2d(n,D,supp_con),supp_con)
0df74985ed16aa4bb0295655d5093fe4a40f03a2
2,397
def global_delete(key): """Delete an entity from the global cache. Args: key (bytes): The key to delete. Returns: tasklets.Future: Eventual result will be ``None``. """ batch = _batch.get_batch(_GlobalCacheDeleteBatch) return batch.add(key)
b9d9f8189f10c0d287081e6d65505c15271a672d
2,398
def get_drawing_x(image: Image = None) -> float: """ Get the x coordinate value of the current drawing position (x,y). Some drawing functions will use the current pos to draw.(see line_to(),line_rel(),move_to(),move_rel()). :param image: the target image whose drawing pos is to be gotten. None means it is the target image (see set_target() and get_target()). :return: the x coordinate value of the current drawing position """ image = _get_target_image(image) return image.get_x()
6e176cb609868730bc44131d78fe646dccb84fdb
2,399