content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def update_t_new_docker_image_names(main, file): """ Updates the names of the docker images from lasote to conanio """ docker_mappings = { "lasote/conangcc49": "conanio/gcc49", "lasote/conangcc5": "conanio/gcc5", "lasote/conangcc6": "conanio/gcc6", "lasote/conangcc7": "conanio/gcc7", "lasote/conangcc8": "conanio/gcc8", "lasote/conanclang39": "conanio/clang39", "lasote/conanclang40": "conanio/clang40", "lasote/conanclang50": "conanio/clang50", "lasote/conanclang60": "conanio/clang60", } found_old_name = False for old, new in docker_mappings.items(): if main.file_contains(file, old): main.replace_in_file(file, old, new) found_old_name = True if found_old_name: main.output_result_update(title="Travis: Update Docker image names from lasote/ to conanio/") return True return False
6d1a1dd0f254252cf73d7a89c926dc2476fc89e8
2,200
def fit(kern, audio, file_name, max_par, fs): """Fit kernel to data """ # time vector for kernel n = kern.size xkern = np.linspace(0., (n - 1.) / fs, n).reshape(-1, 1) # initialize parameters if0 = gpitch.find_ideal_f0([file_name])[0] init_f, init_v = gpitch.init_cparam(y=audio, fs=fs, maxh=max_par, ideal_f0=if0, scaled=False)[0:2] init_l = np.array([0., 1.]) # optimization p0 = np.hstack((init_l, init_v, init_f)) # initialize params pstar = optimize_kern(x=xkern, y=kern, p0=p0) # compute initial and learned kernel kern_init = approximate_kernel(p0, xkern) kern_approx = approximate_kernel(pstar, xkern) # get kernel hyperparameters npartials = (pstar.size - 2) / 2 lengthscale = pstar[1] variance = pstar[2: npartials + 2] frequency = pstar[npartials + 2:] params = [lengthscale, variance, frequency] return params, kern_init, kern_approx
e4b6519f1d9439e3d8ea20c545664cf152ce6a89
2,201
def find_next_open_date(location_pid, date): """Finds the next day where this location is open.""" location = current_app_ils.location_record_cls.get_record_by_pid( location_pid ) _infinite_loop_guard = date + timedelta(days=365) while date < _infinite_loop_guard: if _is_open_on(location, date): return date date += _ONE_DAY_INCREMENT # Termination is normally guaranteed if there is at least one weekday open raise IlsException( description="Cannot find any date for which the location %s is open after the given date %s." "Please check opening/closures dates." % (location_pid, date.isoformat()) )
74a38c39d2e03a2857fa6bbc7e18dc45c0f4e48a
2,202
import functools def check_dimension(units_in=None, units_out=None): """Check dimensions of inputs and ouputs of function. Will check that all inputs and outputs have the same dimension than the passed units/quantities. Dimensions for inputs and outputs expects a tuple. Parameters ---------- units_in : quantity_like or tuple of quantity_like quantity_like means an Quantity object or a numeric value (that will be treated as dimensionless Quantity). The inputs dimension will be checked with the units_in. Defaults to None to skip any check. units_out : quantity_like or tuple of quantity_like quantity_like means an Quantity object or a numeric value (that will be treated as dimensionless Quantity). The outputs dimension will be checked with the units_out. Default to None to skip any check. Returns ------- func: decorated function with dimension-checked inputs and outputs. See Also -------- Other decorators (TODO) Notes ----- Notes about the implementation algorithm (if needed). This can have multiple paragraphs. You may include some math: .. math:: X(e^{j\omega } ) = x(n)e^{ - j\omega n} And even use a Greek symbol like :math:`\omega` inline. Examples (written in doctest format) -------- >>> def add_meter(x): return x + 1*m >>> add_meter = check_dimension((m), (m))(add_meter) >>> add_meter(1*m) 2 m >>> add_meter(1*s) raise DimensionError """ # reading args and making them iterable if units_in: units_in = _iterify(units_in) if units_out: units_out = _iterify(units_out) # define the decorator def decorator(func): # create a decorated func @functools.wraps(func) def decorated_func(*args, **kwargs): # Checking dimension of inputs args = _iterify(args) if units_in: for arg, unit_in in zip(args, units_in): # make everything dimensions dim_check_in = dimensionify(unit_in) dim_arg = dimensionify(arg) # and checking dimensions if not dim_arg == dim_check_in: raise DimensionError(dim_arg, dim_check_in) # Compute outputs and iterify it ress = _iterify(func(*args, **kwargs)) # Checking dimension of outputs if units_out: for res, unit_out in zip(ress, units_out): # make everythin dimensions dim_check_out = dimensionify(unit_out) dim_res = dimensionify(res) # and checking dimensions if not dim_res == dim_check_out: raise DimensionError(dim_res, dim_check_out) # still return funcntion outputs return tuple(ress) if len(ress) > 1 else ress[0] return decorated_func return decorator
68fb2bf7e0858824e5a1e3bdcef69834b08142ac
2,203
def _rowcorr(a, b): """Correlations between corresponding matrix rows""" cs = np.zeros((a.shape[0])) for idx in range(a.shape[0]): cs[idx] = np.corrcoef(a[idx], b[idx])[0, 1] return cs
21df87b6f3bba58285cac0242b7c9e72b534f762
2,204
def gff_to_dict(f_gff, feat_type, idattr, txattr, attributes, input_type): """ It reads only exonic features because not all GFF files contain gene and trascript features. From the exonic features it extracts gene names, biotypes, start and end positions. If any of these attributes do not exit then they are set to NA. """ annotation = defaultdict(lambda: defaultdict(lambda: 'NA')) exon_pos = defaultdict(lambda: defaultdict(lambda: defaultdict(int))) tx_info = defaultdict(lambda: defaultdict(str)) with open(f_gff) as gff_handle: for rec in GFF.parse(gff_handle, limit_info=dict(gff_type=[feat_type]), target_lines=1): for sub_feature in rec.features: start = sub_feature.location.start end = sub_feature.location.end strand = strandardize(sub_feature.location.strand) try: geneid = sub_feature.qualifiers[idattr][0] except KeyError: print("No '" + idattr + "' attribute found for the feature at position " + rec.id + ":" + str(start) + ":" + str(end) + ". Please check your GTF/GFF file.") continue annotation[geneid]['chr'] = rec.id annotation[geneid]['strand'] = strand if annotation[geneid]['start'] == 'NA' or start <= int(annotation[geneid]['start']): annotation[geneid]['start'] = start if annotation[geneid]['end'] == 'NA' or end >= int(annotation[geneid]['end']): annotation[geneid]['end'] = end for attr in attributes: if attr in annotation[geneid]: continue try: annotation[geneid][attr] = sub_feature.qualifiers[attr][0] except KeyError: annotation[geneid][attr] = 'NA' # extract exon information only in case of dexseq output if input_type != "dexseq": continue try: txid = sub_feature.qualifiers[txattr][0] tx_info[txid]['chr'] = rec.id tx_info[txid]['strand'] = strand exon_pos[txid][int(start)][int(end)] = 1 except KeyError: print("No '" + txattr + "' attribute found for the feature at position " + rec.id + ":" + str( start) + ":" + str(end) + ". Please check your GTF/GFF file.") pass bed_entries = [] # create BED lines only for deseq output if input_type == "dexseq": for txid in exon_pos.keys(): starts = sorted(exon_pos[txid]) strand = tx_info[txid]['strand'] if strand == '-': starts = reversed(starts) for c, start in enumerate(starts, 1): ends = sorted(exon_pos[txid][start]) if strand == '-': ends = reversed(ends) for end in ends: bed_entries.append('\t'.join([tx_info[txid]['chr'], str(start), str(end), txid + ':' + str(c), '0', strand])) return annotation, bed_entries
f1574cabb40f09f4f7a3b6a4f0e1b0a11d5c585d
2,205
def _subtract_the_mean(point_cloud): """ Subtract the mean in point cloud and return its zero-mean version. Args: point_cloud (numpy.ndarray of size [N,3]): point cloud Returns: (numpy.ndarray of size [N,3]): point cloud with zero-mean """ point_cloud = point_cloud - np.mean(point_cloud, axis=0) return point_cloud
94866087a31b8268b06250d052fd12983222a066
2,206
from .load import url_load_list def ncnr_load(filelist=None, check_timestamps=True): """ Load a list of nexus files from the NCNR data server. **Inputs** filelist (fileinfo[]): List of files to open. check_timestamps (bool): verify that timestamps on file match request **Returns** output (refldata[]): All entries of all files in the list. 2016-06-29 Brian Maranville | 2017-08-21 Brian Maranville Change to refldata, force cache invalidate | 2018-06-18 Brian Maranville Change to nexusref to ignore areaDetector | 2018-12-10 Brian Maranville get_plottable routines moved to python data container from js | 2020-03-03 Paul Kienzle Just load. Don't even compute divergence """ # NB: used mainly to set metadata for processing, so keep it minimal # TODO: make a metadata loader that does not send all data to browser # NB: Fileinfo is a structure with # { path: "location/on/server", mtime: timestamp } datasets = [] for data in url_load_list(filelist, check_timestamps=check_timestamps): datasets.append(data) return datasets
97452707da94c356c93d18618f8b43bc8459a63b
2,207
def load_source_dataframe(method, sourcename, source_dict, download_FBA_if_missing, fbsconfigpath=None): """ Load the source dataframe. Data can be a FlowbyActivity or FlowBySector parquet stored in flowsa, or a FlowBySector formatted dataframe from another package. :param method: dictionary, FBS method :param sourcename: str, The datasource name :param source_dict: dictionary, The datasource parameters :param download_FBA_if_missing: Bool, if True will download FBAs from Data Commons. Default is False. :param fbsconfigpath, str, optional path to an FBS method outside flowsa repo :return: df of identified parquet """ if source_dict['data_format'] == 'FBA': # if yaml specifies a geoscale to load, use parameter # to filter dataframe if 'source_fba_load_scale' in source_dict: geo_level = source_dict['source_fba_load_scale'] else: geo_level = None vLog.info("Retrieving Flow-By-Activity for datasource %s in year %s", sourcename, str(source_dict['year'])) flows_df = flowsa.getFlowByActivity( datasource=sourcename, year=source_dict['year'], flowclass=source_dict['class'], geographic_level=geo_level, download_FBA_if_missing=download_FBA_if_missing) elif source_dict['data_format'] == 'FBS': vLog.info("Retrieving flowbysector for datasource %s", sourcename) flows_df = flowsa.getFlowBySector(sourcename) elif source_dict['data_format'] == 'FBS_outside_flowsa': vLog.info("Retrieving flowbysector for datasource %s", sourcename) fxn = source_dict.get("FBS_datapull_fxn") if callable(fxn): flows_df = fxn(source_dict, method, fbsconfigpath) elif fxn: raise flowsa.exceptions.FBSMethodConstructionError( error_type='fxn_call') else: raise flowsa.exceptions.FBSMethodConstructionError( message="Data format not specified in method " f"file for {sourcename}") return flows_df
9a928441d790bb35acd0d32efeea105eeb3082c8
2,208
import json def unpack_nwchem_basis_block(data): """Unserialize a NWChem basis data block and extract components @param data: a JSON of basis set data, perhaps containing many types @type data : str @return: unpacked data @rtype : dict """ unpacked = json.loads(data) return unpacked
dfa920f80ae8f0caf15441c354802410c8add690
2,209
def starify(name): """ Replace any ints in a dotted key with stars. Used when applying defaults and widgets to fields """ newname = [] for key in name.split('.'): if is_int(key): newname.append('*') else: newname.append(key) name = '.'.join(newname) return name
f7c8baf602ecc4cd12088d4ba70524b2a316875e
2,210
import os def render(states, actions, instantaneous_reward_log, cumulative_reward_log, critic_distributions, target_critic_distributions, projected_target_distribution, bins, loss_log, episode_number, filename, save_directory, time_log, SPOTNet_sees_target_log): """ TOTAL_STATE = [relative_x, relative_y, relative_vx, relative_vy, relative_angle, relative_angular_velocity, chaser_x, chaser_y, chaser_theta, target_x, target_y, target_theta, chaser_vx, chaser_vy, chaser_omega, target_vx, target_vy, target_omega] *# Relative pose expressed in the chaser's body frame; everythign else in Inertial frame #* """ # Load in a temporary environment, used to grab the physical parameters temp_env = Environment() # Checking if we want the additional reward and value distribution information extra_information = temp_env.ADDITIONAL_VALUE_INFO # Unpacking state chaser_x, chaser_y, chaser_theta = states[:,6], states[:,7], states[:,8] target_x, target_y, target_theta = states[:,9], states[:,10], states[:,11] # Extracting physical properties LENGTH = temp_env.LENGTH DOCKING_PORT_MOUNT_POSITION = temp_env.DOCKING_PORT_MOUNT_POSITION DOCKING_PORT_CORNER1_POSITION = temp_env.DOCKING_PORT_CORNER1_POSITION DOCKING_PORT_CORNER2_POSITION = temp_env.DOCKING_PORT_CORNER2_POSITION ARM_MOUNT_POSITION = temp_env.ARM_MOUNT_POSITION SHOULDER_POSITION = temp_env.SHOULDER_POSITION ELBOW_POSITION = temp_env.ELBOW_POSITION WRIST_POSITION = temp_env.WRIST_POSITION END_EFFECTOR_POSITION = temp_env.END_EFFECTOR_POSITION ######################################################## # Calculating spacecraft corner locations through time # ######################################################## # All the points to draw of the chaser (except the front-face) chaser_points_body = np.array([[ LENGTH/2,-LENGTH/2], [-LENGTH/2,-LENGTH/2], [-LENGTH/2, LENGTH/2], [ LENGTH/2, LENGTH/2], [ARM_MOUNT_POSITION[0],ARM_MOUNT_POSITION[1]], [SHOULDER_POSITION[0],SHOULDER_POSITION[1]], [ELBOW_POSITION[0],ELBOW_POSITION[1]], [WRIST_POSITION[0],WRIST_POSITION[1]], [END_EFFECTOR_POSITION[0],END_EFFECTOR_POSITION[1]]]).T # The front-face points on the target chaser_front_face_body = np.array([[[ LENGTH/2],[ LENGTH/2]], [[ LENGTH/2],[-LENGTH/2]]]).squeeze().T # Rotation matrix (body -> inertial) C_Ib_chaser = np.moveaxis(np.array([[np.cos(chaser_theta), -np.sin(chaser_theta)], [np.sin(chaser_theta), np.cos(chaser_theta)]]), source = 2, destination = 0) # [NUM_TIMESTEPS, 2, 2] # Rotating body frame coordinates to inertial frame chaser_body_inertial = np.matmul(C_Ib_chaser, chaser_points_body) + np.array([chaser_x, chaser_y]).T.reshape([-1,2,1]) chaser_front_face_inertial = np.matmul(C_Ib_chaser, chaser_front_face_body) + np.array([chaser_x, chaser_y]).T.reshape([-1,2,1]) # All the points to draw of the target (except the front-face) target_points_body = np.array([[ LENGTH/2,-LENGTH/2], [-LENGTH/2,-LENGTH/2], [-LENGTH/2, LENGTH/2], [ LENGTH/2, LENGTH/2], [DOCKING_PORT_MOUNT_POSITION[0], LENGTH/2], # artificially adding this to make the docking cone look better [DOCKING_PORT_MOUNT_POSITION[0],DOCKING_PORT_MOUNT_POSITION[1]], [DOCKING_PORT_CORNER1_POSITION[0],DOCKING_PORT_CORNER1_POSITION[1]], [DOCKING_PORT_CORNER2_POSITION[0],DOCKING_PORT_CORNER2_POSITION[1]], [DOCKING_PORT_MOUNT_POSITION[0],DOCKING_PORT_MOUNT_POSITION[1]]]).T # The front-face points on the target target_front_face_body = np.array([[[ LENGTH/2],[ LENGTH/2]], [[ LENGTH/2],[-LENGTH/2]]]).squeeze().T # Rotation matrix (body -> inertial) C_Ib_target = np.moveaxis(np.array([[np.cos(target_theta), -np.sin(target_theta)], [np.sin(target_theta), np.cos(target_theta)]]), source = 2, destination = 0) # [NUM_TIMESTEPS, 2, 2] # Rotating body frame coordinates to inertial frame target_body_inertial = np.matmul(C_Ib_target, target_points_body) + np.array([target_x, target_y]).T.reshape([-1,2,1]) target_front_face_inertial = np.matmul(C_Ib_target, target_front_face_body) + np.array([target_x, target_y]).T.reshape([-1,2,1]) ####################### # Plotting the motion # ####################### # Generating figure window figure = plt.figure(constrained_layout = True) figure.set_size_inches(5, 4, True) if extra_information: grid_spec = gridspec.GridSpec(nrows = 2, ncols = 3, figure = figure) subfig1 = figure.add_subplot(grid_spec[0,0], aspect = 'equal', autoscale_on = False, xlim = (0, 3.5), ylim = (0, 2.4)) #subfig1 = figure.add_subplot(grid_spec[0,0], projection = '3d', aspect = 'equal', autoscale_on = False, xlim3d = (-5, 5), ylim3d = (-5, 5), zlim3d = (0, 10), xlabel = 'X (m)', ylabel = 'Y (m)', zlabel = 'Z (m)') subfig2 = figure.add_subplot(grid_spec[0,1], xlim = (np.min([np.min(instantaneous_reward_log), 0]) - (np.max(instantaneous_reward_log) - np.min(instantaneous_reward_log))*0.02, np.max([np.max(instantaneous_reward_log), 0]) + (np.max(instantaneous_reward_log) - np.min(instantaneous_reward_log))*0.02), ylim = (-0.5, 0.5)) subfig3 = figure.add_subplot(grid_spec[0,2], xlim = (np.min(loss_log)-0.01, np.max(loss_log)+0.01), ylim = (-0.5, 0.5)) subfig4 = figure.add_subplot(grid_spec[1,0], ylim = (0, 1.02)) subfig5 = figure.add_subplot(grid_spec[1,1], ylim = (0, 1.02)) subfig6 = figure.add_subplot(grid_spec[1,2], ylim = (0, 1.02)) # Setting titles subfig1.set_xlabel("X (m)", fontdict = {'fontsize': 8}) subfig1.set_ylabel("Y (m)", fontdict = {'fontsize': 8}) subfig2.set_title("Timestep Reward", fontdict = {'fontsize': 8}) subfig3.set_title("Current loss", fontdict = {'fontsize': 8}) subfig4.set_title("Q-dist", fontdict = {'fontsize': 8}) subfig5.set_title("Target Q-dist", fontdict = {'fontsize': 8}) subfig6.set_title("Bellman projection", fontdict = {'fontsize': 8}) # Changing around the axes subfig1.tick_params(labelsize = 8) subfig2.tick_params(which = 'both', left = False, labelleft = False, labelsize = 8) subfig3.tick_params(which = 'both', left = False, labelleft = False, labelsize = 8) subfig4.tick_params(which = 'both', left = False, labelleft = False, right = True, labelright = False, labelsize = 8) subfig5.tick_params(which = 'both', left = False, labelleft = False, right = True, labelright = False, labelsize = 8) subfig6.tick_params(which = 'both', left = False, labelleft = False, right = True, labelright = True, labelsize = 8) # Adding the grid subfig4.grid(True) subfig5.grid(True) subfig6.grid(True) # Setting appropriate axes ticks subfig2.set_xticks([np.min(instantaneous_reward_log), 0, np.max(instantaneous_reward_log)] if np.sign(np.min(instantaneous_reward_log)) != np.sign(np.max(instantaneous_reward_log)) else [np.min(instantaneous_reward_log), np.max(instantaneous_reward_log)]) subfig3.set_xticks([np.min(loss_log), np.max(loss_log)]) subfig4.set_xticks([bins[i*5] for i in range(round(len(bins)/5) + 1)]) subfig4.tick_params(axis = 'x', labelrotation = -90) subfig4.set_yticks([0, 0.2, 0.4, 0.6, 0.8, 1.]) subfig5.set_xticks([bins[i*5] for i in range(round(len(bins)/5) + 1)]) subfig5.tick_params(axis = 'x', labelrotation = -90) subfig5.set_yticks([0, 0.2, 0.4, 0.6, 0.8, 1.]) subfig6.set_xticks([bins[i*5] for i in range(round(len(bins)/5) + 1)]) subfig6.tick_params(axis = 'x', labelrotation = -90) subfig6.set_yticks([0, 0.2, 0.4, 0.6, 0.8, 1.]) else: subfig1 = figure.add_subplot(1, 1, 1, aspect = 'equal', autoscale_on = False, xlim = (0, 3.5), ylim = (0, 2.4), xlabel = 'X Position (m)', ylabel = 'Y Position (m)') # Defining plotting objects that change each frame chaser_body, = subfig1.plot([], [], color = 'r', linestyle = '-', linewidth = 2) # Note, the comma is needed chaser_front_face, = subfig1.plot([], [], color = 'k', linestyle = '-', linewidth = 2) # Note, the comma is needed target_body, = subfig1.plot([], [], color = 'g', linestyle = '-', linewidth = 2) target_front_face, = subfig1.plot([], [], color = 'k', linestyle = '-', linewidth = 2) chaser_body_dot = subfig1.scatter(0., 0., color = 'r', s = 0.1) if extra_information: reward_bar = subfig2.barh(y = 0, height = 0.2, width = 0) loss_bar = subfig3.barh(y = 0, height = 0.2, width = 0) q_dist_bar = subfig4.bar(x = bins, height = np.zeros(shape = len(bins)), width = bins[1]-bins[0]) target_q_dist_bar = subfig5.bar(x = bins, height = np.zeros(shape = len(bins)), width = bins[1]-bins[0]) projected_q_dist_bar = subfig6.bar(x = bins, height = np.zeros(shape = len(bins)), width = bins[1]-bins[0]) time_text = subfig1.text(x = 0.2, y = 0.91, s = '', fontsize = 8, transform=subfig1.transAxes) reward_text = subfig1.text(x = 0.0, y = 1.02, s = '', fontsize = 8, transform=subfig1.transAxes) else: time_text = subfig1.text(x = 0.1, y = 0.9, s = '', fontsize = 8, transform=subfig1.transAxes) reward_text = subfig1.text(x = 0.62, y = 0.9, s = '', fontsize = 8, transform=subfig1.transAxes) episode_text = subfig1.text(x = 0.4, y = 0.96, s = '', fontsize = 8, transform=subfig1.transAxes) episode_text.set_text('Episode ' + str(episode_number)) # Function called repeatedly to draw each frame def render_one_frame(frame, *fargs): temp_env = fargs[0] # Extract environment from passed args # Draw the chaser body chaser_body.set_data(chaser_body_inertial[frame,0,:], chaser_body_inertial[frame,1,:]) # Draw the front face of the chaser body in a different colour chaser_front_face.set_data(chaser_front_face_inertial[frame,0,:], chaser_front_face_inertial[frame,1,:]) # Draw the target body target_body.set_data(target_body_inertial[frame,0,:], target_body_inertial[frame,1,:]) if SPOTNet_sees_target_log[frame]: target_body.set_color('y') else: target_body.set_color('g') # Draw the front face of the target body in a different colour target_front_face.set_data(target_front_face_inertial[frame,0,:], target_front_face_inertial[frame,1,:]) # Drawing a dot in the centre of the chaser chaser_body_dot.set_offsets(np.hstack((chaser_x[frame],chaser_y[frame]))) # Update the time text time_text.set_text('Time = %.1f s' %(time_log[frame])) # Update the reward text reward_text.set_text('Total reward = %.1f' %cumulative_reward_log[frame]) try: if extra_information: # Updating the instantaneous reward bar graph reward_bar[0].set_width(instantaneous_reward_log[frame]) # And colouring it appropriately if instantaneous_reward_log[frame] < 0: reward_bar[0].set_color('r') else: reward_bar[0].set_color('g') # Updating the loss bar graph loss_bar[0].set_width(loss_log[frame]) # Updating the q-distribution plot for this_bar, new_value in zip(q_dist_bar, critic_distributions[frame,:]): this_bar.set_height(new_value) # Updating the target q-distribution plot for this_bar, new_value in zip(target_q_dist_bar, target_critic_distributions[frame, :]): this_bar.set_height(new_value) # Updating the projected target q-distribution plot for this_bar, new_value in zip(projected_q_dist_bar, projected_target_distribution[frame, :]): this_bar.set_height(new_value) except: pass # # Since blit = True, must return everything that has changed at this frame return chaser_body_dot, time_text, chaser_body, chaser_front_face, target_body, target_front_face # Generate the animation! fargs = [temp_env] # bundling additional arguments animator = animation.FuncAnimation(figure, render_one_frame, frames = np.linspace(0, len(states)-1, len(states)).astype(int), blit = False, fargs = fargs) """ frames = the int that is passed to render_one_frame. I use it to selectively plot certain data fargs = additional arguments for render_one_frame interval = delay between frames in ms """ # Save the animation! if temp_env.SKIP_FAILED_ANIMATIONS: try: # Save it to the working directory [have to], then move it to the proper folder animator.save(filename = filename + '_episode_' + str(episode_number) + '.mp4', fps = 30, dpi = 100) # Make directory if it doesn't already exist os.makedirs(os.path.dirname(save_directory + filename + '/videos/'), exist_ok=True) # Move animation to the proper directory os.rename(filename + '_episode_' + str(episode_number) + '.mp4', save_directory + filename + '/videos/episode_' + str(episode_number) + '.mp4') except: ("Skipping animation for episode %i due to an error" %episode_number) # Try to delete the partially completed video file try: os.remove(filename + '_episode_' + str(episode_number) + '.mp4') except: pass else: # Save it to the working directory [have to], then move it to the proper folder animator.save(filename = filename + '_episode_' + str(episode_number) + '.mp4', fps = 30, dpi = 100) # Make directory if it doesn't already exist os.makedirs(os.path.dirname(save_directory + filename + '/videos/'), exist_ok=True) # Move animation to the proper directory os.rename(filename + '_episode_' + str(episode_number) + '.mp4', save_directory + filename + '/videos/episode_' + str(episode_number) + '.mp4') del temp_env plt.close(figure)
5f41390e2ab0f92d648e80cd28e369d3eb06af10
2,211
def hydrogens(atom: Atom) -> int: """Total number of hydrogen atoms (int). """ return atom.GetTotalNumHs()
f36e04d2c67eaf81b031651f78bb64db3a1c614c
2,212
def to_field(field_tuple): """Create a dataframe_field from a tuple""" return dataframe_field(*field_tuple)
6863cc33b8eea458223b9f4b1d4432104784d245
2,213
def compute_subjobs_for_build(build_id, job_config, project_type): """ Calculate subjobs for a build. :type build_id: int :type job_config: JobConfig :param project_type: the project_type that the build is running in :type project_type: project_type.project_type.ProjectType :rtype: list[Subjob] """ # Users can override the list of atoms to be run in this build. If the atoms_override # was specified, we can skip the atomization step and use those overridden atoms instead. if project_type.atoms_override is not None: atoms_string_list = project_type.atoms_override atoms_list = [Atom(atom_string_value) for atom_string_value in atoms_string_list] else: atoms_list = job_config.atomizer.atomize_in_project(project_type) # Group the atoms together using some grouping strategy timing_file_path = project_type.timing_file_path(job_config.name) grouped_atoms = _grouped_atoms( atoms_list, job_config.max_executors, timing_file_path, project_type.project_directory ) # Generate subjobs for each group of atoms subjobs = [] for subjob_id, subjob_atoms in enumerate(grouped_atoms): # The atom id isn't calculated until the atom has been grouped into a subjob. for atom_id, atom in enumerate(subjob_atoms): atom.id = atom_id subjobs.append(Subjob(build_id, subjob_id, project_type, job_config, subjob_atoms)) return subjobs
caa16899755fbb19530c27004db3515e3eeab9d6
2,214
def pymodbus_mocked(mocker): """Patch pymodbus to deliver results.""" class ResponseContent: """Fake a response.""" registers = [0] class WriteStatus: """Mock a successful response.""" @staticmethod def isError(): # pylint: disable=invalid-name,missing-function-docstring return False # Patch connection function mocker.patch("pymodbus.client.sync.ModbusTcpClient.connect") mocker.patch( "pymodbus.client.sync.ModbusTcpClient.read_holding_registers", return_value=ResponseContent, ) mocker.patch( "pymodbus.client.sync.ModbusTcpClient.write_registers", return_value=WriteStatus )
fdee663d9a8a80496ab6678aacb0b820251c83e1
2,215
def user_can_view_assessments(user, **kwargs): """ Return True iff given user is allowed to view the assessments """ return not appConfig.settings.LOGIN_REQUIRED or user.is_authenticated
1ef3f41ee311a6504d6e0cff0f5cad68135e0527
2,216
from typing import List def get_hashes(root_hash: str) -> List[str]: """ Return a list with the commits since `root_hash` """ cmd = f"git rev-list --ancestry-path {root_hash}..HEAD" proc = run(cmd) return proc.stdout.splitlines()
c0fdb996cf43066b87040b6647b75f42e8f7360f
2,217
import zipfile def unzip_file(zip_src, dst_dir): """ 解压zip文件 :param zip_src: zip文件的全路径 :param dst_dir: 要解压到的目的文件夹 :return: """ r = zipfile.is_zipfile(zip_src) if r: fz = zipfile.ZipFile(zip_src, "r") for file in fz.namelist(): fz.extract(file, dst_dir) else: return "请上传zip类型压缩文件"
8b89f41f38cc688f6e0473a77215ae72b163654a
2,218
def abort_multipart_upload(resource, bucket_name, object_name, upload_id): """Abort in-progress multipart upload""" mpupload = resource.MultipartUpload(bucket_name, object_name, upload_id) return mpupload.abort()
93535c2404db98e30bd29b2abbda1444ae4d0e8a
2,219
import os def read_data(input_path): """Read pre-stored data """ train = pd.read_parquet(os.path.join(input_path, 'train.parquet')) tournament = pd.read_parquet(os.path.join(input_path, 'tournament.parquet')) return train, tournament
d55b7b645089af0af2b7b27ec13e0581bf76e21a
2,220
def double(n): """ Takes a number n and doubles it """ return n * 2
8efeee1aa09c27d679fa8c5cca18d4849ca7e205
2,221
import torch def Normalize(tensor, mean, std, inplace=False): """Normalize a float tensor image with mean and standard deviation. This transform does not support PIL Image. .. note:: This transform acts out of place by default, i.e., it does not mutates the input tensor. See :class:`~torchvision.transforms.Normalize` for more details. Args: tensor (Tensor): Float tensor image of size (C, H, W) or (B, C, H, W) to be normalized. mean (sequence): Sequence of means for each channel. std (sequence): Sequence of standard deviations for each channel. inplace(bool,optional): Bool to make this operation inplace. Returns: Tensor: Normalized Tensor image. """ if not isinstance(tensor, torch.Tensor): raise TypeError( 'Input tensor should be a torch tensor. Got {}.'.format(type(tensor))) if not tensor.is_floating_point(): raise TypeError( 'Input tensor should be a float tensor. Got {}.'.format(tensor.dtype)) if tensor.ndim < 3: raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got tensor.size() = ' '{}.'.format(tensor.size())) if not inplace: tensor = tensor.clone() dtype = tensor.dtype mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device) std = torch.as_tensor(std, dtype=dtype, device=tensor.device) if (std == 0).any(): raise ValueError( 'std evaluated to zero after conversion to {}, leading to division by zero.'.format(dtype)) if mean.ndim == 1: mean = mean.view(-1, 1, 1) if std.ndim == 1: std = std.view(-1, 1, 1) tensor.sub_(mean).div_(std) return tensor
1312955d0db28ae66f6dadd9c29f3034aa21e648
2,222
from rfpipe import candidates, util def reproduce_candcollection(cc, data=None, wisdom=None, spec_std=None, sig_ts=[], kalman_coeffs=[]): """ Uses candcollection to make new candcollection with required info. Will look for cluster label and filter only for peak snr, if available. Location (e.g., integration, dm, dt) of each is used to create canddata for each candidate, if required. Can calculates features not used directly for search (as defined in state.prefs.calcfeatures). """ # set up output cc st = cc.state cc1 = candidates.CandCollection(prefs=st.prefs, metadata=st.metadata) if len(cc): if 'cluster' in cc.array.dtype.fields: clusters = cc.array['cluster'].astype(int) cl_rank, cl_count = candidates.calc_cluster_rank(cc) calcinds = np.unique(np.where(cl_rank == 1)[0]).tolist() logger.debug("Reproducing cands at {0} cluster peaks" .format(len(calcinds))) else: logger.debug("No cluster field found. Reproducing all.") calcinds = list(range(len(cc))) # if candidates that need new feature calculations if not all([f in cc.array.dtype.fields for f in st.features]): logger.info("Generating canddata for {0} candidates" .format(len(calcinds))) candlocs = cc.locs snrs = cc.snrtot normprob = candidates.normprob(snrs, st.ntrials) snrmax = snrs.max() logger.info('Zscore/SNR for strongest candidate: {0}/{1}' .format(normprob[np.where(snrs == snrmax)[0]][0], snrmax)) if ('snrk' in st.features and 'snrk' not in cc.array.dtype.fields and (spec_std is None or not len(sig_ts) or not len(kalman_coeffs))): # TODO: use same kalman calc for search as reproduce? spec_std, sig_ts, kalman_coeffs = util.kalman_prep(data) # reproduce canddata for each for i in calcinds: # TODO: check on best way to find max SNR with kalman, etc snr = snrs[i] candloc = candlocs[i] # kwargs passed to canddata object for plotting/saving kwargs = {} if 'cluster' in cc.array.dtype.fields: logger.info("Cluster {0}/{1} has {2} candidates and max detected SNR {3:.1f} at {4}" .format(calcinds.index(i), len(calcinds)-1, cl_count[i], snr, candloc)) # add supplementary plotting and cc info kwargs['cluster'] = clusters[i] kwargs['clustersize'] = cl_count[i] else: logger.info("Candidate {0}/{1} has detected SNR {2:.1f} at {3}" .format(calcinds.index(i), len(calcinds)-1, snr, candloc)) # reproduce candidate and get/calc features data_corr = pipeline_datacorrect(st, candloc, data_prep=data) for feature in st.features: if feature in cc.array.dtype.fields: # if already calculated kwargs[feature] = cc.array[feature][i] else: # if desired, but not calculated here or from canddata if feature == 'snrk': if 'snrk' not in cc.array.dtype.fields: spec = data_corr.real.mean(axis=3).mean(axis=1)[candloc[1]] if np.count_nonzero(spec)/len(spec) > 1-st.prefs.max_zerofrac: significance_kalman = -kalman_significance(spec, spec_std, sig_ts=sig_ts, coeffs=kalman_coeffs) snrk = (2*significance_kalman)**0.5 else: logger.warning("snrk set to 0, since {0}/{1} are zeroed".format(len(spec)-np.count_nonzero(spec), len(spec))) snrk = 0. logger.info("Calculated snrk of {0} after detection. " "Adding it to CandData.".format(snrk)) kwargs[feature] = snrk cd = pipeline_canddata(st, candloc, data_corr, spec_std=spec_std, sig_ts=sig_ts, kalman_coeffs=kalman_coeffs, **kwargs) if st.prefs.saveplots: candidates.candplot(cd, snrs=snrs) # snrs before clustering # regenerate cc with extra features in cd cc1 += candidates.cd_to_cc(cd) # if candidates that do not need new featuers, just select peaks else: logger.info("Using clustering info to select {0} candidates" .format(len(calcinds))) cc1.array = cc.array.take(calcinds) return cc1
6bd57054262bcc0ea5fe05dbe0b2a8f93cf9c7dc
2,223
import scipy def hilbert(signal, padding='nextpow'): """ Apply a Hilbert transform to a `neo.AnalogSignal` object in order to obtain its (complex) analytic signal. The time series of the instantaneous angle and amplitude can be obtained as the angle (`np.angle` function) and absolute value (`np.abs` function) of the complex analytic signal, respectively. By default, the function will zero-pad the signal to a length corresponding to the next higher power of 2. This will provide higher computational efficiency at the expense of memory. In addition, this circumvents a situation where, for some specific choices of the length of the input, `scipy.signal.hilbert` function will not terminate. Parameters ---------- signal : neo.AnalogSignal Signal(s) to transform. padding : int, {'none', 'nextpow'}, or None, optional Defines whether the signal is zero-padded. The `padding` argument corresponds to `N` in `scipy.signal.hilbert(signal, N=padding)` function. If 'none' or None, no padding. If 'nextpow', zero-pad to the next length that is a power of 2. If it is an `int`, directly specify the length to zero-pad to (indicates the number of Fourier components). Default: 'nextpow' Returns ------- neo.AnalogSignal Contains the complex analytic signal(s) corresponding to the input `signal`. The unit of the returned `neo.AnalogSignal` is dimensionless. Raises ------ ValueError: If `padding` is not an integer or neither 'nextpow' nor 'none' (None). Examples -------- Create a sine signal at 5 Hz with increasing amplitude and calculate the instantaneous phases: >>> import neo >>> import numpy as np >>> import quantities as pq >>> import matplotlib.pyplot as plt >>> from elephant.signal_processing import hilbert >>> t = np.arange(0, 5000) * pq.ms >>> f = 5. * pq.Hz >>> a = neo.AnalogSignal( ... np.array( ... (1 + t.magnitude / t[-1].magnitude) * np.sin( ... 2. * np.pi * f * t.rescale(pq.s))).reshape( ... (-1,1)) * pq.mV, ... t_start=0*pq.s, ... sampling_rate=1000*pq.Hz) ... >>> analytic_signal = hilbert(a, padding='nextpow') >>> angles = np.angle(analytic_signal) >>> amplitudes = np.abs(analytic_signal) >>> print(angles) [[-1.57079633] [-1.51334228] [-1.46047675] ..., [-1.73112977] [-1.68211683] [-1.62879501]] >>> plt.plot(t, angles) """ # Length of input signals n_org = signal.shape[0] # Right-pad signal to desired length using the signal itself if isinstance(padding, int): # User defined padding n = padding elif padding == 'nextpow': # To speed up calculation of the Hilbert transform, make sure we change # the signal to be of a length that is a power of two. Failure to do so # results in computations of certain signal lengths to not finish (or # finish in absurd time). This might be a bug in scipy (0.16), e.g., # the following code will not terminate for this value of k: # # import numpy # import scipy.signal # k=679346 # t = np.arange(0, k) / 1000. # a = (1 + t / t[-1]) * np.sin(2 * np.pi * 5 * t) # analytic_signal = scipy.signal.hilbert(a) # # For this reason, nextpow is the default setting for now. n = 2 ** (int(np.log2(n_org - 1)) + 1) elif padding == 'none' or padding is None: # No padding n = n_org else: raise ValueError("Invalid padding '{}'.".format(padding)) output = signal.duplicate_with_new_data( scipy.signal.hilbert(signal.magnitude, N=n, axis=0)[:n_org]) # todo use flag once is fixed # https://github.com/NeuralEnsemble/python-neo/issues/752 output.array_annotate(**signal.array_annotations) return output / output.units
cf07ae43c928d9c8fdb323d40530d0353bc861ee
2,224
def _tagged_mosc_id(kubeconfig, version, arch, private) -> str: """determine what the most recently tagged machine-os-content is in given imagestream""" base_name = rgp.default_imagestream_base_name(version) base_namespace = rgp.default_imagestream_namespace_base_name() name, namespace = rgp.payload_imagestream_name_and_namespace(base_name, base_namespace, arch, private) stdout, _ = exectools.cmd_assert( f"oc --kubeconfig '{kubeconfig}' --namespace '{namespace}' get istag '{name}:machine-os-content'" " --template '{{.image.dockerImageMetadata.Config.Labels.version}}'", retries=3, pollrate=5, strip=True, ) return stdout if stdout else None
1fa4ebf736b763fb97d644c0d55aa3923020107d
2,225
def load_household_size_by_municipality(): """Return dataframe, index 'Gemeente', column 'HHsize'.""" dfhh = pd.read_csv('data/huishoudens_samenstelling_gemeentes.csv', comment='#') dfhh.sort_values('Gemeente', inplace=True) dfhh.set_index('Gemeente', inplace=True) # remove rows for nonexistent municipalites dfhh.drop(index=dfhh.index[dfhh['nHH'].isna()], inplace=True) # rename municipalities rename_muns = { 'Beek (L.)': 'Beek', 'Hengelo (O.)': 'Hengelo', 'Laren (NH.)': 'Laren', 'Middelburg (Z.)': 'Middelburg', 'Rijswijk (ZH.)': 'Rijswijk', 'Stein (L.)': 'Stein', 'Groningen (gemeente)': 'Groningen', 'Utrecht (gemeente)': 'Utrecht', "'s-Gravenhage (gemeente)": "'s-Gravenhage", } dfhh.rename(index=rename_muns, inplace=True) return dfhh
9e78345a00209135ec4185a806a70deeb10d5bea
2,226
from typing import Dict from typing import Any from typing import List def gcp_iam_service_account_delete_command(client: Client, args: Dict[str, Any]) -> CommandResults: """ Delete service account key. Args: client (Client): GCP API client. args (dict): Command arguments from XSOAR. Returns: CommandResults: outputs, readable outputs and raw response for XSOAR. """ service_account_name = argToList(args.get('service_account_name')) command_results_list: List[CommandResults] = [] for account in service_account_name: try: client.gcp_iam_service_account_delete_request(account) command_results_list.append(CommandResults( readable_output=f'Service account {account} deleted successfully.' )) except Exception as exception: error = CommandResults( readable_output=f'An error occurred while trying to delete {account}.\n {exception}' ) command_results_list.append(error) return command_results_list
eeea44d6cc96b430c63168346849ac30a1247cad
2,227
from typing import Union from typing import Tuple def couple_to_string(couple: Union[Span, Tuple[int, int]]) -> str: """Return a deduplicated string representation of the given couple or span. Examples: >>> couple_to_string((12, 15)) "12-15" >>> couple_to_string((12, 12)) "12" >>> couple_to_string(Span(12, 15)) "12-15" """ return f"{couple[0]}" + ("" if couple[0] == couple[1] else f"-{couple[1]}")
8aaa0e2b7dfbdd58e4f9765a56f9057dd2b612f3
2,228
def create_study(X, y, storage=None, # type: Union[None, str, storages.BaseStorage] sample_method=None, metrics=None, study_name=None, # type: Optional[str] direction='maximize', # type: str load_cache=False, # type: bool is_autobin=False, bin_params=dict(), sample_params=dict(), trials_list=list(), export_model_path=None, precision=np.float64, ): # type: (...) -> Study """Create a new :class:`~diego.study.Study`. Args: storage: Database URL. If this argument is set to None, in-memory storage is used, and the :class:`~diego.study.Study` will not be persistent. sampler: A sampler object that implements background algorithm for value suggestion. See also :class:`~diego.samplers`. study_name: Study's name. If this argument is set to None, a unique name is generated automatically. is_auto_bin: do autobinning bin_params: binning method precision {[np.dtype]} -- precision: np.dtypes, float16, float32, float64 for data precision to reduce memory size. (default: {np.float64}) Returns: A :class:`~diego.study.Study` object. """ X, y = check_X_y(X, y, accept_sparse='csr') storage = get_storage(storage) try: study_id = storage.create_new_study_id(study_name) except basic.DuplicatedStudyError: # 内存中最好study不要重名,而且可以读取已有的Study。 数据存在storage中。 # if load_if_exists: # assert study_name is not None # logger = logging.get_logger(__name__) # logger.info("Using an existing study with name '{}' instead of " # "creating a new one.".format(study_name)) # study_id = storage.get_study_id_from_name(study_name) # else: raise study_name = storage.get_study_name_from_id(study_id) study = Study( study_name=study_name, storage=storage, sample_method=sample_method, is_autobin=is_autobin, bin_params=bin_params, export_model_path=export_model_path, precision=precision, metrics=metrics) if direction == 'minimize': _direction = basic.StudyDirection.MINIMIZE elif direction == 'maximize': _direction = basic.StudyDirection.MAXIMIZE else: raise ValueError( 'Please set either \'minimize\' or \'maximize\' to direction.') if metrics in ['logloss']: _direction = basic.StudyDirection.MINIMIZE X = X.astype(dtype=precision, copy=False) study.storage.direction = _direction study.storage.set_train_storage(X, y) return study
bf8ea9c5280c06c4468e9ba015e62401e65ad870
2,229
import os import json import logging def setup_logging(path='log.config', key=None): """Setup logging configuration""" if os.path.exists(path): with open(path, 'rt') as f: config = json.load(f) logging.config.dictConfig(config) else: logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(key) return logger
be4a4e94370f25ea232d5fc36b7d185bae2c5a1f
2,230
import inspect def test_no_access_to_class_property(db): """Ensure the implementation doesn't access class properties or declared attrs while inspecting the unmapped model. """ class class_property: def __init__(self, f): self.f = f def __get__(self, instance, owner): return self.f(owner) class Duck(db.Model): id = db.Column(db.Integer, primary_key=True) class ns: is_duck = False floats = False class Witch(Duck): @declared_attr def is_duck(self): # declared attrs will be accessed during mapper configuration, # but make sure they're not accessed before that info = inspect.getouterframes(inspect.currentframe())[2] assert info[3] != "_should_set_tablename" ns.is_duck = True @class_property def floats(self): ns.floats = True assert ns.is_duck assert not ns.floats
ab24f6405675cba44af570282afa60bd1e600dcf
2,231
import re def get_gb_version(backbone_top_cmake_path): """ Find the game backbone version number by searching the top level CMake file """ with open(backbone_top_cmake_path, 'r') as file: cmake_text = file.read() regex_result = re.search(gb_version_regex, cmake_text) return regex_result.group(1)
a4855c5fd82579b5b1f4f777ee0c040227432947
2,232
from typing import Optional from typing import List async def get_processes(name: Optional[str] = None) -> List[Process]: """ Get all processes. Args: name (Optional[str], optional): Filter by process name. Defaults to None. Returns: List[Process]: A list of processes. """ if name: return get_processes_by_name(name) return get_all_processes()
5133a81dcda079e6b5ed649443f9befed72be953
2,233
def plot_day_of_activation(df, plotname): """ Plots Aggregate of Day of Activation. """ # todo sort order in logical day order dotw = {0: 'Monday', 1: 'Tuesday', 2: 'Wednesday', 3: 'Thursday', 4: 'Friday', 5: 'Saturday', 6: 'Sunday'} df2 = df[df['adults_first_use'] == 1][['user_id', 'day_of_week']] df2 = df2.groupby('user_id', as_index=False).mean()['day_of_week'].map(dotw).to_frame() df2 = df2['day_of_week'].value_counts().to_frame() # todo fix the X axis labeling so it's not hardcoded! trace = go.Bar(x=['Tuesday', 'Wednesday', 'Friday', 'Thursday', 'Satuday', 'Sunday', 'Monday'], y=df2.day_of_week, marker=dict(color='#CC171D')) layout = go.Layout( title="Day of Firenze Card Activation", xaxis=dict( title='Day of the Week', nticks=7, ticks='outside', ), yaxis=dict( title='Number of Cards Activated', ticks='outside', ) ) fig = go.Figure(data=go.Data([trace]), layout=layout) plot_url = py.iplot(fig, plotname, sharing='private', auto_open=False) return df2, plot_url
3c50196d1cd63972c3263bb695967f3552739fd1
2,234
def get_rucio_redirect_url(lfn, scope): """ get_rucio_redirect_url: assemble Rucio redirect URL @params: lfn ... one filename e.g. user.gangarbt.62544955._2108356106.log.tgz scope ... scope of the file with lfn e.g. user.gangarbt, or valid1 returns: the Rucio redirect URL """ redirectUrl = '' ### compose the redirecURL redirectUrl = '%(redirecthost)s/redirect/%(scope)s/%(filename)s%(suffix)s' % \ {\ 'redirecthost': get_rucio_redirect_host(), \ 'scope': scope, \ 'filename': lfn, \ 'suffix': '' \ } _logger.info('get_rucio_redirect_url: redirectUrl=(%s)' % redirectUrl) ### return the redirectURL return redirectUrl
26547c18d9699d0ab3d6d963382bf14c067b982f
2,235
async def _getRequest(websession, url): """Send a GET request.""" async with websession.get(url, headers=HEADER) as response: if response.status == 200: data = await response.json(content_type=None) else: raise Exception('Bad response status code: {}'.format(response.status)) return data
6511926b2ce753f5233778c702a11142e6cad5a3
2,236
def interval_seconds(): """returns the time interval in seconds Returns: int """ return int(interval_to_milliseconds(interval())/1000)
831c24cb113dab2b39fc068c397c41c3cc1131b5
2,237
import subprocess def get_current_git_branch(): """Get current git branch name. Returns: str: Branch name """ branch_name = "unknown" try: branch_name = subprocess.check_output(['git', 'rev-parse', '--abbrev-ref', 'HEAD']).decode('ascii').strip() except subprocess.CalledProcessError: pass return branch_name
6d677d0f4e15532c20774e479b49a23093dad09a
2,238
from typing import Optional from typing import Sequence def get_autonomous_db_versions(compartment_id: Optional[str] = None, db_workload: Optional[str] = None, filters: Optional[Sequence[pulumi.InputType['GetAutonomousDbVersionsFilterArgs']]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetAutonomousDbVersionsResult: """ This data source provides the list of Autonomous Db Versions in Oracle Cloud Infrastructure Database service. Gets a list of supported Autonomous Database versions. ## Example Usage ```python import pulumi import pulumi_oci as oci test_autonomous_db_versions = oci.database.get_autonomous_db_versions(compartment_id=var["compartment_id"], db_workload=var["autonomous_db_version_db_workload"]) ``` :param str compartment_id: The compartment [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm). :param str db_workload: A filter to return only autonomous database resources that match the specified workload type. """ __args__ = dict() __args__['compartmentId'] = compartment_id __args__['dbWorkload'] = db_workload __args__['filters'] = filters if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('oci:database/getAutonomousDbVersions:getAutonomousDbVersions', __args__, opts=opts, typ=GetAutonomousDbVersionsResult).value return AwaitableGetAutonomousDbVersionsResult( autonomous_db_versions=__ret__.autonomous_db_versions, compartment_id=__ret__.compartment_id, db_workload=__ret__.db_workload, filters=__ret__.filters, id=__ret__.id)
e10770e9db891079dda251578f851bdb7a0ade8e
2,239
def azimuthal_average(image, center=None, stddev=True, binsize=0.5, interpnan=False): """ Calculate the azimuthally averaged radial profile. Modified based on https://github.com/keflavich/image_tools/blob/master/image_tools/radialprofile.py Parameters: imgae (numpy 2-D array): image array. center (list): [x, y] pixel coordinates. If None, use image center. Note that x is horizontal and y is vertical, y, x = image.shape. stdev (bool): if True, the stdev of profile will also be returned. binsize (float): size of the averaging bin. Can lead to strange results if non-binsize factors are used to specify the center and the binsize is too large. interpnan (bool): Interpolate over NAN values, i.e. bins where there is no data? Returns: : If `stdev == True`, it will return [radius, profile, stdev]; else, it will return [radius, profile]. """ # Calculate the indices from the image y, x = np.indices(image.shape) if center is None: center = np.array([(x.max() - x.min()) / 2.0, (y.max() - y.min()) / 2.0]) r = np.hypot(x - center[0], y - center[1]) # The 'bins' as initially defined are lower/upper bounds for each bin # so that values will be in [lower,upper) nbins = int(np.round(r.max() / binsize) + 1) maxbin = nbins * binsize bins = np.linspace(0, maxbin, nbins + 1) # We're probably more interested in the bin centers than their left or right sides... bin_centers = (bins[1:] + bins[:-1]) / 2.0 # There are never any in bin 0, because the lowest index returned by digitize is 1 nr = np.histogram(r, bins)[0] # nr is how many pixels are within each bin # Radial profile itself nan_flag = np.isnan(image) # get rid of nan #profile = np.histogram(r, bins, weights=image)[0] / nr profile = np.histogram(r[~nan_flag], bins, weights=image[~nan_flag])[0] / nr if interpnan: profile = np.interp(bin_centers, bin_centers[~np.isnan(profile)], profile[~np.isnan(profile)]) if stddev: # Find out which radial bin each point in the map belongs to # recall that bins are from 1 to nbins whichbin = np.digitize(r.ravel(), bins) profile_std = np.array([np.nanstd(image.ravel()[whichbin == b]) for b in range(1, nbins + 1)]) profile_std /= np.sqrt(nr) # Deviation of the mean! return [bin_centers, profile, profile_std] else: return [bin_centers, profile]
f5b5e5b4b21af71c50f0a0a9947d3a5cc203bdf0
2,240
from typing import OrderedDict def get_setindices(header, setnames): """From header like ---ID, coverage, set1_q-value set2_q-value--- this returns indices for different sets {'q-value': {'set1': 2, 'set2: 3}} """ setindices = OrderedDict() for index, field in enumerate(header): for setname in setnames: if field.startswith('{}_'.format(setname)): fieldname = field[len(setname) + 1:] try: setindices[fieldname][setname] = index except KeyError: setindices[fieldname] = {setname: index} return setindices
1bdbda0528098a55438b4cb24ca22358fae7e682
2,241
def _base_and_stride(freqstr): """ Return base freq and stride info from string representation Example ------- _freq_and_stride('5Min') -> 'Min', 5 """ groups = opattern.match(freqstr) if groups.lastindex != 2: raise ValueError("Could not evaluate %s" % freqstr) stride = groups.group(1) if len(stride): stride = int(stride) else: stride = 1 base = groups.group(2) return (base, stride)
a562b0a49f2e5a1d4f49119a424dbfd1588d9c97
2,242
def generate_label(input_x,threshold): """ generate label with input :param input_x: shape of [batch_size, sequence_length] :return: y:[batch_size] """ batch_size,sequence_length=input_x.shape y=np.zeros((batch_size,2)) for i in range(batch_size): input_single=input_x[i] sum=np.sum(input_single) if i == 0:print("sum:",sum,";threshold:",threshold) y_single=1 if sum>threshold else 0 if y_single==1: y[i]=[0,1] else: # y_single=0 y[i]=[1,0] return y
0091fb0d4c92884af1cf07d8afd248e2afeb92b2
2,243
import io def sf_imread( img_path, plot=True, ): """ Thin wrapper around `skimage.io.imread` that rotates the image if it is to be used for plotting, but does not if it is to be used for measurements. Parameters ---------- img_path : str Path to image plot : bool Determines whether or not image will be rotated 90 degrees Returns ------- np.array """ img_in = io.imread(img_path) if plot: img_in = transform.rotate(img_in, -90) # show images going left-right return img_in
3eb17fcb5bee144f7c822cfa23d5057c5fecc109
2,244
def test_plugin_ws_url_attributes(spf, path, query, expected_url): """Note, this doesn't _really_ test websocket functionality very well.""" app = spf._app test_plugin = TestPlugin() async def handler(request): return text('OK') test_plugin.websocket(path)(handler) spf.register_plugin(test_plugin) test_client = app.test_client request, response = test_client.get(path + '?{}'.format(query)) try: # Sanic 20.3.0 and above p = test_client.port except AttributeError: p = testing.PORT or 0 assert request.url == expected_url.format(testing.HOST, str(p)) parsed = urlparse(request.url) assert parsed.scheme == request.scheme assert parsed.path == request.path assert parsed.query == request.query_string assert parsed.netloc == request.host
f6e1f28f1df1e712ab399db48c8a4e0058d11d11
2,245
def less_than(x, y, force_cpu=None, cond=None, name=None): """ ${comment} Args: x(Tensor): ${x_comment}. y(Tensor): ${y_comment}. force_cpu(${force_cpu_type}): ${force_cpu_comment}. cond(Tensor, optional): Optional output which can be any created Tensor that meets the requirements to store the result of *less_than*. if cond is None, a new Tensor will be created to store the result. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: ${out_comment}. Examples: .. code-block:: python import paddle x = paddle.to_tensor([1, 2, 3, 4], dtype='float32') y = paddle.to_tensor([2, 2, 1, 3], dtype='float32') result = paddle.less_than(x, y) print(result) # [True, False, False, False] """ check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"], "less_than") check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"], "less_than") if cond is not None: check_type(cond, "cond", Variable, "less_than") if force_cpu != None: check_type(force_cpu, "force_cpu", bool, "less_than") helper = LayerHelper("less_than", **locals()) if cond is None: cond = helper.create_variable_for_type_inference(dtype='bool') cond.stop_gradient = True attrs = dict() if force_cpu is not None: attrs['force_cpu'] = force_cpu helper.append_op( type='less_than', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}, attrs=attrs) return cond
676cdc38b83c2155bbf166f01f50554c1751585e
2,246
import re def get_page_namespace(url_response): """ :type element: Tag :rtype: int """ keyword = '"wgNamespaceNumber"' text = url_response if keyword in text: beginning = text[text.find(keyword) + len(keyword):] ending = beginning[:beginning.find(',')] ints = re.findall('\d+', ending) if len(ints) > 0: return int(ints[0])
f4e61d4a927401995f2435a94170ca691ff9119e
2,247
def batch_to_seq(h, nbatch, nsteps, flat=False): """ Assumes Time major data!! x.shape = [nsteps, nbatch, *obs_shape] h = x.reshape([-1, *x.shape[2:]])) """ if flat: h = tf.reshape(h, [nsteps, nbatch]) else: h = tf.reshape(h, [nsteps, nbatch, -1]) return [tf.squeeze(v, [0]) for v in tf.split(axis=0, num_or_size_splits=nsteps, value=h)]
a39bf967110b802063a37260147c98ecdf8925bb
2,248
def get_site_camera_data(site_no): """An orchestration method that fetches camera data and returns the site dictionary""" json_raw = get_json_camera_data() camera = json_raw_to_dictionary(json_raw) return find_site_in_cameras(site_no, camera)
c9d9febebe8c80dd9de18ece8085853224140d3b
2,249
import argparse def get_args(): """ Get arguments to the tool with argparse :return: The arguments """ parser = argparse.ArgumentParser() parser.add_argument("filename", action='store', help='.xyz file(s) with optimised geometries from which to make .top and .gro files', nargs="+") parser.add_argument('-id', type=str, default='AAA', help="Three letter name of the residue/molecule e.g LYS") parser.add_argument('-c', type=int, default=0, help="Charge of the molecule Default: %(default)s") parser.add_argument('-m', type=int, default=1, help="Multiplicity of the molecule. Default: %(default)s") parser.add_argument('-notrash', action='store_true', default=False, help="Don't trash all the output files. Only .gro and .top will be left by default") return parser.parse_args()
0085922ad21776521bda2b2ce204983dd7181b89
2,250
def find_contam(df, contaminant_prevalence=0.5, use_mad_filter=False): """Flag taxa that occur in too many samples.""" taxa_counts = {} for taxa in df['taxa_name']: taxa_counts[taxa] = 1 + taxa_counts.get(taxa, 0) thresh = max(2, contaminant_prevalence * len(set(df['sample_name']))) contaminants = {taxa for taxa, count in taxa_counts.items() if count >= thresh} if not use_mad_filter or df.shape[0] <= 2: return df[~df['taxa_name'].isin(contaminants)] return median_filter(df, contaminants)
6f5976d97d7585d0dff60b90b2d6e5d6e22b6353
2,251
def has_level_or_node(level: int, *auth_nodes: str) -> Rule: """ :param level: 需要群组权限等级 :param auth_nodes: 需要的权限节点 :return: 群组权限等级大于要求等级或者具备权限节点, 权限节点为deny则拒绝 """ async def _has_level_or_node(bot: Bot, event: Event, state: T_State) -> bool: auth_node = '.'.join(auth_nodes) detail_type = event.dict().get(f'{event.get_type()}_type') group_id = event.dict().get('group_id') user_id = event.dict().get('user_id') # level检查部分 if detail_type != 'group': level_checker = False else: level_res = await DBGroup(group_id=group_id).permission_level() if level_res.result >= level: level_checker = True else: level_checker = False # node检查部分 if detail_type == 'private': user_auth = DBAuth(auth_id=user_id, auth_type='user', auth_node=auth_node) user_tag_res = await user_auth.tags_info() allow_tag = user_tag_res.result[0] deny_tag = user_tag_res.result[1] elif detail_type == 'group': group_auth = DBAuth(auth_id=group_id, auth_type='group', auth_node=auth_node) group_tag_res = await group_auth.tags_info() allow_tag = group_tag_res.result[0] deny_tag = group_tag_res.result[1] else: allow_tag = 0 deny_tag = 0 if allow_tag == 1 and deny_tag == 0: return True elif allow_tag == -2 and deny_tag == -2: return level_checker else: return False return Rule(_has_level_or_node)
a755b959eeb93caf113c157aa3551c45c1644216
2,252
import time import random import copy def solve_problem(problem, max_iter_num=MAX_ITER_NUM, max_iter_num_without_adding=MAX_ITER_NUM_WITHOUT_ADDITIONS, iter_num_to_revert_removal=ITER_NUM_TO_REVERT_REMOVAL, remove_prob=ITEM_REMOVAL_PROBABILITY, consec_remove_prob=CONSECUTIVE_ITEM_REMOVAL_PROBABILITY, ignore_removed_item_prob=IGNORE_REMOVED_ITEM_PROBABILITY, modify_prob=PLACEMENT_MODIFICATION_PROBABILITY, calculate_times=False, return_value_evolution=False): """Find and return a solution to the passed problem, using an reversible strategy""" # create an initial solution with no item placed in the container solution = Solution(problem) # determine the bounds of the container min_x, min_y, max_x, max_y = get_bounds(problem.container.shape) start_time = 0 sort_time = 0 item_discarding_time = 0 item_selection_time = 0 addition_time = 0 removal_time = 0 modification_time = 0 value_evolution_time = 0 if calculate_times: start_time = time.time() if return_value_evolution: value_evolution = list() else: value_evolution = None if calculate_times: value_evolution_time += get_time_since(start_time) if calculate_times: start_time = time.time() # sort items by weight, to speed up their discarding (when they would cause the capacity to be exceeded) items_by_weight = sorted(list(problem.items.items()), key=lambda index_item_tuple: index_item_tuple[1].weight) if calculate_times: sort_time += get_time_since(start_time) iter_count_since_addition = 0 iter_count_since_removal = 0 solution_before_removal = None if calculate_times: start_time = time.time() # discard the items that would make the capacity of the container to be exceeded items_by_weight = items_by_weight[:get_index_after_weight_limit(items_by_weight, problem.container.max_weight)] ignored_item_index = -1 if calculate_times: item_discarding_time += get_time_since(start_time) # placements can only be possible with capacity and valid items if problem.container.max_weight and items_by_weight: # try to add items to the container, for a maximum number of iterations for i in range(max_iter_num): if calculate_times: start_time = time.time() # perform a random choice of the next item to try to place list_index, item_index = select_item(items_by_weight) if calculate_times: item_selection_time += get_time_since(start_time) if calculate_times: start_time = time.time() # try to add the item in a random position and with a random rotation; if it is valid, remove the item from the pending list if solution.add_item(item_index, (random.uniform(min_x, max_x), random.uniform(min_y, max_y)), random.uniform(0, 360)): if calculate_times: addition_time += get_time_since(start_time) # find the weight that can still be added remaining_weight = problem.container.max_weight - solution.weight # stop early if the capacity has been exactly reached if not remaining_weight: break # remove the placed item from the list of pending items items_by_weight.pop(list_index) if calculate_times: start_time = time.time() # discard the items that would make the capacity of the container to be exceeded items_by_weight = items_by_weight[:get_index_after_weight_limit(items_by_weight, remaining_weight)] if calculate_times: item_discarding_time += get_time_since(start_time) # stop early if it is not possible to place more items, because all have been placed or all the items outside would cause the capacity to be exceeded if not items_by_weight: break # reset the potential convergence counter, since an item has been added iter_count_since_addition = 0 else: if calculate_times: addition_time += get_time_since(start_time) # register the fact of being unable to place an item this iteration iter_count_since_addition += 1 # stop early if there have been too many iterations without changes if iter_count_since_addition == max_iter_num_without_adding: break if calculate_times: start_time = time.time() # if there are items in the container, try to remove an item with a certain probability (different if there was a recent removal) if solution.weight > 0 and random.uniform(0., 1.) < (consec_remove_prob if solution_before_removal else remove_prob): # if there is no solution prior to a removal with pending re-examination if not solution_before_removal: # save the current solution before removing, just in case in needs to be restored later solution_before_removal = copy.deepcopy(solution) # reset the counter of iterations since removal, to avoid reverting earlier than needed iter_count_since_removal = 0 # get the index of the removed item, which is randomly chosen removed_index = solution.remove_random_item() # with a certain probability, only if not ignoring any item yet, ignore placing again the removed item until the operation gets reverted or permanently accepted if ignored_item_index < 0 and items_by_weight and random.uniform(0., 1.) < ignore_removed_item_prob: ignored_item_index = removed_index # otherwise, add the removed item to the weight-sorted list of pending-to-add items else: items_by_weight.insert(get_index_after_weight_limit(items_by_weight, problem.items[removed_index].weight), (removed_index, problem.items[removed_index])) # if there is a recent removal to be confirmed or discarded after some time if solution_before_removal: # re-examine a removal after a certain number of iterations if iter_count_since_removal == iter_num_to_revert_removal: # if the value in the container has improved since removal, accept the operation in a definitive way if solution.value > solution_before_removal.value: # if an item had been ignored, make it available for placement again if ignored_item_index >= 0: items_by_weight.insert(get_index_after_weight_limit(items_by_weight, problem.items[ignored_item_index].weight), (ignored_item_index, problem.items[ignored_item_index])) # otherwise, revert the solution to the pre-removal state else: solution = solution_before_removal # after reverting a removal, have some margin to try to add items iter_count_since_addition = 0 # reset removal data solution_before_removal = None iter_count_since_removal = 0 ignored_item_index = -1 # the check will be done after more iterations else: iter_count_since_removal += 1 if calculate_times: removal_time += get_time_since(start_time) if calculate_times: start_time = time.time() # if there are still items in the container (maybe there was a removal), modify existing placements with a certain probability if solution.weight > 0 and random.uniform(0., 1.) < modify_prob: # perform a random choice of the item to try to affect _, item_index = select_item(items_by_weight) # move to a random position of the container with a probability of 50% if random.uniform(0., 1.) < 0.5: solution.move_item_to(item_index, (random.uniform(min_x, max_x), random.uniform(min_y, max_y))) # otherwise, perform a random rotation else: solution.rotate_item_to(item_index, random.uniform(0, 360)) if calculate_times: modification_time += get_time_since(start_time) if return_value_evolution: if calculate_times: start_time = time.time() value_evolution.append(solution.value) if calculate_times: value_evolution_time += get_time_since(start_time) # in the end, revert the last unconfirmed removal if it did not improve the container's value if solution_before_removal and solution.value < solution_before_removal.value: solution = solution_before_removal if return_value_evolution: if calculate_times: start_time = time.time() value_evolution[-1] = solution.value if calculate_times: value_evolution_time += get_time_since(start_time) # encapsulate all times informatively in a dictionary if calculate_times: approx_total_time = sort_time + item_selection_time + item_discarding_time + addition_time + removal_time + modification_time + value_evolution_time time_dict = {"Weight-sort": (sort_time, sort_time / approx_total_time), "Stochastic item selection": (item_selection_time, item_selection_time / approx_total_time), "Item discarding": (item_discarding_time, item_discarding_time / approx_total_time), "Addition (with geometric validation)": (addition_time, addition_time / approx_total_time), "Removal and reverting-removal": (removal_time, removal_time / approx_total_time), "Placement modification (with geometric validation)": (modification_time, modification_time / approx_total_time), "Keeping value of each iteration": (value_evolution_time, value_evolution_time / approx_total_time)} if return_value_evolution: return solution, time_dict, value_evolution return solution, time_dict if return_value_evolution: return solution, value_evolution return solution
b240e0129e35c4066ec46d9dde68b012a821e319
2,253
import PIL def _pil_apply_edit_steps_mask(image, mask, edit_steps, inplace=False): """ Apply edit steps from unmasking method on a PIL image. Args: image (PIL.Image): The input image. mask (Union[int, tuple[int, int, int], PIL.Image]): The mask to apply on the image, could be a single grey scale intensity [0, 255], an RBG tuple or a PIL Image. edit_steps (list[EditStep]): Edit steps to be drawn. inplace (bool): True to draw on the input image, otherwise draw on a cloned image. Returns: PIL.Image, the result image. """ if not inplace: image = image.copy() if isinstance(mask, PIL.Image.Image): for step in edit_steps: box = step.to_coord_box() cropped = mask.crop(box) image.paste(cropped, box=box) else: if isinstance(mask, int): mask = (mask, mask, mask) draw = ImageDraw.Draw(image) for step in edit_steps: draw.rectangle(step.to_coord_box(), fill=mask) return image
c2bf05c282039ab5ff7eebefd8d9b3b635e9f74c
2,254
def do_let_form(expressions, env): """Evaluate a let form.""" check_form(expressions, 2) let_env = make_let_frame(expressions.first, env) return eval_all(expressions.second, let_env)
e291880a21c99fcc05d8203dfd73dccc9084a72b
2,255
def bubble(n_categories=5,n=10,prefix='category',mode=None): """ Returns a DataFrame with the required format for a bubble plot Parameters: ----------- n_categories : int Number of categories n : int Number of points for each category prefix : string Name for each category mode : string Format for each item 'abc' for alphabet columns 'stocks' for random stock names """ categories=[] for i in range(n_categories): categories.extend([prefix+str(i+1)]*n) return pd.DataFrame({'x':np.random.randn(n*n_categories), 'y':np.random.randn(n*n_categories), 'size':np.random.randint(1,100,n*n_categories), 'text':getName(n*n_categories,mode=mode), 'categories':categories})
77ba74f9bf6c09c49db8c4faa5934bd502995a5b
2,256
def get_coherence(model, token_lists, measure='c_v'): """ Get model coherence from gensim.models.coherencemodel :param model: Topic_Model object :param token_lists: token lists of docs :param topics: topics as top words :param measure: coherence metrics :return: coherence score """ if model.method == 'LDA': cm = CoherenceModel(model=model.ldamodel, texts=token_lists, corpus=model.corpus, dictionary=model.dictionary, coherence=measure) else: topics = get_topic_words(token_lists, model.cluster_model.labels_) cm = CoherenceModel(topics=topics, texts=token_lists, corpus=model.corpus, dictionary=model.dictionary, coherence=measure) return cm.get_coherence()
1e8632eb901fc5219a4070d8e0b8e390612f7338
2,257
def run_vscode_command( command_id: str, *args: str, wait_for_finish: bool = False, return_command_output: bool = False, ): """Runs a VSCode command, using command server if available Args: command_id (str): The ID of the VSCode command to run wait_for_finish (bool, optional): Whether to wait for the command to finish before returning. Defaults to False. return_command_output (bool, optional): Whether to return the output of the command. Defaults to False. Raises: Exception: If there is an issue with the file-based communication, or VSCode raises an exception Returns: Object: The response from the command, if requested. """ # NB: This is a hack to work around the fact that talon doesn't support # variable argument lists args = [x for x in args if x is not NotSet] communication_dir_path = get_communication_dir_path() if not communication_dir_path.exists(): if args or return_command_output: raise Exception("Must use command-server extension for advanced commands") print("Communication dir not found; falling back to command palette") run_vscode_command_by_command_palette(command_id) return request_path = communication_dir_path / "request.json" response_path = communication_dir_path / "response.json" # Generate uuid that will be mirrored back to us by command server for # sanity checking uuid = str(uuid4()) request = Request( command_id=command_id, args=args, wait_for_finish=wait_for_finish, return_command_output=return_command_output, uuid=uuid, ) # First, write the request to the request file, which makes us the sole # owner because all other processes will try to open it with 'x' write_request(request, request_path) # We clear the response file if it does exist, though it shouldn't if response_path.exists(): print("WARNING: Found old response file") robust_unlink(response_path) # Then, perform keystroke telling VSCode to execute the command in the # request file. Because only the active VSCode instance will accept # keypresses, we can be sure that the active VSCode instance will be the # one to execute the command. actions.user.trigger_command_server_command_execution() try: decoded_contents = read_json_with_timeout(response_path) finally: # NB: We remove response file first because we want to do this while we # still own the request file robust_unlink(response_path) robust_unlink(request_path) if decoded_contents["uuid"] != uuid: raise Exception("uuids did not match") for warning in decoded_contents["warnings"]: print(f"WARNING: {warning}") if decoded_contents["error"] is not None: raise Exception(decoded_contents["error"]) actions.sleep("25ms") return decoded_contents["returnValue"]
0bf1cfed5d2e02cf618ba8c7c9347d0408ef0ee3
2,258
import os def clc_prepare(reference, outdir, source): """ create a CLC subset resampled to a reference image. Parameters ---------- reference: str the reference file with the target CRS and extent outdir: str the directory to write the new file to; new files are named clc{index}.tif, e.g. clc1.tif. source: str the original product to be subsetted Returns ------- str the name of the file written to `outdir` """ with Raster(reference) as ras: xRes, yRes = ras.res epsg = ras.epsg ext = ras.extent ######################################################################### warp_opts = {'options': ['-q'], 'format': 'GTiff', 'multithread': True, 'dstNodata': -99, 'resampleAlg': 'mode'} if not os.path.isdir(outdir): os.makedirs(outdir) clc_subs = finder(outdir, ['clc[0-9].tif'], regex=True) match = False if len(clc_subs) > 0: for j, sub in enumerate(clc_subs): with Raster(sub) as ras: if ras.extent == ext: clc_sub = sub match = True if not match: clc_sub = os.path.join(outdir, 'clc{}.tif'.format(len(clc_subs))) print('creating', clc_sub) warp_opts['dstSRS'] = 'EPSG:{}'.format(epsg) warp_opts['xRes'] = xRes warp_opts['yRes'] = yRes warp_opts['outputBounds'] = (ext['xmin'], ext['ymin'], ext['xmax'], ext['ymax']) gdalwarp(src=source, dst=clc_sub, options=warp_opts) return clc_sub
0ebf57a5c11684e1575fb0eb3b69bde62d807431
2,259
from imucal.management import find_calibration_info_for_sensor # noqa: F401 from typing import Optional from typing import Callable from typing import List from pathlib import Path def find_calibrations_for_sensor( sensor_id: str, folder: Optional[path_t] = None, recursive: bool = True, filter_cal_type: Optional[str] = None, custom_validator: Optional[Callable[["CalibrationInfo"], bool]] = None, ignore_file_not_found: Optional[bool] = False, ) -> List[Path]: """Find possible calibration files based on the filename. As this only checks the filenames, this might return false positives depending on your folder structure and naming. Parameters ---------- sensor_id : The for 4 letter/digit identifier of a sensor_type, as obtained from :py:meth:`nilspodlib.header.Header.sensor_id` folder : Basepath of the folder to search. If None, tries to find a default calibration recursive : If the folder should be searched recursive or not. filter_cal_type : Whether only files obtain with a certain calibration type should be found. This will look for the `CalType` inside the json file and could cause performance issues with many calibration files. If None, all found files will be returned. For possible values, see the `imucal` library. custom_validator : A custom function that will be called with the CalibrationInfo object of each potential match. This needs to load the json file of each match and could cause performance issues with many calibration files. ignore_file_not_found : If True this function will not raise an error, but rather return an empty list, if no calibration files were found for the specific sensor_type. Returns ------- list_of_cals List of paths pointing to available calibration objects. """ if not folder: folder = _check_ref_cal_folder() return find_calibration_info_for_sensor( sensor_id=sensor_id, folder=folder, recursive=recursive, filter_cal_type=filter_cal_type, custom_validator=custom_validator, ignore_file_not_found=ignore_file_not_found, )
b28a6deb1348fd86c93ae6fd0b292626a99c2149
2,260
def reward_displacement(navenv): """ Reward = distance to previous position""" r = dist(navenv.current_pos, navenv.old_pos) return r
f2d9f5bf78a93967c6e74a4fba0e25109fa1fb3b
2,261
import uuid def MakeLinuxFirmware(save=True, **kwargs): """Create and return a LinuxFirmware for test.""" defaults = { 'manufacturer': 'Lonovo', 'serial': 'blah', 'password': '123456789', 'machine_uuid': str(uuid.uuid4()).upper(), 'owner': 'someone', 'asset_tags': ['12345'], 'hostname': 'zerocool.example.com', } defaults.update(kwargs) entity = firmware.LinuxFirmwarePassword(**defaults) if save: entity.put() return entity
2b4381035ae55ffc5996d06e5a9455c7ca148a85
2,262
def get_unity_filesystem_parameters(): """This method provide parameters required for the ansible filesystem module on Unity""" return dict( filesystem_name=dict(required=False, type='str'), filesystem_id=dict(required=False, type='str'), nas_server_name=dict(required=False, type='str'), nas_server_id=dict(required=False, type='str'), description=dict(required=False, type='str'), pool_name=dict(required=False, type='str'), pool_id=dict(required=False, type='str'), size=dict(required=False, type='int'), cap_unit=dict(required=False, type='str', choices=['GB', 'TB']), is_thin=dict(required=False, type='bool'), data_reduction=dict(required=False, type='bool'), supported_protocols=dict(required=False, type='str', choices=['NFS', 'CIFS', 'MULTIPROTOCOL']), smb_properties=dict(type='dict', options=dict( is_smb_sync_writes_enabled=dict(type='bool'), is_smb_notify_on_access_enabled=dict(type='bool'), is_smb_op_locks_enabled=dict(type='bool'), is_smb_notify_on_write_enabled=dict(type='bool'), smb_notify_on_change_dir_depth=dict(type='int') )), access_policy=dict(required=False, type='str', choices=['NATIVE', 'UNIX', 'WINDOWS']), locking_policy=dict(required=False, type='str', choices=['ADVISORY', 'MANDATORY']), tiering_policy=dict(required=False, type='str', choices=[ 'AUTOTIER_HIGH', 'AUTOTIER', 'HIGHEST', 'LOWEST']), snap_schedule_name=dict(required=False, type='str'), snap_schedule_id=dict(required=False, type='str'), quota_config=dict(required=False, type='dict', options=dict( grace_period=dict(required=False, type='int'), grace_period_unit=dict(required=False, type='str', choices=['minutes', 'hours', 'days']), default_hard_limit=dict(required=False, type='int'), default_soft_limit=dict(required=False, type='int'), is_user_quota_enabled=dict(required=False, type='bool'), quota_policy=dict(required=False, type='str', choices=['FILE_SIZE', 'BLOCKS']), cap_unit=dict(required=False, type='str', choices=['MB', 'GB', 'TB']), ), mutually_exclusive=[['is_user_quota_enabled', 'quota_policy']]), state=dict(required=True, type='str', choices=['present', 'absent']) )
2cbbe284a8345341abf80948d659c2f2625b6e8f
2,263
def get_time_difference(row, start_col, end_col, start_format, end_format, unit='days'): """ Returns a Series object of days Unit can be D for Days, or Y for Years """ start_date = row[start_col] end_date = row[end_col] if pd.isnull(start_date) or pd.isnull(end_date): return np.nan else: time_delta = get_time_delta(start_date, end_date, start_format, end_format) if unit == 'days': return time_delta.days elif unit == 'years': return float(time_delta.days)/365
a73fea6bebc777ec8ff4ff89118e940f8dfdfcf1
2,264
def get_account(account_name, password): """Displays account data from the wallet. --- Definitions --- {"name": "account_name", "prompt": "Alias of account", "default": "Myaccount"} {"name": "password", "prompt": "Password to decrypt private key", "default": "Mypassword"} """ db = get_wallet_db() account = db.execute( 'SELECT * FROM testaccount WHERE name = ?', (account_name,) ).fetchone() if account is None: return None private_key = Account.decrypt(account["privatekey"], password) acc = Account.from_key(private_key) return acc
09791696c4a6c3ddfc0ceae20e50abf7f15893f5
2,265
def invert(img): """ Function to invert colors of an image """ r, g, b, a = colorsys_getRGBA(img) # Get r, g, b, a r, g, b = 255 - r, 255 - g, 255 - b # Invert all colors img_arr = np.dstack((r, g, b, a)) return img_arr
013d708fb434b450404879346f25ad0d7088e3cf
2,266
def spearman_kendall_test(df, item, alpha=0.05, increasing=True, rank_in='Rank', category_in='category', dataset_in='dataset', userid_in='userid' ): """ Do spearman's and kendall's test for the increasing or decreasing trend. :param df: dataframe, it should include both column 'item' and column 'ranking' :param item: string, column of target's label :param rank_in:string, column of rank's label :param category_in: string, column of category's label :param userid_in: string, column of userid's label :param dataset_in: string, column of dataset's label :param alpha: significant level :param increasing: bool, test for increasing trend or decreasing trend :return: dataframe filled in all test results """ category = sorted(list(set(df[category_in].tolist()))) dataset = sorted(list(set(df[dataset_in].tolist()))) test_result = [] for ds in dataset: for cat in category: count_sm, count_kd = 0, 0 df_temp = df[(df[dataset_in] == ds) & (df[category_in] == cat)] ur_ds = df_temp[userid_in].unique().tolist() for user in ur_ds: rank = df_temp[df_temp[userid_in] == user][rank_in].tolist() item_specify = df_temp[df_temp[userid_in] == user][item].tolist() coef_sm, p_sm = spearmanr(rank, item_specify) coef_kd, p_kd = kendalltau(rank, item_specify) if increasing: if (coef_sm > 0) & (p_sm < alpha): count_sm += 1 if (coef_kd > 0) & (p_kd < alpha): count_kd += 1 else: if (coef_sm < 0) & (p_sm < alpha): count_sm += 1 if (coef_kd < 0) & (p_kd < alpha): count_kd += 1 test_result.append([ds, cat, count_sm, count_sm / len(ur_ds), count_kd, count_kd / len(ur_ds), len(ur_ds)] ) stats_test = pd.DataFrame(test_result, columns=[dataset_in, category_in, 'SpN', 'SpP', 'Kn', 'Kp', 'total'] ).sort_values([dataset_in, category_in]) return stats_test
d8c85f20866a68a7070be89c57cdb18d2b33c828
2,267
def array2string(array, _depth=0): """ Recursively create a initializer list style string from an iterable with multiple dimensions. Args: array (iterable): input iterable which is expected to have elements that can be converted to strings with `str()`. _depth (int): variable tracking the current recursion depth """ if hasattr(array, 'name'): return array.name elif not hasattr(array, '__len__'): return float_nsf(array) else: string = '' array_len = len(array) for i in range(array_len): string += array2string(array[i], _depth=_depth + 1) + ', ' if (array_len > 1) or (_depth == 0) : return '{' + string[0:-2] + '}' else: return string[0:-2]
948bfe9e63f16c588001707125afe8d2867ff6b6
2,268
def rail_help_wrapper(prog): """ So formatter_class's max_help_position can be changed. """ return RailHelpFormatter(prog, max_help_position=40)
aa821f68ea1587a051be59f52187dbf9b1dd2d91
2,269
def project_dashboard(request): """ The function calling Project Dashboard page. :param request: :return: """ global all_vuln, \ total_web, \ all_high, \ total_network, \ all_medium, \ all_low, \ all_web_high, \ all_web_medium, \ all_network_medium, \ all_web_low, \ all_network_low, \ all_network_high all_project = project_db.objects.all() return render(request, 'project_dashboard.html', {'all_project': all_project})
0459776f846a8f089fefd528605d2e850aeced5c
2,270
def getSelfRole(store): """ Retrieve the Role which corresponds to the user to whom the given store belongs. """ return getAccountRole(store, userbase.getAccountNames(store))
d548ba6406ec92df7777498574f86cf44737ba8b
2,271
def forwardCOMDQ(robot, m = 0, symbolic = False): """ Using Dual Quaternions, this function computes forward kinematics to m - th center of mass, given joints positions in radians. Robot's kinematic parameters have to be set before using this function robot: object (robot.jointsPositions, robot.linksLengths) m: int """ framesDQ, fkDQ = forwardDQ(robot, m = m, symbolic = symbolic) # Initial conditions framesCOMDQ = [np.array([[1], [0], [0], [0], [0], [0], [0], [0]]) if not symbolic else Matrix([1, 0, 0, 0, 0, 0, 0, 0])] # Gets Denavit - Hartenberg Matrix if not symbolic: if not robot.dhParametersCOM: comDH = dh.centersOfMass(robot) else: comDH = np.array(robot.dhParameters([float(q) for q in robot.jointsPositions], [float(Lcom) for Lcom in robot.centersOfMass])) else: comDH = robot.symbolicDHParametersCOM i = 1 for frame in comDH[1 : , :]: if i > m: break else: if not symbolic: # Center of Mass Homogeneous Transformation Matrix COM = dq.leftOperator(dq.Rz(frame[0])).dot(dq.rightOperator(dq.Rx(frame[3]))).dot(dq.rightOperator(dq.Tx(frame[2]))).dot(dq.Tz(frame[1])) # Rigid body's Dual Quaternion B = dq.leftOperator(dq.conjugate(framesDQ[i - 1])).dot(framesDQ[i]) # Forward kinematics to Center of Mass fkCOMDQ = dq.leftOperator(framesDQ[i]).dot(dq.rightOperator(COM)).dot(dq.conjugate(B)) else: # Center of Mass Homogeneous Transformation Matrix COM = dq.symbolicLeftOperator(dq.symbolicRz(frame[0])) * dq.symbolicRightOperator(dq.symbolicRx(frame[3])) * dq.symbolicRightOperator(dq.symbolicTx(frame[2])) * dq.symbolicTz(frame[1]) # Rigid body's Dual Quaternion B = dq.symbolicLeftOperator(dq.symbolicConjugate(framesDQ[i - 1])) * framesDQ[i] # Forward kinematics to Center of Mass fkCOMDQ = nsimplify(simplify(dq.symbolicLeftOperator(framesDQ[i]) * dq.symbolicRightOperator(COM) * dq.symbolicConjugate(B)), tolerance = 1e-10, rational = False) framesCOMDQ.append(fkCOMDQ) i += 1 return framesCOMDQ, fkCOMDQ
e197839d98cdbb8b15449d33c8677adc5f9d3e8a
2,272
def gen_mode(): """获取玩家想要考试的模式""" while True: mode = input("如何考试?\n输入1顺序考试\n输入2乱序考试\n>>") if mode in ("1", "2"): return mode else: print() print("非法输入,请输入\"1\"或\"2\"") print("你不需要输入双引号") print("--------------------------------")
eb3ff4a0812fe088f3acb1302730f5f48c6fbcda
2,273
def find_movers(threshold, timeframe: Timeframe, increasing=True, decreasing=False, max_price=None): """ Return a dataframe with row index set to ASX ticker symbols and the only column set to the sum over all desired dates for percentage change in the stock price. A negative sum implies a decrease, positive an increase in price over the observation period. """ assert threshold >= 0.0 # NB: missing values will be imputed here, for now. cip = company_prices(all_stocks(), timeframe, fields="change_in_percent", missing_cb=None) movements = cip.sum(axis=0) results = movements[movements.abs() >= threshold] print("Found {} movers before filtering: {} {}".format(len(results), increasing, decreasing)) if not increasing: results = results.drop(results[results > 0.0].index) if not decreasing: results = results.drop(results[results < 0.0].index) #print(results) if max_price is not None: ymd = latest_quotation_date('ANZ') stocks_lte_max_price = [q.asx_code for q in valid_quotes_only(ymd) if q.last_price <= max_price] results = results.filter(stocks_lte_max_price) print("Reporting {} movers after filtering".format(len(results))) return results
ff1524d74dfe76630fb45b24119f57c3289ba355
2,274
from bigdl.nano.deps.automl.hpo_api import create_optuna_pl_pruning_callback def create_pl_pruning_callback(*args, **kwargs): """Create PyTorchLightning Pruning Callback. Optuna Only.""" return create_optuna_pl_pruning_callback(*args, **kwargs)
0698e800ed110d430422b7a3fcc72e100ed87658
2,275
import requests def get_all_token_volume_by_direction(chain:str, direction:str): """ chain: Allowed: ethereum ┃ avalanche ┃ bsc ┃ polygon ┃ arbitrum ┃ fantom ┃ harmony ┃ boba ┃ optimism ┃ moonriver ┃ aurora direction: Allowed: in ┃ out """ chain = chain.lower() direction = direction.lower() chains = ["ethereum", "avalanche", "bsc", "polygon", "arbitrum", "fantom", "harmony", "boba", "optimism", "moonriver", "aurora"] directions = ["in", "out"] params_ok = False if chain in chains and direction in directions: params_ok = True if params_ok: endpoint = f"{server}/api/v1/analytics/volume/{chain}/{direction}" data = requests.get(endpoint) if data.status_code == 200: return data.json()["data"] else: print("request failed") else: print("wrong parameters")
be3285e4e4ac65075a98aeb853e68b1b5f6658cb
2,276
def _interactively_fix_missing_variables(project, result): """Return True if we need to re-prepare.""" if project.problems: return False if not console_utils.stdin_is_interactive(): return False # We don't ask the user to manually enter CONDA_PREFIX # (CondaEnvRequirement) because it's a bizarre/confusing # thing to ask. can_ask_about = [status for status in result.statuses if (not status and isinstance(status.requirement, EnvVarRequirement) and not isinstance( status.requirement, CondaEnvRequirement))] if can_ask_about: print("(Use Ctrl+C to quit.)") start_over = False values = dict() for status in can_ask_about: reply = console_utils.console_input("Value for " + status.requirement.env_var + ": ", encrypted=status.requirement.encrypted) if reply is None: return False # EOF reply = reply.strip() if reply == '': start_over = True break values[status.requirement.env_var] = reply if len(values) > 0: status = project_ops.set_variables(project, result.env_spec_name, values.items(), result) if status: return True else: console_utils.print_status_errors(status) return False else: return start_over
73393e453043132fc340be10411cb83569becf8c
2,277
def build_node_descr(levels, switch=False): """ Produces a node description of the above binary trees """ num_parents = sum([2**i for i in range(levels-1)]) parents, children = tee(character_iterator(switch)) next(children) node_descr = [] for parent_ident in islice(parents, num_parents): node_descr.append((parent_ident, next(children), "L")) node_descr.append((parent_ident, next(children), "R")) return node_descr
c682cf5e5946b614563dda31ace76f259df02d47
2,278
import random def random_sources(xSize, ySize, zSize, number): """ returns a list of random positions in the grid where the sources of nutrients (blood vessels) will be """ src = [] for _ in range(number): x = random.randint(0, xSize-1) y = random.randint(0, ySize-1) z = random.randint(0, zSize-1) if (x, y, z) not in src: src.append((x,y,z)) return src
17dab43ea2468a11e3720ff0f7eb33b605371496
2,279
import numpy def sqeuclidean( x_mat: 'Tensor', y_mat: 'Tensor', device: str = 'cpu' ) -> 'numpy.ndarray': """Squared euclidean distance between each row in x_mat and each row in y_mat. :param x_mat: tensorflow array with ndim=2 :param y_mat: tensorflow array with ndim=2 :param device: the computational device for `embed_model`, can be either `cpu` or `cuda`. :return: np.ndarray with ndim=2 """ device = tf.device('/GPU:0') if device == 'cuda' else tf.device('/CPU:0') with _get_tf_device(device): return tf.reduce_sum( (tf.expand_dims(x_mat, 1) - tf.expand_dims(y_mat, 0)) ** 2, 2 ).numpy()
3265a062d5a0eece85a3c83e99ad2f9ab27c62cb
2,280
from typing import Optional def get(*, db_session, tag_id: int) -> Optional[Tag]: """Gets a tag by its id.""" return db_session.query(Tag).filter(Tag.id == tag_id).one_or_none()
752da542eef22ebd977b27c922341690bac2f5ab
2,281
def plot_lines(axes, xdata, ydata, yerrors=None, cdata=None, cmap=None, line_spec='-o', *args, **kwargs): """ Plot lines on given matplotlib axes subplot Uses matplotlib.plot or matplotlib.errorbar if yerrors is not None :param axes: matplotlib figure or subplot axes, None uses current axes :param xdata: array[n] data on x axis :param ydata: list[n] of array[n] data on y axis :param yerrors: list[m] of array[n] errors on y axis (or None) :param cdata: list[n] of values to define line colour :param cmap: name of colormap to generate colour variation in lines :param line_spec: str or list[m] of str matplotlib.plot line_spec :param args: additional arguments :param kwargs: additional arguments :return: output of plt.plot [line], or plt.errorbar [line, xerrors, yerrors] """ if axes is None: axes = plt.gca() nplots = len(ydata) if xdata is None: xdata = [range(len(y)) for y in ydata] elif len(xdata) != nplots: xdata = [xdata] * nplots if yerrors is None: yerrors = [None] * nplots elif len(yerrors) != nplots: yerrors = [yerrors] * nplots if cmap is None: cmap = 'viridis' if cdata is None: cdata = np.arange(nplots) else: cdata = np.asarray(cdata) cnorm = cdata - cdata.min() cnorm = cnorm / cnorm.max() cols = plt.get_cmap(cmap)(cnorm) line_spec = fn.liststr(line_spec) if len(line_spec) != nplots: line_spec = line_spec * nplots print(axes) print(len(xdata), xdata) print(len(ydata), ydata) print(len(yerrors), yerrors) print(len(line_spec), line_spec) print(len(cols), cols) lines = [] for n in range(nplots): lines += plot_line(axes, xdata[n], ydata[n], yerrors[n], line_spec[n], c=cols[n], *args, **kwargs) return lines
5c618745ba503a206d594bbac9cbe831d1124625
2,282
import math def conv_binary_prevent_overflow(array, structure): """ Make sure structure array has great enough positive bitdepth to be convolved with binary primary array. Parameters ---------- array : ndarray of bool or int, 2D Primary integer array to convolve. Must be a binary array of only zero/False and one/True. structure : ndarray of bool or int, 2D Secondary, smaller integer array to convolve with `array`. Must be a binary array of only zero/False and one/True. Returns ------- structure : ndarray, possible uint cast of `structure` Either the same `structure` array or a cast or `structure` to a uint data type with more positive bitdepth than the input array. """ # Get upper bound on minimum positive bitdepth for convolution. conv_bitdepth_pos = math.log(np.prod(structure.shape)+1, 2) dtype_bitdepths_pos = (1, 7, 8, 15, 16, 31, 32, 63, 64) for b in dtype_bitdepths_pos: if conv_bitdepth_pos <= b: conv_bitdepth_pos = b break # Parse input array and structure data type for bitdepth. input_bitdepth_pos = 0 for arr in (array, structure): arr_dtype = arr.dtype if arr.dtype == np.bool: arr_posbits = 1 elif np.issubdtype(arr_dtype, np.int): arr_posbits = int(str(arr.dtype).replace('int', '')) - 1 elif np.issubdtype(arr_dtype, np.uint): arr_posbits = int(str(arr.dtype).replace('uint', '')) elif np.issubdtype(arr_dtype, np.floating): arr_posbits = np.inf else: arr_posbits = 0 input_bitdepth_pos = max(input_bitdepth_pos, arr_posbits) if input_bitdepth_pos == 0: # Handle unknown data type by casting structure to # maximum possible bitdepth. structure = structure.astype(np.uint64) else: # If maximum positive bitdepth from inputs is too low, # cast structure to minimum positive bitdepth for conovlution. if input_bitdepth_pos < conv_bitdepth_pos: if (conv_bitdepth_pos % 2) != 0: conv_bitdepth_pos += 1 structure = structure.astype(eval('np.uint{}'.format(conv_bitdepth_pos))) return structure
dd82382c1109e2ce9d15bf0abd563f32b8e8b585
2,283
def filter_freq_and_csq(mt: hl.MatrixTable, data_type: str, max_freq: float, least_consequence: str): """ Filters MatrixTable to include variants that: 1. Have a global AF <= `max_freq` 2. Have a consequence at least as severe as `least_consequence` (based on ordering from CSQ_ORDER) :param MatrixTable mt: Input MT :param str data_type: One of 'exomes' or 'genomes' :param float max_freq: Max. AF to keep :param str least_consequence: Least consequence to keep. :return: Filtered MT :rtype: MatrixTable """ vep_ht = hl.read_table(annotations_ht_path(data_type, 'vep')) freq = hl.read_table(annotations_ht_path(data_type, 'frequencies')) mt = mt.select_rows( vep=vep_genes_expr(vep_ht[mt.row_key].vep, least_consequence), af=hl.float32(freq[mt.row_key].freq[0].AF) ) mt = mt.filter_rows(hl.is_defined(mt.vep) & (hl.len(mt.vep) > 0) & (mt.af > 0) & (mt.af <= max_freq)) mt = mt.explode_rows(mt.vep) mt = mt.rename({'vep': 'gene_id'}) return mt
a20796ccb6fc4db1f93c91f07f5756f390099bee
2,284
def get_regular_intervals( pre_sfes: list, post_sfes: list, pre_keep_flag: bool, post_keep_flag: bool, ) -> list: """ Calculates the intervals for the "regular" egg laying epoch. If pre_keep_flag, the "regular" epoch is the pre-breakpoint region. If post_keep_flag, the "regular" epoch is the post-breakpoint region. If both flags are True, the whole egg-laying trajectory is considered "regular". Args: pre_sfes (list): list of pre region SFES post_sfes (list): list of post region SFES pre_keep_flag (bool): True if the pre region intervals are considered regular post_keep_flag (bool): True if the post region intervals are considered regular Returns: A list of intervals considered regular """ reg_intervals = [] if pre_keep_flag: pre_sfes_sec = [(x * 60 * 60) for x in pre_sfes] pre_intervals = np.diff(pre_sfes_sec, n=1) pre_intervals = normalize_tiny_intervals(pre_intervals) reg_intervals.extend(pre_intervals) if post_keep_flag: post_sfes_sec = [(x * 60 * 60) for x in post_sfes] post_intervals = np.diff(post_sfes_sec, n=1) post_intervals = normalize_tiny_intervals(post_intervals) reg_intervals.extend(post_intervals) return reg_intervals
7d92006fc286e3b8c2977c023070388581f192fa
2,285
async def async_setup(hass, config): """Platform setup, do nothing.""" if DOMAIN not in config: return True hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_IMPORT}, data=dict(config[DOMAIN]) ) ) return True
be7c81bc7c91251c1c02696d8daa7eaac1f1d326
2,286
def get_new_bucket(target=None, name=None, headers=None): """ Get a bucket that exists and is empty. Always recreates a bucket from scratch. This is useful to also reset ACLs and such. """ if target is None: target = targets.main.default connection = target.connection if name is None: name = get_new_bucket_name() # the only way for this to fail with a pre-existing bucket is if # someone raced us between setup nuke_prefixed_buckets and here; # ignore that as astronomically unlikely bucket = connection.create_bucket(name, location=target.conf.api_name, headers=headers) return bucket
d46156ee36304b6a13ebd2d467373c7873b8b075
2,287
def angle_rms(ang, axis=None, period=2*np.pi): """returns the rms of angles, uses the property that rms(x)**2 = mean(x)**2 + std(x)**2""" #rms(x)**2 = mean(x)**2 + std(x)**2 #sqrt(E[X**2]) = E[X]**2 + sqrt(E[(X - E[X])**2]) m,s = angle_mean_std(ang,axis,period) return np.hypot(m, s)
5b2c8fc865762b7856fc6a8c68e901dbf367690d
2,288
import functools def check_units(*units_by_pos, **units_by_name): """Create a decorator to check units of function arguments.""" def dec(func): # Match the signature of the function to the arguments given to the decorator sig = signature(func) bound_units = sig.bind_partial(*units_by_pos, **units_by_name) # Convert our specified dimensionality (e.g. "[pressure]") to one used by # pint directly (e.g. "[mass] / [length] / [time]**2). This is for both efficiency # reasons and to ensure that problems with the decorator are caught at import, # rather than runtime. dims = {name: (orig, units.get_dimensionality(orig.replace('dimensionless', ''))) for name, orig in bound_units.arguments.items()} defaults = {name: sig.parameters[name].default for name in sig.parameters if sig.parameters[name].default is not Parameter.empty} @functools.wraps(func) def wrapper(*args, **kwargs): # Match all passed in value to their proper arguments so we can check units bound_args = sig.bind(*args, **kwargs) bad = list(_check_argument_units(bound_args.arguments, defaults, dims)) # If there are any bad units, emit a proper error message making it clear # what went wrong. if bad: msg = f'`{func.__name__}` given arguments with incorrect units: ' msg += ', '.join(f'`{arg}` requires "{req}" but given "{given}"' for arg, given, req in bad) if 'none' in msg: msg += ('\nAny variable `x` can be assigned a unit as follows:\n' ' from metpy.units import units\n' ' x = x * units.meter / units.second') raise ValueError(msg) return func(*args, **kwargs) return wrapper return dec
b7bd0c78d1339032a442c4e3a354cc1fa9e804b2
2,289
def check_nifti_dim(fname, data, dim=4): """ Remove extra dimensions. Parameters ---------- fname : str The name of the file representing `data` data : np.ndarray The data which dimensionality needs to be checked dim : int, optional The amount of dimensions expected/desired in the data. Returns ------- np.ndarray If `len(data.shape)` = `dim`, returns data. If `len(data.shape)` > `dim`, returns a version of data without the dimensions above `dim`. Raises ------ ValueError If `data` has less dimensions than `dim` """ if len(data.shape) < dim: raise ValueError(f'{fname} does not seem to be a {dim}D file. ' f'Plase provide a {dim}D nifti file.') if len(data.shape) > dim: LGR.warning(f'{fname} has more than {dim} dimensions. Removing D > {dim}.') for ax in range(dim, len(data.shape)): data = np.delete(data, np.s_[1:], axis=ax) return np.squeeze(data)
0f814cc3eaca7242bf3393a1e749df5ebe7b128a
2,290
def bar_chart(x_data=None, y_data=None, title="Chart Title", x_label=None, y_label=None, color="blue", figsize=(10,5)): """ This function requires two Pandas data series for x and y data. Optionally: the x label, y label, color, title, and size may be set. This function returns a bar chart with the specified parameters. """ if x_data is None or y_data is None: print("No data passed.") return None if x_label is None: x_label = x_data.name if y_label is None: y_label = y_data.name fig = plt.figure(figsize=figsize) #Sets size of the bar chart. plt.bar(x_data, y_data, color=color) #Plots x and y and set the color. plt.title(title) #Sets title of the chart. plt.xlabel(x_label) #Sets x-axis label. plt.ylabel(y_label) #Sets y-axis label. plt.xticks(x_data, rotation='45') #Setting x-tick labels and rotating 45 degrees. return plt
23b8d0c1a50ec4909d8b46c29ac75a483b2e221c
2,291
def get_qtobject_for_uipath(pathstr): """ Returns the QtObject for a Maya UI path. Ensure that the path starts from the Maya main window and that there are no \ empty elements in it as this will fail. """ split_pathstr = pathstr.split("|") return _find_qobject(get_maya_main_window(), split_pathstr)
fc39ffe792a25af33663c7843a934045df4a91b0
2,292
def parse_study_with_run(soup): """Given a BeautifulSoup object representing a study, parse out relevant information. :param soup: a BeautifulSoup object representing a study :type soup: bs4.BeautifulSoup :return: a dictionary containing study information and run information :rtype: dict """ accession = soup.find('PRIMARY_ID', text=PROJECT_PARSER).text title = soup.find('STUDY_TITLE').text abstract = soup.find('STUDY_ABSTRACT').text # Returns all of the runs associated with a study runs = [] run_parsed = soup.find('ID', text=RUN_PARSER) if run_parsed: run_ranges = run_parsed.text.split(",") for run_range in run_ranges: if '-' in run_range: runs += parse_run_range(run_range) else: runs.append(run_range) else: logger.warning( 'Failed to parse run information from ENA XML. Falling back to ' 'ENA search...' ) # Sometimes the SRP does not contain a list of runs (for whatever reason). # A common trend with such projects is that they use ArrayExpress. # In the case that no runs could be found from the project XML, # fallback to ENA SEARCH. runs = search_ena_study_runs(accession) return { 'accession': accession, 'title': title, 'abstract': abstract, 'runlist': runs }
44405ed14b67c03a44fef876d3d9ed5afc703489
2,293
def create_embed(**kwargs) -> Embed: """Creates a discord embed object.""" embed_type = kwargs.get('type', Embed.Empty) title = kwargs.get('title', Embed.Empty) description = kwargs.get('description', Embed.Empty) color = kwargs.get('color', get_default_color()) timestamp = kwargs.get('timestamp', Embed.Empty) url = kwargs.get('url', Embed.Empty) return Embed( type=embed_type, title=title, description=description, url=url, color=color, timestamp=timestamp )
4396d03eab15ccc05ceff7cc8cfcd1b93e85894a
2,294
from typing import List import time import os import pkgutil import importlib def validate_commit(commit: Commit, out_errors: List[str] = None, ignore_validators: List[str] = None) -> bool: """Validates a commit against all validators :param commit: The commit to validate :param out_errors: if not None, will populate with the list of errors given by the validators :param ignore_validators: Optional list of CommitValidator classes to ignore, by class name :return: True if there are no validation errors, and False otherwise """ failed_count = 0 passed_count = 0 start_time = time.time() # Find all the validators in the validators package (recursively) validator_classes = [] validators_dir = os.path.join(os.path.dirname(__file__), 'validators') for _, module_name, is_package in pkgutil.iter_modules([validators_dir]): if not is_package: module = importlib.import_module('commit_validation.validators.' + module_name) validator = module.get_validator() if ignore_validators and validator.__name__ in ignore_validators: print(f"Disabled validation for '{validator.__name__}'") else: validator_classes.append(validator) error_summary = {} # Process validators for validator_class in validator_classes: validator = validator_class() validator_name = validator.__class__.__name__ error_list = [] passed = validator.run(commit, errors = error_list) if passed: passed_count += 1 print(f'{validator.__class__.__name__} PASSED') else: failed_count += 1 print(f'{validator.__class__.__name__} FAILED') error_summary[validator_name] = error_list end_time = time.time() if failed_count: print("VALIDATION FAILURE SUMMARY") for val_name in error_summary.keys(): errors = error_summary[val_name] if errors: for error_message in errors: first_line = True for line in error_message.splitlines(): if first_line: first_line = False print(f'VALIDATOR_FAILED: {val_name} {line}') else: print(f' {line}') # extra detail lines do not need machine parsing stats_strs = [] if failed_count > 0: stats_strs.append(f'{failed_count} failed') if passed_count > 0: stats_strs.append(f'{passed_count} passed') stats_str = ', '.join(stats_strs) + f' in {end_time - start_time:.2f}s' print() print(stats_str) return failed_count == 0
6d02bef635b7100b66ba74cf7bc2b62d71d6607c
2,295
from typing import Any from typing import List from typing import Dict def _safe_types( *, test_data: Any, cached_data: Any, key_rules: List[KeyRule], ) -> Dict: """Convert data and key_rules to safe data types for diffing. Args: test_data: data to compare cached_data: data to compare key_rules: list of key rules to apply Returns: Dict: safe keyword args for diff_with_rules """ wrapped_key_rules = [] for key_rule in key_rules: if isinstance(cached_data, list): key_rule.pattern = [_WRAP_KEY] + key_rule.pattern wrapped_key_rules.append(key_rule) return { 'old_dict': _wrap_data(cached_data), 'new_dict': _wrap_data(test_data), 'key_rules': wrapped_key_rules, }
bf44aa091fcc751247fbc4ae92e826746c226cfc
2,296
def _flatten_output(attr_dict, skip: list=[]): """ flaten output dict node node_collection is a list to accumulate the nodes that not unfolded :param skip: is a list of keys (format with parent_key.key) of Dict name that will not collected into the json file. For output nodes not being expanded, write down the uuid and datatype for future query. """ # do_not_unfold = ["band_parameters", "scf_parameters", "seekpath_parameters"] for key, value in attr_dict.items(): if key in skip: continue if isinstance(value, AttributeDict): # keep on unfold if it is a namespace _flatten_output(value, skip) elif isinstance(value, orm.Dict): attr_dict[key] = value.get_dict() elif isinstance(value, orm.Int): attr_dict[key] = value.value else: # node type not handled attach uuid attr_dict[key] = { 'uuid': value.uuid, 'datatype': type(value), } # print(archive_uuids) return attr_dict
75e2f41440b819ba939eb1e12c36a9ff6d894708
2,297
def get_tpu_estimator( working_dir, model_fn, iterations_per_loop=320, keep_checkpoint_max=20, use_tpu=False, train_batch_size=64): """Obtain an TPU estimator from a directory. Args: working_dir: the directory for holding checkpoints. model_fn: an estimator model function. iterations_per_loop: number of steps to run on TPU before outfeeding metrics to the CPU. If the number of iterations in the loop would exceed the number of train steps, the loop will exit before reaching --iterations_per_loop. The larger this value is, the higher the utilization on the TPU. For CPU-only training, this flag is equal to `num_epochs * num_minibatches`. keep_checkpoint_max: the maximum number of checkpoints to save in checkpoint directory. use_tpu: if True, training happens on TPU. train_batch_size: minibatch size for training which is equal to total number of data // number of batches. Returns: Returns a TPU estimator. """ # If `TPUConfig.per_host_input_for_training` is `True`, `input_fn` is # invoked per host rather than per core. In this case, a global batch size # is transformed a per-host batch size in params for `input_fn`, # but `model_fn` still gets per-core batch size. run_config = tf.estimator.tpu.RunConfig( master=FLAGS.master, evaluation_master=FLAGS.master, model_dir=working_dir, save_checkpoints_steps=iterations_per_loop, save_summary_steps=iterations_per_loop, keep_checkpoint_max=keep_checkpoint_max, session_config=tf.ConfigProto( allow_soft_placement=True, log_device_placement=True), tpu_config=tf.estimator.tpu.TPUConfig( iterations_per_loop=iterations_per_loop, per_host_input_for_training=True, tpu_job_name=FLAGS.tpu_job_name)) return tf.estimator.tpu.TPUEstimator( use_tpu=use_tpu, model_fn=model_fn, config=run_config, train_batch_size=train_batch_size)
33f78f97aba4011fd8f637ff71a64e8716d5713a
2,298
def rho_err(coeffs, rho, z, density_func): """ Returns the difference between the estimated and actual data """ soln = density_func(z, coeffs) return rho - soln
4a2d7c7243cad062d8568ab72599b4d8be26f874
2,299