repo_id
stringlengths
27
162
file_path
stringlengths
42
195
content
stringlengths
4
5.16M
__index_level_0__
int64
0
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\TIM\TIM_TimeBase
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\TIM\TIM_TimeBase\Inc\stm32f1xx_it.h
/** ****************************************************************************** * @file TIM/TIM_TimeBase/Inc/stm32f1xx_it.h * @author MCD Application Team * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_IT_H #define __STM32F1xx_IT_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); void TIMx_IRQHandler(void); #ifdef __cplusplus } #endif #endif /* __STM32F1xx_IT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\TIM\TIM_TimeBase
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\TIM\TIM_TimeBase\Src\main.c
/** ****************************************************************************** * @file TIM/TIM_TimeBase/Src/main.c * @author MCD Application Team * @brief This sample code shows how to use STM32F1xx TIM HAL API to generate * a time base of one second with the corresponding Interrupt request. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @addtogroup TIM_TimeBase * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* TIM handle declaration */ TIM_HandleTypeDef TimHandle; /* Prescaler declaration */ uint32_t uwPrescalerValue = 0; /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void Error_Handler(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { /* STM32F103xB HAL library initialization: - Configure the Flash prefetch - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization */ HAL_Init(); /* Configure the system clock to 64 MHz */ SystemClock_Config(); /* Configure LED2 */ BSP_LED_Init(LED2); /*##-1- Configure the TIM peripheral #######################################*/ /* ----------------------------------------------------------------------- In this example TIM3 input clock (TIM3CLK) is set to APB1 clock (PCLK1) x2, since APB1 prescaler is set to 4 (0x100). TIM3CLK = PCLK1*2 PCLK1 = HCLK/2 => TIM3CLK = PCLK1*2 = (HCLK/2)*2 = HCLK = SystemCoreClock To get TIM3 counter clock at 10 KHz, the Prescaler is computed as following: Prescaler = (TIM3CLK / TIM3 counter clock) - 1 Prescaler = (SystemCoreClock /10 KHz) - 1 Note: SystemCoreClock variable holds HCLK frequency and is defined in system_stm32f1xx.c file. Each time the core clock (HCLK) changes, user had to update SystemCoreClock variable value. Otherwise, any configuration based on this variable will be incorrect. This variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetSysClockFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency ----------------------------------------------------------------------- */ /* Compute the prescaler value to have TIMx counter clock equal to 10000 Hz */ uwPrescalerValue = (uint32_t)(SystemCoreClock / 10000) - 1; /* Set TIMx instance */ TimHandle.Instance = TIMx; /* Initialize TIMx peripheral as follows: + Period = 10000 - 1 + Prescaler = (SystemCoreClock/10000) - 1 + ClockDivision = 0 + Counter direction = Up */ TimHandle.Init.Period = 10000 - 1; TimHandle.Init.Prescaler = uwPrescalerValue; TimHandle.Init.ClockDivision = 0; TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; TimHandle.Init.RepetitionCounter = 0; TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&TimHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /*##-2- Start the TIM Base generation in interrupt mode ####################*/ /* Start Channel1 */ if (HAL_TIM_Base_Start_IT(&TimHandle) != HAL_OK) { /* Starting Error */ Error_Handler(); } while (1) { } } /** * @brief Period elapsed callback in non blocking mode * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { BSP_LED_Toggle(LED2); } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSI) * SYSCLK(Hz) = 64000000 * HCLK(Hz) = 64000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * PLLMUL = 16 * Flash Latency(WS) = 2 * @param None * @retval None */ void SystemClock_Config(void) { RCC_ClkInitTypeDef clkinitstruct = {0}; RCC_OscInitTypeDef oscinitstruct = {0}; /* Configure PLL ------------------------------------------------------*/ /* PLL configuration: PLLCLK = (HSI / 2) * PLLMUL = (8 / 2) * 16 = 64 MHz */ /* PREDIV1 configuration: PREDIV1CLK = PLLCLK / HSEPredivValue = 64 / 1 = 64 MHz */ /* Enable HSI and activate PLL with HSi_DIV2 as source */ oscinitstruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; oscinitstruct.HSEState = RCC_HSE_OFF; oscinitstruct.LSEState = RCC_LSE_OFF; oscinitstruct.HSIState = RCC_HSI_ON; oscinitstruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; oscinitstruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; oscinitstruct.PLL.PLLState = RCC_PLL_ON; oscinitstruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2; oscinitstruct.PLL.PLLMUL = RCC_PLL_MUL16; if (HAL_RCC_OscConfig(&oscinitstruct)!= HAL_OK) { /* Initialization Error */ while(1); } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ clkinitstruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); clkinitstruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; clkinitstruct.AHBCLKDivider = RCC_SYSCLK_DIV1; clkinitstruct.APB2CLKDivider = RCC_HCLK_DIV1; clkinitstruct.APB1CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&clkinitstruct, FLASH_LATENCY_2)!= HAL_OK) { /* Initialization Error */ while(1); } } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None */ static void Error_Handler(void) { while (1) { } } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\TIM\TIM_TimeBase
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\TIM\TIM_TimeBase\Src\stm32f1xx_hal_msp.c
/** ****************************************************************************** * @file TIM/TIM_TimeBase/Src/stm32f1xx_hal_msp.c * @author MCD Application Team * @brief HAL MSP module. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @defgroup HAL_MSP * @brief HAL MSP module. * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /** @defgroup HAL_MSP_Private_Functions * @{ */ /** * @brief TIM MSP Initialization * This function configures the hardware resources used in this example: * - Peripheral's clock enable * @param htim: TIM handle pointer * @retval None */ void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim) { /*##-1- Enable peripheral clock #################################*/ /* TIMx Peripheral clock enable */ TIMx_CLK_ENABLE(); /*##-2- Configure the NVIC for TIMx ########################################*/ /* Set the TIMx priority */ HAL_NVIC_SetPriority(TIMx_IRQn, 3, 0); /* Enable the TIMx global Interrupt */ HAL_NVIC_EnableIRQ(TIMx_IRQn); } /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\TIM\TIM_TimeBase
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\TIM\TIM_TimeBase\Src\stm32f1xx_it.c
/** ****************************************************************************** * @file TIM/TIM_TimeBase/Src/stm32f1xx_it.c * @author MCD Application Team * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "stm32f1xx_it.h" /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @addtogroup TIM_TimeBase * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ extern TIM_HandleTypeDef TimHandle; /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /******************************************************************************/ /* Cortex-M3 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /** * @brief This function handles PendSVC exception. * @param None * @retval None */ void PendSV_Handler(void) { } /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { HAL_IncTick(); } /******************************************************************************/ /* STM32F1xx Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f1xx.s). */ /******************************************************************************/ /** * @brief This function handles TIM interrupt request. * @param None * @retval None */ void TIMx_IRQHandler(void) { HAL_TIM_IRQHandler(&TimHandle); } /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\TIM\TIM_TimeBase
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\TIM\TIM_TimeBase\Src\system_stm32f1xx.c
/** ****************************************************************************** * @file system_stm32f1xx.c * @author MCD Application Team * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File. * * 1. This file provides two functions and one global variable to be called from * user application: * - SystemInit(): Setups the system clock (System clock source, PLL Multiplier * factors, AHB/APBx prescalers and Flash settings). * This function is called at startup just after reset and * before branch to main program. This call is made inside * the "startup_stm32f1xx_xx.s" file. * * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used * by the user application to setup the SysTick * timer or configure other parameters. * * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must * be called whenever the core clock is changed * during program execution. * * 2. After each device reset the HSI (8 MHz) is used as system clock source. * Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to * configure the system clock before to branch to main program. * * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on * the product used), refer to "HSE_VALUE". * When HSE is used as system clock source, directly or through PLL, and you * are using different crystal you have to adapt the HSE value to your own * configuration. * ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32f1xx_system * @{ */ /** @addtogroup STM32F1xx_System_Private_Includes * @{ */ #include "stm32f1xx.h" /** * @} */ /** @addtogroup STM32F1xx_System_Private_TypesDefinitions * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Defines * @{ */ #if !defined (HSE_VALUE) #define HSE_VALUE ((uint32_t)8000000) /*!< Default value of the External oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSE_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE ((uint32_t)8000000) /*!< Default value of the Internal oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSI_VALUE */ /*!< Uncomment the following line if you need to use external SRAM */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /* #define DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /*!< Uncomment the following line if you need to relocate your vector Table in Internal SRAM. */ /* #define VECT_TAB_SRAM */ #define VECT_TAB_OFFSET 0x0 /*!< Vector Table base offset field. This value must be a multiple of 0x200. */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Macros * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Variables * @{ */ /* This variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetHCLKFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency Note: If you use this function to configure the system clock; then there is no need to call the 2 first functions listed above, since SystemCoreClock variable is updated automatically. */ uint32_t SystemCoreClock = 16000000; const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}; const uint8_t APBPrescTable[8] = {0, 0, 0, 0, 1, 2, 3, 4}; /** * @} */ /** @addtogroup STM32F1xx_System_Private_FunctionPrototypes * @{ */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM static void SystemInit_ExtMemCtl(void); #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Functions * @{ */ /** * @brief Setup the microcontroller system * Initialize the Embedded Flash Interface, the PLL and update the * SystemCoreClock variable. * @note This function should be used only after reset. * @param None * @retval None */ void SystemInit (void) { /* Reset the RCC clock configuration to the default reset state(for debug purpose) */ /* Set HSION bit */ RCC->CR |= (uint32_t)0x00000001; /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */ #if !defined(STM32F105xC) && !defined(STM32F107xC) RCC->CFGR &= (uint32_t)0xF8FF0000; #else RCC->CFGR &= (uint32_t)0xF0FF0000; #endif /* STM32F105xC */ /* Reset HSEON, CSSON and PLLON bits */ RCC->CR &= (uint32_t)0xFEF6FFFF; /* Reset HSEBYP bit */ RCC->CR &= (uint32_t)0xFFFBFFFF; /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */ RCC->CFGR &= (uint32_t)0xFF80FFFF; #if defined(STM32F105xC) || defined(STM32F107xC) /* Reset PLL2ON and PLL3ON bits */ RCC->CR &= (uint32_t)0xEBFFFFFF; /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x00FF0000; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000; #elif defined(STM32F100xB) || defined(STM32F100xE) /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000; #else /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; #endif /* STM32F105xC */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM SystemInit_ExtMemCtl(); #endif /* DATA_IN_ExtSRAM */ #endif #ifdef VECT_TAB_SRAM SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */ #else SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */ #endif } /** * @brief Update SystemCoreClock variable according to Clock Register Values. * The SystemCoreClock variable contains the core clock (HCLK), it can * be used by the user application to setup the SysTick timer or configure * other parameters. * * @note Each time the core clock (HCLK) changes, this function must be called * to update SystemCoreClock variable value. Otherwise, any configuration * based on this variable will be incorrect. * * @note - The system frequency computed by this function is not the real * frequency in the chip. It is calculated based on the predefined * constant and the selected clock source: * * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*) * * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**) * * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) * or HSI_VALUE(*) multiplied by the PLL factors. * * (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz) but the real value may vary depending on the variations * in voltage and temperature. * * (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz or 25 MHz, depending on the product used), user has to ensure * that HSE_VALUE is same as the real frequency of the crystal used. * Otherwise, this function may have wrong result. * * - The result of this function could be not correct when using fractional * value for HSE crystal. * @param None * @retval None */ void SystemCoreClockUpdate (void) { uint32_t tmp = 0, pllmull = 0, pllsource = 0; #if defined(STM32F105xC) || defined(STM32F107xC) uint32_t prediv1source = 0, prediv1factor = 0, prediv2factor = 0, pll2mull = 0; #endif /* STM32F105xC */ #if defined(STM32F100xB) || defined(STM32F100xE) uint32_t prediv1factor = 0; #endif /* STM32F100xB or STM32F100xE */ /* Get SYSCLK source -------------------------------------------------------*/ tmp = RCC->CFGR & RCC_CFGR_SWS; switch (tmp) { case 0x00: /* HSI used as system clock */ SystemCoreClock = HSI_VALUE; break; case 0x04: /* HSE used as system clock */ SystemCoreClock = HSE_VALUE; break; case 0x08: /* PLL used as system clock */ /* Get PLL clock source and multiplication factor ----------------------*/ pllmull = RCC->CFGR & RCC_CFGR_PLLMULL; pllsource = RCC->CFGR & RCC_CFGR_PLLSRC; #if !defined(STM32F105xC) && !defined(STM32F107xC) pllmull = ( pllmull >> 18) + 2; if (pllsource == 0x00) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1) * pllmull; } else { #if defined(STM32F100xB) || defined(STM32F100xE) prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1; /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; #else /* HSE selected as PLL clock entry */ if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET) {/* HSE oscillator clock divided by 2 */ SystemCoreClock = (HSE_VALUE >> 1) * pllmull; } else { SystemCoreClock = HSE_VALUE * pllmull; } #endif } #else pllmull = pllmull >> 18; if (pllmull != 0x0D) { pllmull += 2; } else { /* PLL multiplication factor = PLL input clock * 6.5 */ pllmull = 13 / 2; } if (pllsource == 0x00) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1) * pllmull; } else {/* PREDIV1 selected as PLL clock entry */ /* Get PREDIV1 clock source and division factor */ prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC; prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1; if (prediv1source == 0) { /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; } else {/* PLL2 clock selected as PREDIV1 clock entry */ /* Get PREDIV2 division factor and PLL2 multiplication factor */ prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4) + 1; pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8 ) + 2; SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull; } } #endif /* STM32F105xC */ break; default: SystemCoreClock = HSI_VALUE; break; } /* Compute HCLK clock frequency ----------------*/ /* Get HCLK prescaler */ tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)]; /* HCLK clock frequency */ SystemCoreClock >>= tmp; } #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /** * @brief Setup the external memory controller. Called in startup_stm32f1xx.s * before jump to __main * @param None * @retval None */ #ifdef DATA_IN_ExtSRAM /** * @brief Setup the external memory controller. * Called in startup_stm32f1xx_xx.s/.c before jump to main. * This function configures the external SRAM mounted on STM3210E-EVAL * board (STM32 High density devices). This SRAM will be used as program * data memory (including heap and stack). * @param None * @retval None */ void SystemInit_ExtMemCtl(void) { __IO uint32_t tmpreg; /*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is required, then adjust the Register Addresses */ /* Enable FSMC clock */ RCC->AHBENR = 0x00000114; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN); /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */ RCC->APB2ENR = 0x000001E0; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN); (void)(tmpreg); /* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/ /*---------------- SRAM Address lines configuration -------------------------*/ /*---------------- NOE and NWE configuration --------------------------------*/ /*---------------- NE3 configuration ----------------------------------------*/ /*---------------- NBL0, NBL1 configuration ---------------------------------*/ GPIOD->CRL = 0x44BB44BB; GPIOD->CRH = 0xBBBBBBBB; GPIOE->CRL = 0xB44444BB; GPIOE->CRH = 0xBBBBBBBB; GPIOF->CRL = 0x44BBBBBB; GPIOF->CRH = 0xBBBB4444; GPIOG->CRL = 0x44BBBBBB; GPIOG->CRH = 0x44444B44; /*---------------- FSMC Configuration ---------------------------------------*/ /*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/ FSMC_Bank1->BTCR[4] = 0x00001091; FSMC_Bank1->BTCR[5] = 0x00110212; } #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_HyperTerminal_DMA
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_HyperTerminal_DMA\Inc\main.h
/** ****************************************************************************** * @file UART/UART_HyperTerminal_DMA/Inc/main.h * @author MCD Application Team * @brief Header for main.c module ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __MAIN_H #define __MAIN_H /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_hal.h" #include "stm32f1xx_nucleo.h" /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* User can use this section to tailor USARTx/UARTx instance used and associated resources */ /* Definition for USARTx clock resources */ #define USARTx USART1 #define USARTx_CLK_ENABLE() __HAL_RCC_USART1_CLK_ENABLE(); #define DMAx_CLK_ENABLE() __HAL_RCC_DMA1_CLK_ENABLE() #define USARTx_RX_GPIO_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() #define USARTx_TX_GPIO_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() #define USARTx_FORCE_RESET() __HAL_RCC_USART1_FORCE_RESET() #define USARTx_RELEASE_RESET() __HAL_RCC_USART1_RELEASE_RESET() /* Definition for USARTx Pins */ #define USARTx_TX_PIN GPIO_PIN_9 #define USARTx_TX_GPIO_PORT GPIOA #define USARTx_RX_PIN GPIO_PIN_10 #define USARTx_RX_GPIO_PORT GPIOA /* Definition for USARTx's DMA */ #define USARTx_TX_DMA_CHANNEL DMA1_Channel4 #define USARTx_RX_DMA_CHANNEL DMA1_Channel5 /* Definition for USARTx's NVIC */ #define USARTx_DMA_TX_IRQn DMA1_Channel4_IRQn #define USARTx_DMA_RX_IRQn DMA1_Channel5_IRQn #define USARTx_DMA_TX_IRQHandler DMA1_Channel4_IRQHandler #define USARTx_DMA_RX_IRQHandler DMA1_Channel5_IRQHandler /* Definition for USARTx's NVIC */ #define USARTx_IRQn USART1_IRQn #define USARTx_IRQHandler USART1_IRQHandler /* Size of Transmission buffer */ #define TXBUFFERSIZE (COUNTOF(aTxBuffer) - 1) /* Size of Reception buffer */ #define RXBUFFERSIZE 10 /* Exported macro ------------------------------------------------------------*/ #define COUNTOF(__BUFFER__) (sizeof(__BUFFER__) / sizeof(*(__BUFFER__))) /* Exported functions ------------------------------------------------------- */ #endif /* __MAIN_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_HyperTerminal_DMA
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_HyperTerminal_DMA\Inc\stm32f1xx_hal_conf.h
/** ****************************************************************************** * @file stm32f1xx_hal_conf.h * @author MCD Application Team * @brief HAL configuration file. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_HAL_CONF_H #define __STM32F1xx_HAL_CONF_H #ifdef __cplusplus extern "C" { #endif /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* ########################## Module Selection ############################## */ /** * @brief This is the list of modules to be used in the HAL driver */ #define HAL_MODULE_ENABLED /* #define HAL_ADC_MODULE_ENABLED */ /* #define HAL_CAN_MODULE_ENABLED */ /* #define HAL_CAN_LEGACY_MODULE_ENABLED */ /* #define HAL_CEC_MODULE_ENABLED */ #define HAL_CORTEX_MODULE_ENABLED /* #define HAL_CRC_MODULE_ENABLED */ /* #define HAL_DAC_MODULE_ENABLED */ #define HAL_DMA_MODULE_ENABLED /* #define HAL_ETH_MODULE_ENABLED */ /* #define HAL_EXTI_MODULE_ENABLED */ #define HAL_FLASH_MODULE_ENABLED #define HAL_GPIO_MODULE_ENABLED /* #define HAL_HCD_MODULE_ENABLED */ /* #define HAL_I2C_MODULE_ENABLED */ /* #define HAL_I2S_MODULE_ENABLED */ /* #define HAL_IRDA_MODULE_ENABLED */ /* #define HAL_IWDG_MODULE_ENABLED */ /* #define HAL_NAND_MODULE_ENABLED */ /* #define HAL_NOR_MODULE_ENABLED */ /* #define HAL_PCCARD_MODULE_ENABLED */ /* #define HAL_PCD_MODULE_ENABLED */ #define HAL_PWR_MODULE_ENABLED #define HAL_RCC_MODULE_ENABLED /* #define HAL_RTC_MODULE_ENABLED */ /* #define HAL_SD_MODULE_ENABLED */ /* #define HAL_SMARTCARD_MODULE_ENABLED */ /* #define HAL_SPI_MODULE_ENABLED */ /* #define HAL_SRAM_MODULE_ENABLED */ /* #define HAL_TIM_MODULE_ENABLED */ #define HAL_UART_MODULE_ENABLED /* #define HAL_USART_MODULE_ENABLED */ /* #define HAL_WWDG_MODULE_ENABLED */ /* ########################## Oscillator Values adaptation ####################*/ /** * @brief Adjust the value of External High Speed oscillator (HSE) used in your application. * This value is used by the RCC HAL module to compute the system frequency * (when HSE is used as system clock source, directly or through the PLL). */ #if !defined (HSE_VALUE) #if defined(USE_STM3210C_EVAL) #define HSE_VALUE 25000000U /*!< Value of the External oscillator in Hz */ #else #define HSE_VALUE 8000000U /*!< Value of the External oscillator in Hz */ #endif #endif /* HSE_VALUE */ #if !defined (HSE_STARTUP_TIMEOUT) #define HSE_STARTUP_TIMEOUT 100U /*!< Time out for HSE start up, in ms */ #endif /* HSE_STARTUP_TIMEOUT */ /** * @brief Internal High Speed oscillator (HSI) value. * This value is used by the RCC HAL module to compute the system frequency * (when HSI is used as system clock source, directly or through the PLL). */ #if !defined (HSI_VALUE) #define HSI_VALUE 8000000U /*!< Value of the Internal oscillator in Hz */ #endif /* HSI_VALUE */ /** * @brief Internal Low Speed oscillator (LSI) value. */ #if !defined (LSI_VALUE) #define LSI_VALUE 40000U /*!< LSI Typical Value in Hz */ #endif /* LSI_VALUE */ /*!< Value of the Internal Low Speed oscillator in Hz The real value may vary depending on the variations in voltage and temperature. */ /** * @brief External Low Speed oscillator (LSE) value. * This value is used by the UART, RTC HAL module to compute the system frequency */ #if !defined (LSE_VALUE) #define LSE_VALUE 32768U /*!< Value of the External oscillator in Hz*/ #endif /* LSE_VALUE */ #if !defined (LSE_STARTUP_TIMEOUT) #define LSE_STARTUP_TIMEOUT 5000U /*!< Time out for LSE start up, in ms */ #endif /* LSE_STARTUP_TIMEOUT */ /* Tip: To avoid modifying this file each time you need to use different HSE, === you can define the HSE value in your toolchain compiler preprocessor. */ /* ########################### System Configuration ######################### */ /** * @brief This is the HAL system configuration section */ #define VDD_VALUE 3300U /*!< Value of VDD in mv */ #define TICK_INT_PRIORITY 0x0FU /*!< tick interrupt priority */ #define USE_RTOS 0U #define PREFETCH_ENABLE 1U #define USE_HAL_ADC_REGISTER_CALLBACKS 0U /* ADC register callback disabled */ #define USE_HAL_CAN_REGISTER_CALLBACKS 0U /* CAN register callback disabled */ #define USE_HAL_CEC_REGISTER_CALLBACKS 0U /* CEC register callback disabled */ #define USE_HAL_DAC_REGISTER_CALLBACKS 0U /* DAC register callback disabled */ #define USE_HAL_ETH_REGISTER_CALLBACKS 0U /* ETH register callback disabled */ #define USE_HAL_HCD_REGISTER_CALLBACKS 0U /* HCD register callback disabled */ #define USE_HAL_I2C_REGISTER_CALLBACKS 0U /* I2C register callback disabled */ #define USE_HAL_I2S_REGISTER_CALLBACKS 0U /* I2S register callback disabled */ #define USE_HAL_MMC_REGISTER_CALLBACKS 0U /* MMC register callback disabled */ #define USE_HAL_NAND_REGISTER_CALLBACKS 0U /* NAND register callback disabled */ #define USE_HAL_NOR_REGISTER_CALLBACKS 0U /* NOR register callback disabled */ #define USE_HAL_PCCARD_REGISTER_CALLBACKS 0U /* PCCARD register callback disabled */ #define USE_HAL_PCD_REGISTER_CALLBACKS 0U /* PCD register callback disabled */ #define USE_HAL_RTC_REGISTER_CALLBACKS 0U /* RTC register callback disabled */ #define USE_HAL_SD_REGISTER_CALLBACKS 0U /* SD register callback disabled */ #define USE_HAL_SMARTCARD_REGISTER_CALLBACKS 0U /* SMARTCARD register callback disabled */ #define USE_HAL_IRDA_REGISTER_CALLBACKS 0U /* IRDA register callback disabled */ #define USE_HAL_SRAM_REGISTER_CALLBACKS 0U /* SRAM register callback disabled */ #define USE_HAL_SPI_REGISTER_CALLBACKS 0U /* SPI register callback disabled */ #define USE_HAL_TIM_REGISTER_CALLBACKS 0U /* TIM register callback disabled */ #define USE_HAL_UART_REGISTER_CALLBACKS 0U /* UART register callback disabled */ #define USE_HAL_USART_REGISTER_CALLBACKS 0U /* USART register callback disabled */ #define USE_HAL_WWDG_REGISTER_CALLBACKS 0U /* WWDG register callback disabled */ /* ########################## Assert Selection ############################## */ /** * @brief Uncomment the line below to expanse the "assert_param" macro in the * HAL drivers code */ /* #define USE_FULL_ASSERT 1U */ /* ################## Ethernet peripheral configuration ##################### */ /* Section 1 : Ethernet peripheral configuration */ /* MAC ADDRESS: MAC_ADDR0:MAC_ADDR1:MAC_ADDR2:MAC_ADDR3:MAC_ADDR4:MAC_ADDR5 */ #define MAC_ADDR0 2U #define MAC_ADDR1 0U #define MAC_ADDR2 0U #define MAC_ADDR3 0U #define MAC_ADDR4 0U #define MAC_ADDR5 0U /* Definition of the Ethernet driver buffers size and count */ #define ETH_RX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for receive */ #define ETH_TX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for transmit */ #define ETH_RXBUFNB 8U /* 8 Rx buffers of size ETH_RX_BUF_SIZE */ #define ETH_TXBUFNB 4U /* 4 Tx buffers of size ETH_TX_BUF_SIZE */ /* Section 2: PHY configuration section */ /* DP83848 PHY Address*/ #define DP83848_PHY_ADDRESS 0x01U /* PHY Reset delay these values are based on a 1 ms Systick interrupt*/ #define PHY_RESET_DELAY 0x000000FFU /* PHY Configuration delay */ #define PHY_CONFIG_DELAY 0x00000FFFU #define PHY_READ_TO 0x0000FFFFU #define PHY_WRITE_TO 0x0000FFFFU /* Section 3: Common PHY Registers */ #define PHY_BCR ((uint16_t)0x0000) /*!< Transceiver Basic Control Register */ #define PHY_BSR ((uint16_t)0x0001) /*!< Transceiver Basic Status Register */ #define PHY_RESET ((uint16_t)0x8000) /*!< PHY Reset */ #define PHY_LOOPBACK ((uint16_t)0x4000) /*!< Select loop-back mode */ #define PHY_FULLDUPLEX_100M ((uint16_t)0x2100) /*!< Set the full-duplex mode at 100 Mb/s */ #define PHY_HALFDUPLEX_100M ((uint16_t)0x2000) /*!< Set the half-duplex mode at 100 Mb/s */ #define PHY_FULLDUPLEX_10M ((uint16_t)0x0100) /*!< Set the full-duplex mode at 10 Mb/s */ #define PHY_HALFDUPLEX_10M ((uint16_t)0x0000) /*!< Set the half-duplex mode at 10 Mb/s */ #define PHY_AUTONEGOTIATION ((uint16_t)0x1000) /*!< Enable auto-negotiation function */ #define PHY_RESTART_AUTONEGOTIATION ((uint16_t)0x0200) /*!< Restart auto-negotiation function */ #define PHY_POWERDOWN ((uint16_t)0x0800) /*!< Select the power down mode */ #define PHY_ISOLATE ((uint16_t)0x0400) /*!< Isolate PHY from MII */ #define PHY_AUTONEGO_COMPLETE ((uint16_t)0x0020) /*!< Auto-Negotiation process completed */ #define PHY_LINKED_STATUS ((uint16_t)0x0004) /*!< Valid link established */ #define PHY_JABBER_DETECTION ((uint16_t)0x0002) /*!< Jabber condition detected */ /* Section 4: Extended PHY Registers */ #define PHY_SR ((uint16_t)0x0010) /*!< PHY status register Offset */ #define PHY_MICR ((uint16_t)0x0011) /*!< MII Interrupt Control Register */ #define PHY_MISR ((uint16_t)0x0012) /*!< MII Interrupt Status and Misc. Control Register */ #define PHY_LINK_STATUS ((uint16_t)0x0001) /*!< PHY Link mask */ #define PHY_SPEED_STATUS ((uint16_t)0x0002) /*!< PHY Speed mask */ #define PHY_DUPLEX_STATUS ((uint16_t)0x0004) /*!< PHY Duplex mask */ #define PHY_MICR_INT_EN ((uint16_t)0x0002) /*!< PHY Enable interrupts */ #define PHY_MICR_INT_OE ((uint16_t)0x0001) /*!< PHY Enable output interrupt events */ #define PHY_MISR_LINK_INT_EN ((uint16_t)0x0020) /*!< Enable Interrupt on change of link status */ #define PHY_LINK_INTERRUPT ((uint16_t)0x2000) /*!< PHY link status interrupt mask */ /* ################## SPI peripheral configuration ########################## */ /* CRC FEATURE: Use to activate CRC feature inside HAL SPI Driver * Activated: CRC code is present inside driver * Deactivated: CRC code cleaned from driver */ #define USE_SPI_CRC 1U /* Includes ------------------------------------------------------------------*/ /** * @brief Include module's header file */ #ifdef HAL_RCC_MODULE_ENABLED #include "stm32f1xx_hal_rcc.h" #endif /* HAL_RCC_MODULE_ENABLED */ #ifdef HAL_GPIO_MODULE_ENABLED #include "stm32f1xx_hal_gpio.h" #endif /* HAL_GPIO_MODULE_ENABLED */ #ifdef HAL_EXTI_MODULE_ENABLED #include "stm32f1xx_hal_exti.h" #endif /* HAL_EXTI_MODULE_ENABLED */ #ifdef HAL_DMA_MODULE_ENABLED #include "stm32f1xx_hal_dma.h" #endif /* HAL_DMA_MODULE_ENABLED */ #ifdef HAL_ETH_MODULE_ENABLED #include "stm32f1xx_hal_eth.h" #endif /* HAL_ETH_MODULE_ENABLED */ #ifdef HAL_CAN_MODULE_ENABLED #include "stm32f1xx_hal_can.h" #endif /* HAL_CAN_MODULE_ENABLED */ #ifdef HAL_CAN_LEGACY_MODULE_ENABLED #include "Legacy/stm32f1xx_hal_can_legacy.h" #endif /* HAL_CAN_LEGACY_MODULE_ENABLED */ #ifdef HAL_CEC_MODULE_ENABLED #include "stm32f1xx_hal_cec.h" #endif /* HAL_CEC_MODULE_ENABLED */ #ifdef HAL_CORTEX_MODULE_ENABLED #include "stm32f1xx_hal_cortex.h" #endif /* HAL_CORTEX_MODULE_ENABLED */ #ifdef HAL_ADC_MODULE_ENABLED #include "stm32f1xx_hal_adc.h" #endif /* HAL_ADC_MODULE_ENABLED */ #ifdef HAL_CRC_MODULE_ENABLED #include "stm32f1xx_hal_crc.h" #endif /* HAL_CRC_MODULE_ENABLED */ #ifdef HAL_DAC_MODULE_ENABLED #include "stm32f1xx_hal_dac.h" #endif /* HAL_DAC_MODULE_ENABLED */ #ifdef HAL_FLASH_MODULE_ENABLED #include "stm32f1xx_hal_flash.h" #endif /* HAL_FLASH_MODULE_ENABLED */ #ifdef HAL_SRAM_MODULE_ENABLED #include "stm32f1xx_hal_sram.h" #endif /* HAL_SRAM_MODULE_ENABLED */ #ifdef HAL_NOR_MODULE_ENABLED #include "stm32f1xx_hal_nor.h" #endif /* HAL_NOR_MODULE_ENABLED */ #ifdef HAL_I2C_MODULE_ENABLED #include "stm32f1xx_hal_i2c.h" #endif /* HAL_I2C_MODULE_ENABLED */ #ifdef HAL_I2S_MODULE_ENABLED #include "stm32f1xx_hal_i2s.h" #endif /* HAL_I2S_MODULE_ENABLED */ #ifdef HAL_IWDG_MODULE_ENABLED #include "stm32f1xx_hal_iwdg.h" #endif /* HAL_IWDG_MODULE_ENABLED */ #ifdef HAL_PWR_MODULE_ENABLED #include "stm32f1xx_hal_pwr.h" #endif /* HAL_PWR_MODULE_ENABLED */ #ifdef HAL_RTC_MODULE_ENABLED #include "stm32f1xx_hal_rtc.h" #endif /* HAL_RTC_MODULE_ENABLED */ #ifdef HAL_PCCARD_MODULE_ENABLED #include "stm32f1xx_hal_pccard.h" #endif /* HAL_PCCARD_MODULE_ENABLED */ #ifdef HAL_SD_MODULE_ENABLED #include "stm32f1xx_hal_sd.h" #endif /* HAL_SD_MODULE_ENABLED */ #ifdef HAL_NAND_MODULE_ENABLED #include "stm32f1xx_hal_nand.h" #endif /* HAL_NAND_MODULE_ENABLED */ #ifdef HAL_SPI_MODULE_ENABLED #include "stm32f1xx_hal_spi.h" #endif /* HAL_SPI_MODULE_ENABLED */ #ifdef HAL_TIM_MODULE_ENABLED #include "stm32f1xx_hal_tim.h" #endif /* HAL_TIM_MODULE_ENABLED */ #ifdef HAL_UART_MODULE_ENABLED #include "stm32f1xx_hal_uart.h" #endif /* HAL_UART_MODULE_ENABLED */ #ifdef HAL_USART_MODULE_ENABLED #include "stm32f1xx_hal_usart.h" #endif /* HAL_USART_MODULE_ENABLED */ #ifdef HAL_IRDA_MODULE_ENABLED #include "stm32f1xx_hal_irda.h" #endif /* HAL_IRDA_MODULE_ENABLED */ #ifdef HAL_SMARTCARD_MODULE_ENABLED #include "stm32f1xx_hal_smartcard.h" #endif /* HAL_SMARTCARD_MODULE_ENABLED */ #ifdef HAL_WWDG_MODULE_ENABLED #include "stm32f1xx_hal_wwdg.h" #endif /* HAL_WWDG_MODULE_ENABLED */ #ifdef HAL_PCD_MODULE_ENABLED #include "stm32f1xx_hal_pcd.h" #endif /* HAL_PCD_MODULE_ENABLED */ #ifdef HAL_HCD_MODULE_ENABLED #include "stm32f1xx_hal_hcd.h" #endif /* HAL_HCD_MODULE_ENABLED */ /* Exported macro ------------------------------------------------------------*/ #ifdef USE_FULL_ASSERT /** * @brief The assert_param macro is used for function's parameters check. * @param expr: If expr is false, it calls assert_failed function * which reports the name of the source file and the source * line number of the call that failed. * If expr is true, it returns no value. * @retval None */ #define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__)) /* Exported functions ------------------------------------------------------- */ void assert_failed(uint8_t* file, uint32_t line); #else #define assert_param(expr) ((void)0U) #endif /* USE_FULL_ASSERT */ #ifdef __cplusplus } #endif #endif /* __STM32F1xx_HAL_CONF_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_HyperTerminal_DMA
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_HyperTerminal_DMA\Inc\stm32f1xx_it.h
/** ****************************************************************************** * @file UART/UART_HyperTerminal_DMA/Inc/stm32f1xx_it.h * @author MCD Application Team * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_IT_H #define __STM32F1xx_IT_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); void USARTx_DMA_RX_IRQHandler(void); void USARTx_DMA_TX_IRQHandler(void); void USARTx_IRQHandler(void); #ifdef __cplusplus } #endif #endif /* __STM32F1xx_IT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_HyperTerminal_DMA
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_HyperTerminal_DMA\Src\stm32f1xx_hal_msp.c
/** ****************************************************************************** * @file UART/UART_HyperTerminal_DMA/Src/stm32f1xx_hal_msp.c * @author MCD Application Team * @brief HAL MSP module. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @defgroup UART_HyperTerminal_DMA * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /** @defgroup HAL_MSP_Private_Functions * @{ */ /** * @brief UART MSP Initialization * This function configures the hardware resources used in this example: * - Peripheral's clock enable * - Peripheral's GPIO Configuration * - DMA configuration for transmission request by peripheral * - NVIC configuration for DMA interrupt request enable * @param huart: UART handle pointer * @retval None */ void HAL_UART_MspInit(UART_HandleTypeDef *huart) { static DMA_HandleTypeDef hdma_tx; static DMA_HandleTypeDef hdma_rx; GPIO_InitTypeDef GPIO_InitStruct; /*##-1- Enable peripherals and GPIO Clocks #################################*/ /* Enable GPIO clock */ USARTx_TX_GPIO_CLK_ENABLE(); USARTx_RX_GPIO_CLK_ENABLE(); /* Enable USARTx clock */ USARTx_CLK_ENABLE(); /* Enable DMA clock */ DMAx_CLK_ENABLE(); /*##-2- Configure peripheral GPIO ##########################################*/ /* UART TX GPIO pin configuration */ GPIO_InitStruct.Pin = USARTx_TX_PIN; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(USARTx_TX_GPIO_PORT, &GPIO_InitStruct); /* UART RX GPIO pin configuration */ GPIO_InitStruct.Pin = USARTx_RX_PIN; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; HAL_GPIO_Init(USARTx_RX_GPIO_PORT, &GPIO_InitStruct); /*##-3- Configure the DMA ##################################################*/ /* Configure the DMA handler for Transmission process */ hdma_tx.Instance = USARTx_TX_DMA_CHANNEL; hdma_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_tx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_tx.Init.MemInc = DMA_MINC_ENABLE; hdma_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_tx.Init.Mode = DMA_NORMAL; hdma_tx.Init.Priority = DMA_PRIORITY_LOW; HAL_DMA_Init(&hdma_tx); /* Associate the initialized DMA handle to the UART handle */ __HAL_LINKDMA(huart, hdmatx, hdma_tx); /* Configure the DMA handler for reception process */ hdma_rx.Instance = USARTx_RX_DMA_CHANNEL; hdma_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_rx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_rx.Init.MemInc = DMA_MINC_ENABLE; hdma_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_rx.Init.Mode = DMA_NORMAL; hdma_rx.Init.Priority = DMA_PRIORITY_HIGH; HAL_DMA_Init(&hdma_rx); /* Associate the initialized DMA handle to the the UART handle */ __HAL_LINKDMA(huart, hdmarx, hdma_rx); /*##-4- Configure the NVIC for DMA #########################################*/ /* NVIC configuration for DMA transfer complete interrupt (USARTx_TX) */ HAL_NVIC_SetPriority(USARTx_DMA_TX_IRQn, 0, 1); HAL_NVIC_EnableIRQ(USARTx_DMA_TX_IRQn); /* NVIC configuration for DMA transfer complete interrupt (USARTx_RX) */ HAL_NVIC_SetPriority(USARTx_DMA_RX_IRQn, 0, 0); HAL_NVIC_EnableIRQ(USARTx_DMA_RX_IRQn); /* NVIC configuration for USART, to catch the TX complete */ HAL_NVIC_SetPriority(USARTx_IRQn, 0, 1); HAL_NVIC_EnableIRQ(USARTx_IRQn); } /** * @brief UART MSP De-Initialization * This function frees the hardware resources used in this example: * - Disable the Peripheral's clock * - Revert GPIO, DMA and NVIC configuration to their default state * @param huart: UART handle pointer * @retval None */ void HAL_UART_MspDeInit(UART_HandleTypeDef *huart) { static DMA_HandleTypeDef hdma_tx; static DMA_HandleTypeDef hdma_rx; /*##-1- Reset peripherals ##################################################*/ USARTx_FORCE_RESET(); USARTx_RELEASE_RESET(); /*##-2- Disable peripherals and GPIO Clocks ################################*/ /* Configure UART Tx as alternate function */ HAL_GPIO_DeInit(USARTx_TX_GPIO_PORT, USARTx_TX_PIN); /* Configure UART Rx as alternate function */ HAL_GPIO_DeInit(USARTx_RX_GPIO_PORT, USARTx_RX_PIN); /*##-3- Disable the DMA Channels ###########################################*/ /* De-Initialize the DMA Channel associated to transmission process */ HAL_DMA_DeInit(&hdma_tx); /* De-Initialize the DMA Channel associated to reception process */ HAL_DMA_DeInit(&hdma_rx); /*##-4- Disable the NVIC for DMA ###########################################*/ HAL_NVIC_DisableIRQ(USARTx_DMA_TX_IRQn); HAL_NVIC_DisableIRQ(USARTx_DMA_RX_IRQn); } /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_HyperTerminal_DMA
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_HyperTerminal_DMA\Src\stm32f1xx_it.c
/** ****************************************************************************** * @file UART/UART_HyperTerminal_DMA/Src/stm32f1xx_it.c * @author MCD Application Team * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "stm32f1xx_it.h" /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @addtogroup UART_HyperTerminal_Interrupt * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* UART handler declared in "main.c" file */ extern UART_HandleTypeDef UartHandle; /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /******************************************************************************/ /* Cortex-M3 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /** * @brief This function handles PendSVC exception. * @param None * @retval None */ void PendSV_Handler(void) { } /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { HAL_IncTick(); } /******************************************************************************/ /* STM32F1xx Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f1xx.s). */ /******************************************************************************/ /** * @brief This function handles DMA RX interrupt request. * @param None * @retval None * @Note This function is redefined in "main.h" and related to DMA stream * used for USART data transmission */ void USARTx_DMA_RX_IRQHandler(void) { HAL_DMA_IRQHandler(UartHandle.hdmarx); } /** * @brief This function handles DMA TX interrupt request. * @param None * @retval None * @Note This function is redefined in "main.h" and related to DMA stream * used for USART data reception */ void USARTx_DMA_TX_IRQHandler(void) { HAL_DMA_IRQHandler(UartHandle.hdmatx); } /** * @brief This function handles USARTx interrupt request. * @param None * @retval None * @Note This function is redefined in "main.h" and related to DMA * used for USART data transmission */ void USARTx_IRQHandler(void) { HAL_UART_IRQHandler(&UartHandle); } /** * @brief This function handles PPP interrupt request. * @param None * @retval None */ /*void PPP_IRQHandler(void) { }*/ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_HyperTerminal_DMA
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_HyperTerminal_DMA\Src\system_stm32f1xx.c
/** ****************************************************************************** * @file system_stm32f1xx.c * @author MCD Application Team * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File. * * 1. This file provides two functions and one global variable to be called from * user application: * - SystemInit(): Setups the system clock (System clock source, PLL Multiplier * factors, AHB/APBx prescalers and Flash settings). * This function is called at startup just after reset and * before branch to main program. This call is made inside * the "startup_stm32f1xx_xx.s" file. * * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used * by the user application to setup the SysTick * timer or configure other parameters. * * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must * be called whenever the core clock is changed * during program execution. * * 2. After each device reset the HSI (8 MHz) is used as system clock source. * Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to * configure the system clock before to branch to main program. * * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on * the product used), refer to "HSE_VALUE". * When HSE is used as system clock source, directly or through PLL, and you * are using different crystal you have to adapt the HSE value to your own * configuration. * ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32f1xx_system * @{ */ /** @addtogroup STM32F1xx_System_Private_Includes * @{ */ #include "stm32f1xx.h" /** * @} */ /** @addtogroup STM32F1xx_System_Private_TypesDefinitions * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Defines * @{ */ #if !defined (HSE_VALUE) #define HSE_VALUE ((uint32_t)8000000) /*!< Default value of the External oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSE_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE ((uint32_t)8000000) /*!< Default value of the Internal oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSI_VALUE */ /*!< Uncomment the following line if you need to use external SRAM */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /* #define DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /*!< Uncomment the following line if you need to relocate your vector Table in Internal SRAM. */ /* #define VECT_TAB_SRAM */ #define VECT_TAB_OFFSET 0x0 /*!< Vector Table base offset field. This value must be a multiple of 0x200. */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Macros * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Variables * @{ */ /* This variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetHCLKFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency Note: If you use this function to configure the system clock; then there is no need to call the 2 first functions listed above, since SystemCoreClock variable is updated automatically. */ uint32_t SystemCoreClock = 16000000; const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}; const uint8_t APBPrescTable[8] = {0, 0, 0, 0, 1, 2, 3, 4}; /** * @} */ /** @addtogroup STM32F1xx_System_Private_FunctionPrototypes * @{ */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM static void SystemInit_ExtMemCtl(void); #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Functions * @{ */ /** * @brief Setup the microcontroller system * Initialize the Embedded Flash Interface, the PLL and update the * SystemCoreClock variable. * @note This function should be used only after reset. * @param None * @retval None */ void SystemInit (void) { /* Reset the RCC clock configuration to the default reset state(for debug purpose) */ /* Set HSION bit */ RCC->CR |= (uint32_t)0x00000001; /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */ #if !defined(STM32F105xC) && !defined(STM32F107xC) RCC->CFGR &= (uint32_t)0xF8FF0000; #else RCC->CFGR &= (uint32_t)0xF0FF0000; #endif /* STM32F105xC */ /* Reset HSEON, CSSON and PLLON bits */ RCC->CR &= (uint32_t)0xFEF6FFFF; /* Reset HSEBYP bit */ RCC->CR &= (uint32_t)0xFFFBFFFF; /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */ RCC->CFGR &= (uint32_t)0xFF80FFFF; #if defined(STM32F105xC) || defined(STM32F107xC) /* Reset PLL2ON and PLL3ON bits */ RCC->CR &= (uint32_t)0xEBFFFFFF; /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x00FF0000; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000; #elif defined(STM32F100xB) || defined(STM32F100xE) /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000; #else /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; #endif /* STM32F105xC */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM SystemInit_ExtMemCtl(); #endif /* DATA_IN_ExtSRAM */ #endif #ifdef VECT_TAB_SRAM SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */ #else SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */ #endif } /** * @brief Update SystemCoreClock variable according to Clock Register Values. * The SystemCoreClock variable contains the core clock (HCLK), it can * be used by the user application to setup the SysTick timer or configure * other parameters. * * @note Each time the core clock (HCLK) changes, this function must be called * to update SystemCoreClock variable value. Otherwise, any configuration * based on this variable will be incorrect. * * @note - The system frequency computed by this function is not the real * frequency in the chip. It is calculated based on the predefined * constant and the selected clock source: * * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*) * * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**) * * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) * or HSI_VALUE(*) multiplied by the PLL factors. * * (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz) but the real value may vary depending on the variations * in voltage and temperature. * * (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz or 25 MHz, depending on the product used), user has to ensure * that HSE_VALUE is same as the real frequency of the crystal used. * Otherwise, this function may have wrong result. * * - The result of this function could be not correct when using fractional * value for HSE crystal. * @param None * @retval None */ void SystemCoreClockUpdate (void) { uint32_t tmp = 0, pllmull = 0, pllsource = 0; #if defined(STM32F105xC) || defined(STM32F107xC) uint32_t prediv1source = 0, prediv1factor = 0, prediv2factor = 0, pll2mull = 0; #endif /* STM32F105xC */ #if defined(STM32F100xB) || defined(STM32F100xE) uint32_t prediv1factor = 0; #endif /* STM32F100xB or STM32F100xE */ /* Get SYSCLK source -------------------------------------------------------*/ tmp = RCC->CFGR & RCC_CFGR_SWS; switch (tmp) { case 0x00: /* HSI used as system clock */ SystemCoreClock = HSI_VALUE; break; case 0x04: /* HSE used as system clock */ SystemCoreClock = HSE_VALUE; break; case 0x08: /* PLL used as system clock */ /* Get PLL clock source and multiplication factor ----------------------*/ pllmull = RCC->CFGR & RCC_CFGR_PLLMULL; pllsource = RCC->CFGR & RCC_CFGR_PLLSRC; #if !defined(STM32F105xC) && !defined(STM32F107xC) pllmull = ( pllmull >> 18) + 2; if (pllsource == 0x00) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1) * pllmull; } else { #if defined(STM32F100xB) || defined(STM32F100xE) prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1; /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; #else /* HSE selected as PLL clock entry */ if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET) {/* HSE oscillator clock divided by 2 */ SystemCoreClock = (HSE_VALUE >> 1) * pllmull; } else { SystemCoreClock = HSE_VALUE * pllmull; } #endif } #else pllmull = pllmull >> 18; if (pllmull != 0x0D) { pllmull += 2; } else { /* PLL multiplication factor = PLL input clock * 6.5 */ pllmull = 13 / 2; } if (pllsource == 0x00) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1) * pllmull; } else {/* PREDIV1 selected as PLL clock entry */ /* Get PREDIV1 clock source and division factor */ prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC; prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1; if (prediv1source == 0) { /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; } else {/* PLL2 clock selected as PREDIV1 clock entry */ /* Get PREDIV2 division factor and PLL2 multiplication factor */ prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4) + 1; pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8 ) + 2; SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull; } } #endif /* STM32F105xC */ break; default: SystemCoreClock = HSI_VALUE; break; } /* Compute HCLK clock frequency ----------------*/ /* Get HCLK prescaler */ tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)]; /* HCLK clock frequency */ SystemCoreClock >>= tmp; } #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /** * @brief Setup the external memory controller. Called in startup_stm32f1xx.s * before jump to __main * @param None * @retval None */ #ifdef DATA_IN_ExtSRAM /** * @brief Setup the external memory controller. * Called in startup_stm32f1xx_xx.s/.c before jump to main. * This function configures the external SRAM mounted on STM3210E-EVAL * board (STM32 High density devices). This SRAM will be used as program * data memory (including heap and stack). * @param None * @retval None */ void SystemInit_ExtMemCtl(void) { __IO uint32_t tmpreg; /*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is required, then adjust the Register Addresses */ /* Enable FSMC clock */ RCC->AHBENR = 0x00000114; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN); /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */ RCC->APB2ENR = 0x000001E0; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN); (void)(tmpreg); /* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/ /*---------------- SRAM Address lines configuration -------------------------*/ /*---------------- NOE and NWE configuration --------------------------------*/ /*---------------- NE3 configuration ----------------------------------------*/ /*---------------- NBL0, NBL1 configuration ---------------------------------*/ GPIOD->CRL = 0x44BB44BB; GPIOD->CRH = 0xBBBBBBBB; GPIOE->CRL = 0xB44444BB; GPIOE->CRH = 0xBBBBBBBB; GPIOF->CRL = 0x44BBBBBB; GPIOF->CRH = 0xBBBB4444; GPIOG->CRL = 0x44BBBBBB; GPIOG->CRH = 0x444B4B44; /*---------------- FSMC Configuration ---------------------------------------*/ /*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/ FSMC_Bank1->BTCR[4] = 0x00001091; FSMC_Bank1->BTCR[5] = 0x00110212; } #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_Printf
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_Printf\Inc\main.h
/** ****************************************************************************** * @file UART/UART_Printf/Inc/main.h * @author MCD Application Team * @brief Header for main.c module ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __MAIN_H #define __MAIN_H /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_hal.h" #include "stm32f1xx_nucleo.h" #include "stdio.h" /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* User can use this section to tailor USARTx/UARTx instance used and associated resources */ /* Definition for USARTx clock resources */ #define USARTx USART1 #define USARTx_CLK_ENABLE() __HAL_RCC_USART1_CLK_ENABLE(); #define USARTx_RX_GPIO_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() #define USARTx_TX_GPIO_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() #define USARTx_FORCE_RESET() __HAL_RCC_USART1_FORCE_RESET() #define USARTx_RELEASE_RESET() __HAL_RCC_USART1_RELEASE_RESET() /* Definition for USARTx Pins */ #define USARTx_TX_PIN GPIO_PIN_9 #define USARTx_TX_GPIO_PORT GPIOA #define USARTx_RX_PIN GPIO_PIN_10 #define USARTx_RX_GPIO_PORT GPIOA /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ #endif /* __MAIN_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_Printf
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_Printf\Inc\stm32f1xx_hal_conf.h
/** ****************************************************************************** * @file stm32f1xx_hal_conf.h * @author MCD Application Team * @brief HAL configuration file. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_HAL_CONF_H #define __STM32F1xx_HAL_CONF_H #ifdef __cplusplus extern "C" { #endif /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* ########################## Module Selection ############################## */ /** * @brief This is the list of modules to be used in the HAL driver */ #define HAL_MODULE_ENABLED /* #define HAL_ADC_MODULE_ENABLED */ /* #define HAL_CAN_MODULE_ENABLED */ /* #define HAL_CAN_LEGACY_MODULE_ENABLED */ /* #define HAL_CEC_MODULE_ENABLED */ #define HAL_CORTEX_MODULE_ENABLED /* #define HAL_CRC_MODULE_ENABLED */ /* #define HAL_DAC_MODULE_ENABLED */ #define HAL_DMA_MODULE_ENABLED /* #define HAL_ETH_MODULE_ENABLED */ /* #define HAL_EXTI_MODULE_ENABLED */ #define HAL_FLASH_MODULE_ENABLED #define HAL_GPIO_MODULE_ENABLED /* #define HAL_HCD_MODULE_ENABLED */ /* #define HAL_I2C_MODULE_ENABLED */ /* #define HAL_I2S_MODULE_ENABLED */ /* #define HAL_IRDA_MODULE_ENABLED */ /* #define HAL_IWDG_MODULE_ENABLED */ /* #define HAL_NAND_MODULE_ENABLED */ /* #define HAL_NOR_MODULE_ENABLED */ /* #define HAL_PCCARD_MODULE_ENABLED */ /* #define HAL_PCD_MODULE_ENABLED */ #define HAL_PWR_MODULE_ENABLED #define HAL_RCC_MODULE_ENABLED /* #define HAL_RTC_MODULE_ENABLED */ /* #define HAL_SD_MODULE_ENABLED */ /* #define HAL_SMARTCARD_MODULE_ENABLED */ /* #define HAL_SPI_MODULE_ENABLED */ /* #define HAL_SRAM_MODULE_ENABLED */ /* #define HAL_TIM_MODULE_ENABLED */ #define HAL_UART_MODULE_ENABLED /* #define HAL_USART_MODULE_ENABLED */ /* #define HAL_WWDG_MODULE_ENABLED */ /* ########################## Oscillator Values adaptation ####################*/ /** * @brief Adjust the value of External High Speed oscillator (HSE) used in your application. * This value is used by the RCC HAL module to compute the system frequency * (when HSE is used as system clock source, directly or through the PLL). */ #if !defined (HSE_VALUE) #if defined(USE_STM3210C_EVAL) #define HSE_VALUE 25000000U /*!< Value of the External oscillator in Hz */ #else #define HSE_VALUE 8000000U /*!< Value of the External oscillator in Hz */ #endif #endif /* HSE_VALUE */ #if !defined (HSE_STARTUP_TIMEOUT) #define HSE_STARTUP_TIMEOUT 100U /*!< Time out for HSE start up, in ms */ #endif /* HSE_STARTUP_TIMEOUT */ /** * @brief Internal High Speed oscillator (HSI) value. * This value is used by the RCC HAL module to compute the system frequency * (when HSI is used as system clock source, directly or through the PLL). */ #if !defined (HSI_VALUE) #define HSI_VALUE 8000000U /*!< Value of the Internal oscillator in Hz */ #endif /* HSI_VALUE */ /** * @brief Internal Low Speed oscillator (LSI) value. */ #if !defined (LSI_VALUE) #define LSI_VALUE 40000U /*!< LSI Typical Value in Hz */ #endif /* LSI_VALUE */ /*!< Value of the Internal Low Speed oscillator in Hz The real value may vary depending on the variations in voltage and temperature. */ /** * @brief External Low Speed oscillator (LSE) value. * This value is used by the UART, RTC HAL module to compute the system frequency */ #if !defined (LSE_VALUE) #define LSE_VALUE 32768U /*!< Value of the External oscillator in Hz*/ #endif /* LSE_VALUE */ #if !defined (LSE_STARTUP_TIMEOUT) #define LSE_STARTUP_TIMEOUT 5000U /*!< Time out for LSE start up, in ms */ #endif /* LSE_STARTUP_TIMEOUT */ /* Tip: To avoid modifying this file each time you need to use different HSE, === you can define the HSE value in your toolchain compiler preprocessor. */ /* ########################### System Configuration ######################### */ /** * @brief This is the HAL system configuration section */ #define VDD_VALUE 3300U /*!< Value of VDD in mv */ #define TICK_INT_PRIORITY 0x0FU /*!< tick interrupt priority */ #define USE_RTOS 0U #define PREFETCH_ENABLE 1U #define USE_HAL_ADC_REGISTER_CALLBACKS 0U /* ADC register callback disabled */ #define USE_HAL_CAN_REGISTER_CALLBACKS 0U /* CAN register callback disabled */ #define USE_HAL_CEC_REGISTER_CALLBACKS 0U /* CEC register callback disabled */ #define USE_HAL_DAC_REGISTER_CALLBACKS 0U /* DAC register callback disabled */ #define USE_HAL_ETH_REGISTER_CALLBACKS 0U /* ETH register callback disabled */ #define USE_HAL_HCD_REGISTER_CALLBACKS 0U /* HCD register callback disabled */ #define USE_HAL_I2C_REGISTER_CALLBACKS 0U /* I2C register callback disabled */ #define USE_HAL_I2S_REGISTER_CALLBACKS 0U /* I2S register callback disabled */ #define USE_HAL_MMC_REGISTER_CALLBACKS 0U /* MMC register callback disabled */ #define USE_HAL_NAND_REGISTER_CALLBACKS 0U /* NAND register callback disabled */ #define USE_HAL_NOR_REGISTER_CALLBACKS 0U /* NOR register callback disabled */ #define USE_HAL_PCCARD_REGISTER_CALLBACKS 0U /* PCCARD register callback disabled */ #define USE_HAL_PCD_REGISTER_CALLBACKS 0U /* PCD register callback disabled */ #define USE_HAL_RTC_REGISTER_CALLBACKS 0U /* RTC register callback disabled */ #define USE_HAL_SD_REGISTER_CALLBACKS 0U /* SD register callback disabled */ #define USE_HAL_SMARTCARD_REGISTER_CALLBACKS 0U /* SMARTCARD register callback disabled */ #define USE_HAL_IRDA_REGISTER_CALLBACKS 0U /* IRDA register callback disabled */ #define USE_HAL_SRAM_REGISTER_CALLBACKS 0U /* SRAM register callback disabled */ #define USE_HAL_SPI_REGISTER_CALLBACKS 0U /* SPI register callback disabled */ #define USE_HAL_TIM_REGISTER_CALLBACKS 0U /* TIM register callback disabled */ #define USE_HAL_UART_REGISTER_CALLBACKS 0U /* UART register callback disabled */ #define USE_HAL_USART_REGISTER_CALLBACKS 0U /* USART register callback disabled */ #define USE_HAL_WWDG_REGISTER_CALLBACKS 0U /* WWDG register callback disabled */ /* ########################## Assert Selection ############################## */ /** * @brief Uncomment the line below to expanse the "assert_param" macro in the * HAL drivers code */ /* #define USE_FULL_ASSERT 1U */ /* ################## Ethernet peripheral configuration ##################### */ /* Section 1 : Ethernet peripheral configuration */ /* MAC ADDRESS: MAC_ADDR0:MAC_ADDR1:MAC_ADDR2:MAC_ADDR3:MAC_ADDR4:MAC_ADDR5 */ #define MAC_ADDR0 2U #define MAC_ADDR1 0U #define MAC_ADDR2 0U #define MAC_ADDR3 0U #define MAC_ADDR4 0U #define MAC_ADDR5 0U /* Definition of the Ethernet driver buffers size and count */ #define ETH_RX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for receive */ #define ETH_TX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for transmit */ #define ETH_RXBUFNB 8U /* 8 Rx buffers of size ETH_RX_BUF_SIZE */ #define ETH_TXBUFNB 4U /* 4 Tx buffers of size ETH_TX_BUF_SIZE */ /* Section 2: PHY configuration section */ /* DP83848 PHY Address*/ #define DP83848_PHY_ADDRESS 0x01U /* PHY Reset delay these values are based on a 1 ms Systick interrupt*/ #define PHY_RESET_DELAY 0x000000FFU /* PHY Configuration delay */ #define PHY_CONFIG_DELAY 0x00000FFFU #define PHY_READ_TO 0x0000FFFFU #define PHY_WRITE_TO 0x0000FFFFU /* Section 3: Common PHY Registers */ #define PHY_BCR ((uint16_t)0x0000) /*!< Transceiver Basic Control Register */ #define PHY_BSR ((uint16_t)0x0001) /*!< Transceiver Basic Status Register */ #define PHY_RESET ((uint16_t)0x8000) /*!< PHY Reset */ #define PHY_LOOPBACK ((uint16_t)0x4000) /*!< Select loop-back mode */ #define PHY_FULLDUPLEX_100M ((uint16_t)0x2100) /*!< Set the full-duplex mode at 100 Mb/s */ #define PHY_HALFDUPLEX_100M ((uint16_t)0x2000) /*!< Set the half-duplex mode at 100 Mb/s */ #define PHY_FULLDUPLEX_10M ((uint16_t)0x0100) /*!< Set the full-duplex mode at 10 Mb/s */ #define PHY_HALFDUPLEX_10M ((uint16_t)0x0000) /*!< Set the half-duplex mode at 10 Mb/s */ #define PHY_AUTONEGOTIATION ((uint16_t)0x1000) /*!< Enable auto-negotiation function */ #define PHY_RESTART_AUTONEGOTIATION ((uint16_t)0x0200) /*!< Restart auto-negotiation function */ #define PHY_POWERDOWN ((uint16_t)0x0800) /*!< Select the power down mode */ #define PHY_ISOLATE ((uint16_t)0x0400) /*!< Isolate PHY from MII */ #define PHY_AUTONEGO_COMPLETE ((uint16_t)0x0020) /*!< Auto-Negotiation process completed */ #define PHY_LINKED_STATUS ((uint16_t)0x0004) /*!< Valid link established */ #define PHY_JABBER_DETECTION ((uint16_t)0x0002) /*!< Jabber condition detected */ /* Section 4: Extended PHY Registers */ #define PHY_SR ((uint16_t)0x0010) /*!< PHY status register Offset */ #define PHY_MICR ((uint16_t)0x0011) /*!< MII Interrupt Control Register */ #define PHY_MISR ((uint16_t)0x0012) /*!< MII Interrupt Status and Misc. Control Register */ #define PHY_LINK_STATUS ((uint16_t)0x0001) /*!< PHY Link mask */ #define PHY_SPEED_STATUS ((uint16_t)0x0002) /*!< PHY Speed mask */ #define PHY_DUPLEX_STATUS ((uint16_t)0x0004) /*!< PHY Duplex mask */ #define PHY_MICR_INT_EN ((uint16_t)0x0002) /*!< PHY Enable interrupts */ #define PHY_MICR_INT_OE ((uint16_t)0x0001) /*!< PHY Enable output interrupt events */ #define PHY_MISR_LINK_INT_EN ((uint16_t)0x0020) /*!< Enable Interrupt on change of link status */ #define PHY_LINK_INTERRUPT ((uint16_t)0x2000) /*!< PHY link status interrupt mask */ /* ################## SPI peripheral configuration ########################## */ /* CRC FEATURE: Use to activate CRC feature inside HAL SPI Driver * Activated: CRC code is present inside driver * Deactivated: CRC code cleaned from driver */ #define USE_SPI_CRC 1U /* Includes ------------------------------------------------------------------*/ /** * @brief Include module's header file */ #ifdef HAL_RCC_MODULE_ENABLED #include "stm32f1xx_hal_rcc.h" #endif /* HAL_RCC_MODULE_ENABLED */ #ifdef HAL_GPIO_MODULE_ENABLED #include "stm32f1xx_hal_gpio.h" #endif /* HAL_GPIO_MODULE_ENABLED */ #ifdef HAL_EXTI_MODULE_ENABLED #include "stm32f1xx_hal_exti.h" #endif /* HAL_EXTI_MODULE_ENABLED */ #ifdef HAL_DMA_MODULE_ENABLED #include "stm32f1xx_hal_dma.h" #endif /* HAL_DMA_MODULE_ENABLED */ #ifdef HAL_ETH_MODULE_ENABLED #include "stm32f1xx_hal_eth.h" #endif /* HAL_ETH_MODULE_ENABLED */ #ifdef HAL_CAN_MODULE_ENABLED #include "stm32f1xx_hal_can.h" #endif /* HAL_CAN_MODULE_ENABLED */ #ifdef HAL_CAN_LEGACY_MODULE_ENABLED #include "Legacy/stm32f1xx_hal_can_legacy.h" #endif /* HAL_CAN_LEGACY_MODULE_ENABLED */ #ifdef HAL_CEC_MODULE_ENABLED #include "stm32f1xx_hal_cec.h" #endif /* HAL_CEC_MODULE_ENABLED */ #ifdef HAL_CORTEX_MODULE_ENABLED #include "stm32f1xx_hal_cortex.h" #endif /* HAL_CORTEX_MODULE_ENABLED */ #ifdef HAL_ADC_MODULE_ENABLED #include "stm32f1xx_hal_adc.h" #endif /* HAL_ADC_MODULE_ENABLED */ #ifdef HAL_CRC_MODULE_ENABLED #include "stm32f1xx_hal_crc.h" #endif /* HAL_CRC_MODULE_ENABLED */ #ifdef HAL_DAC_MODULE_ENABLED #include "stm32f1xx_hal_dac.h" #endif /* HAL_DAC_MODULE_ENABLED */ #ifdef HAL_FLASH_MODULE_ENABLED #include "stm32f1xx_hal_flash.h" #endif /* HAL_FLASH_MODULE_ENABLED */ #ifdef HAL_SRAM_MODULE_ENABLED #include "stm32f1xx_hal_sram.h" #endif /* HAL_SRAM_MODULE_ENABLED */ #ifdef HAL_NOR_MODULE_ENABLED #include "stm32f1xx_hal_nor.h" #endif /* HAL_NOR_MODULE_ENABLED */ #ifdef HAL_I2C_MODULE_ENABLED #include "stm32f1xx_hal_i2c.h" #endif /* HAL_I2C_MODULE_ENABLED */ #ifdef HAL_I2S_MODULE_ENABLED #include "stm32f1xx_hal_i2s.h" #endif /* HAL_I2S_MODULE_ENABLED */ #ifdef HAL_IWDG_MODULE_ENABLED #include "stm32f1xx_hal_iwdg.h" #endif /* HAL_IWDG_MODULE_ENABLED */ #ifdef HAL_PWR_MODULE_ENABLED #include "stm32f1xx_hal_pwr.h" #endif /* HAL_PWR_MODULE_ENABLED */ #ifdef HAL_RTC_MODULE_ENABLED #include "stm32f1xx_hal_rtc.h" #endif /* HAL_RTC_MODULE_ENABLED */ #ifdef HAL_PCCARD_MODULE_ENABLED #include "stm32f1xx_hal_pccard.h" #endif /* HAL_PCCARD_MODULE_ENABLED */ #ifdef HAL_SD_MODULE_ENABLED #include "stm32f1xx_hal_sd.h" #endif /* HAL_SD_MODULE_ENABLED */ #ifdef HAL_NAND_MODULE_ENABLED #include "stm32f1xx_hal_nand.h" #endif /* HAL_NAND_MODULE_ENABLED */ #ifdef HAL_SPI_MODULE_ENABLED #include "stm32f1xx_hal_spi.h" #endif /* HAL_SPI_MODULE_ENABLED */ #ifdef HAL_TIM_MODULE_ENABLED #include "stm32f1xx_hal_tim.h" #endif /* HAL_TIM_MODULE_ENABLED */ #ifdef HAL_UART_MODULE_ENABLED #include "stm32f1xx_hal_uart.h" #endif /* HAL_UART_MODULE_ENABLED */ #ifdef HAL_USART_MODULE_ENABLED #include "stm32f1xx_hal_usart.h" #endif /* HAL_USART_MODULE_ENABLED */ #ifdef HAL_IRDA_MODULE_ENABLED #include "stm32f1xx_hal_irda.h" #endif /* HAL_IRDA_MODULE_ENABLED */ #ifdef HAL_SMARTCARD_MODULE_ENABLED #include "stm32f1xx_hal_smartcard.h" #endif /* HAL_SMARTCARD_MODULE_ENABLED */ #ifdef HAL_WWDG_MODULE_ENABLED #include "stm32f1xx_hal_wwdg.h" #endif /* HAL_WWDG_MODULE_ENABLED */ #ifdef HAL_PCD_MODULE_ENABLED #include "stm32f1xx_hal_pcd.h" #endif /* HAL_PCD_MODULE_ENABLED */ #ifdef HAL_HCD_MODULE_ENABLED #include "stm32f1xx_hal_hcd.h" #endif /* HAL_HCD_MODULE_ENABLED */ /* Exported macro ------------------------------------------------------------*/ #ifdef USE_FULL_ASSERT /** * @brief The assert_param macro is used for function's parameters check. * @param expr: If expr is false, it calls assert_failed function * which reports the name of the source file and the source * line number of the call that failed. * If expr is true, it returns no value. * @retval None */ #define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__)) /* Exported functions ------------------------------------------------------- */ void assert_failed(uint8_t* file, uint32_t line); #else #define assert_param(expr) ((void)0U) #endif /* USE_FULL_ASSERT */ #ifdef __cplusplus } #endif #endif /* __STM32F1xx_HAL_CONF_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_Printf
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_Printf\Inc\stm32f1xx_it.h
/** ****************************************************************************** * @file UART/UART_Printf/Inc/stm32f1xx_it.h * @author MCD Application Team * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_IT_H #define __STM32F1xx_IT_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); #ifdef __cplusplus } #endif #endif /* __STM32F1xx_IT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_Printf
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_Printf\Src\main.c
/** ****************************************************************************** * @file UART/UART_Printf/Src/main.c * @author MCD Application Team * @brief This example shows how to retarget the C library printf function * to the UART. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @addtogroup UART_Printf * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* UART handler declaration */ UART_HandleTypeDef UartHandle; /* Private function prototypes -----------------------------------------------*/ #ifdef __GNUC__ /* With GCC, small printf (option LD Linker->Libraries->Small printf set to 'Yes') calls __io_putchar() */ #define PUTCHAR_PROTOTYPE int __io_putchar(int ch) #else #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f) #endif /* __GNUC__ */ void SystemClock_Config(void); static void Error_Handler(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { /* STM32F103xB HAL library initialization: - Configure the Flash prefetch - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization */ HAL_Init(); /* Configure the system clock to 64 MHz */ SystemClock_Config(); /* Initialize BSP Led for LED2 */ BSP_LED_Init(LED2); /*##-1- Configure the UART peripheral ######################################*/ /* Put the USART peripheral in the Asynchronous mode (UART Mode) */ /* UART configured as follows: - Word Length = 8 Bits (7 data bit + 1 parity bit) : BE CAREFUL : Program 7 data bits + 1 parity bit in PC HyperTerminal - Stop Bit = One Stop bit - Parity = ODD parity - BaudRate = 9600 baud - Hardware flow control disabled (RTS and CTS signals) */ UartHandle.Instance = USARTx; UartHandle.Init.BaudRate = 9600; UartHandle.Init.WordLength = UART_WORDLENGTH_8B; UartHandle.Init.StopBits = UART_STOPBITS_1; UartHandle.Init.Parity = UART_PARITY_ODD; UartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE; UartHandle.Init.Mode = UART_MODE_TX_RX; if (HAL_UART_Init(&UartHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /* Output a message on Hyperterminal using printf function */ printf("\n\r UART Printf Example: retarget the C library printf function to the UART\n\r"); printf("** Test finished successfully. ** \n\r"); /* Infinite loop */ while (1) { } } /** * @brief Retargets the C library printf function to the USART. * @param None * @retval None */ PUTCHAR_PROTOTYPE { /* Place your implementation of fputc here */ /* e.g. write a character to the USART1 and Loop until the end of transmission */ HAL_UART_Transmit(&UartHandle, (uint8_t *)&ch, 1, 0xFFFF); return ch; } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSI) * SYSCLK(Hz) = 64000000 * HCLK(Hz) = 64000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * PLLMUL = 16 * Flash Latency(WS) = 2 * @param None * @retval None */ void SystemClock_Config(void) { RCC_ClkInitTypeDef clkinitstruct = {0}; RCC_OscInitTypeDef oscinitstruct = {0}; /* Configure PLL ------------------------------------------------------*/ /* PLL configuration: PLLCLK = (HSI / 2) * PLLMUL = (8 / 2) * 16 = 64 MHz */ /* PREDIV1 configuration: PREDIV1CLK = PLLCLK / HSEPredivValue = 64 / 1 = 64 MHz */ /* Enable HSI and activate PLL with HSi_DIV2 as source */ oscinitstruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; oscinitstruct.HSEState = RCC_HSE_OFF; oscinitstruct.LSEState = RCC_LSE_OFF; oscinitstruct.HSIState = RCC_HSI_ON; oscinitstruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; oscinitstruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; oscinitstruct.PLL.PLLState = RCC_PLL_ON; oscinitstruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2; oscinitstruct.PLL.PLLMUL = RCC_PLL_MUL16; if (HAL_RCC_OscConfig(&oscinitstruct)!= HAL_OK) { /* Initialization Error */ while(1); } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ clkinitstruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); clkinitstruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; clkinitstruct.AHBCLKDivider = RCC_SYSCLK_DIV1; clkinitstruct.APB2CLKDivider = RCC_HCLK_DIV1; clkinitstruct.APB1CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&clkinitstruct, FLASH_LATENCY_2)!= HAL_OK) { /* Initialization Error */ while(1); } } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None */ static void Error_Handler(void) { /* Turn LED2 on */ BSP_LED_On(LED2); while (1) { } } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_Printf
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_Printf\Src\stm32f1xx_hal_msp.c
/** ****************************************************************************** * @file UART/UART_Printf/Src/stm32f1xx_hal_msp.c * @author MCD Application Team * @brief HAL MSP module. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @defgroup HAL_MSP * @brief HAL MSP module. * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /** @defgroup HAL_MSP_Private_Functions * @{ */ /** * @brief UART MSP Initialization * This function configures the hardware resources used in this example: * - Peripheral's clock enable * - Peripheral's GPIO Configuration * @param huart: UART handle pointer * @retval None */ void HAL_UART_MspInit(UART_HandleTypeDef *huart) { GPIO_InitTypeDef GPIO_InitStruct; /*##-1- Enable peripherals and GPIO Clocks #################################*/ /* Enable GPIO TX/RX clock */ USARTx_TX_GPIO_CLK_ENABLE(); USARTx_RX_GPIO_CLK_ENABLE(); /* Enable USARTx clock */ USARTx_CLK_ENABLE(); /*##-2- Configure peripheral GPIO ##########################################*/ /* UART TX GPIO pin configuration */ GPIO_InitStruct.Pin = USARTx_TX_PIN; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(USARTx_TX_GPIO_PORT, &GPIO_InitStruct); /* UART RX GPIO pin configuration */ GPIO_InitStruct.Pin = USARTx_RX_PIN; HAL_GPIO_Init(USARTx_RX_GPIO_PORT, &GPIO_InitStruct); } /** * @brief UART MSP De-Initialization * This function frees the hardware resources used in this example: * - Disable the Peripheral's clock * - Revert GPIO and NVIC configuration to their default state * @param huart: UART handle pointer * @retval None */ void HAL_UART_MspDeInit(UART_HandleTypeDef *huart) { /*##-1- Reset peripherals ##################################################*/ USARTx_FORCE_RESET(); USARTx_RELEASE_RESET(); /*##-2- Disable peripherals and GPIO Clocks #################################*/ /* Configure UART Tx as alternate function */ HAL_GPIO_DeInit(USARTx_TX_GPIO_PORT, USARTx_TX_PIN); /* Configure UART Rx as alternate function */ HAL_GPIO_DeInit(USARTx_RX_GPIO_PORT, USARTx_RX_PIN); } /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_Printf
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_Printf\Src\stm32f1xx_it.c
/** ****************************************************************************** * @file UART/UART_Printf/Src/stm32f1xx_it.c * @author MCD Application Team * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "stm32f1xx_it.h" /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @addtogroup UART_Printf * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /******************************************************************************/ /* Cortex-M3 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /** * @brief This function handles PendSVC exception. * @param None * @retval None */ void PendSV_Handler(void) { } /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { HAL_IncTick(); } /******************************************************************************/ /* STM32F1xx Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f1xx.s). */ /******************************************************************************/ /** * @brief This function handles PPP interrupt request. * @param None * @retval None */ /*void PPP_IRQHandler(void) { }*/ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_Printf
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_Printf\Src\system_stm32f1xx.c
/** ****************************************************************************** * @file system_stm32f1xx.c * @author MCD Application Team * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File. * * 1. This file provides two functions and one global variable to be called from * user application: * - SystemInit(): Setups the system clock (System clock source, PLL Multiplier * factors, AHB/APBx prescalers and Flash settings). * This function is called at startup just after reset and * before branch to main program. This call is made inside * the "startup_stm32f1xx_xx.s" file. * * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used * by the user application to setup the SysTick * timer or configure other parameters. * * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must * be called whenever the core clock is changed * during program execution. * * 2. After each device reset the HSI (8 MHz) is used as system clock source. * Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to * configure the system clock before to branch to main program. * * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on * the product used), refer to "HSE_VALUE". * When HSE is used as system clock source, directly or through PLL, and you * are using different crystal you have to adapt the HSE value to your own * configuration. * ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32f1xx_system * @{ */ /** @addtogroup STM32F1xx_System_Private_Includes * @{ */ #include "stm32f1xx.h" /** * @} */ /** @addtogroup STM32F1xx_System_Private_TypesDefinitions * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Defines * @{ */ #if !defined (HSE_VALUE) #define HSE_VALUE ((uint32_t)8000000) /*!< Default value of the External oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSE_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE ((uint32_t)8000000) /*!< Default value of the Internal oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSI_VALUE */ /*!< Uncomment the following line if you need to use external SRAM */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /* #define DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /*!< Uncomment the following line if you need to relocate your vector Table in Internal SRAM. */ /* #define VECT_TAB_SRAM */ #define VECT_TAB_OFFSET 0x0 /*!< Vector Table base offset field. This value must be a multiple of 0x200. */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Macros * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Variables * @{ */ /* This variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetHCLKFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency Note: If you use this function to configure the system clock; then there is no need to call the 2 first functions listed above, since SystemCoreClock variable is updated automatically. */ uint32_t SystemCoreClock = 16000000; const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}; const uint8_t APBPrescTable[8] = {0, 0, 0, 0, 1, 2, 3, 4}; /** * @} */ /** @addtogroup STM32F1xx_System_Private_FunctionPrototypes * @{ */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM static void SystemInit_ExtMemCtl(void); #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Functions * @{ */ /** * @brief Setup the microcontroller system * Initialize the Embedded Flash Interface, the PLL and update the * SystemCoreClock variable. * @note This function should be used only after reset. * @param None * @retval None */ void SystemInit (void) { /* Reset the RCC clock configuration to the default reset state(for debug purpose) */ /* Set HSION bit */ RCC->CR |= (uint32_t)0x00000001; /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */ #if !defined(STM32F105xC) && !defined(STM32F107xC) RCC->CFGR &= (uint32_t)0xF8FF0000; #else RCC->CFGR &= (uint32_t)0xF0FF0000; #endif /* STM32F105xC */ /* Reset HSEON, CSSON and PLLON bits */ RCC->CR &= (uint32_t)0xFEF6FFFF; /* Reset HSEBYP bit */ RCC->CR &= (uint32_t)0xFFFBFFFF; /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */ RCC->CFGR &= (uint32_t)0xFF80FFFF; #if defined(STM32F105xC) || defined(STM32F107xC) /* Reset PLL2ON and PLL3ON bits */ RCC->CR &= (uint32_t)0xEBFFFFFF; /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x00FF0000; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000; #elif defined(STM32F100xB) || defined(STM32F100xE) /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000; #else /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; #endif /* STM32F105xC */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM SystemInit_ExtMemCtl(); #endif /* DATA_IN_ExtSRAM */ #endif #ifdef VECT_TAB_SRAM SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */ #else SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */ #endif } /** * @brief Update SystemCoreClock variable according to Clock Register Values. * The SystemCoreClock variable contains the core clock (HCLK), it can * be used by the user application to setup the SysTick timer or configure * other parameters. * * @note Each time the core clock (HCLK) changes, this function must be called * to update SystemCoreClock variable value. Otherwise, any configuration * based on this variable will be incorrect. * * @note - The system frequency computed by this function is not the real * frequency in the chip. It is calculated based on the predefined * constant and the selected clock source: * * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*) * * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**) * * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) * or HSI_VALUE(*) multiplied by the PLL factors. * * (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz) but the real value may vary depending on the variations * in voltage and temperature. * * (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz or 25 MHz, depending on the product used), user has to ensure * that HSE_VALUE is same as the real frequency of the crystal used. * Otherwise, this function may have wrong result. * * - The result of this function could be not correct when using fractional * value for HSE crystal. * @param None * @retval None */ void SystemCoreClockUpdate (void) { uint32_t tmp = 0, pllmull = 0, pllsource = 0; #if defined(STM32F105xC) || defined(STM32F107xC) uint32_t prediv1source = 0, prediv1factor = 0, prediv2factor = 0, pll2mull = 0; #endif /* STM32F105xC */ #if defined(STM32F100xB) || defined(STM32F100xE) uint32_t prediv1factor = 0; #endif /* STM32F100xB or STM32F100xE */ /* Get SYSCLK source -------------------------------------------------------*/ tmp = RCC->CFGR & RCC_CFGR_SWS; switch (tmp) { case 0x00: /* HSI used as system clock */ SystemCoreClock = HSI_VALUE; break; case 0x04: /* HSE used as system clock */ SystemCoreClock = HSE_VALUE; break; case 0x08: /* PLL used as system clock */ /* Get PLL clock source and multiplication factor ----------------------*/ pllmull = RCC->CFGR & RCC_CFGR_PLLMULL; pllsource = RCC->CFGR & RCC_CFGR_PLLSRC; #if !defined(STM32F105xC) && !defined(STM32F107xC) pllmull = ( pllmull >> 18) + 2; if (pllsource == 0x00) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1) * pllmull; } else { #if defined(STM32F100xB) || defined(STM32F100xE) prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1; /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; #else /* HSE selected as PLL clock entry */ if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET) {/* HSE oscillator clock divided by 2 */ SystemCoreClock = (HSE_VALUE >> 1) * pllmull; } else { SystemCoreClock = HSE_VALUE * pllmull; } #endif } #else pllmull = pllmull >> 18; if (pllmull != 0x0D) { pllmull += 2; } else { /* PLL multiplication factor = PLL input clock * 6.5 */ pllmull = 13 / 2; } if (pllsource == 0x00) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1) * pllmull; } else {/* PREDIV1 selected as PLL clock entry */ /* Get PREDIV1 clock source and division factor */ prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC; prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1; if (prediv1source == 0) { /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; } else {/* PLL2 clock selected as PREDIV1 clock entry */ /* Get PREDIV2 division factor and PLL2 multiplication factor */ prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4) + 1; pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8 ) + 2; SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull; } } #endif /* STM32F105xC */ break; default: SystemCoreClock = HSI_VALUE; break; } /* Compute HCLK clock frequency ----------------*/ /* Get HCLK prescaler */ tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)]; /* HCLK clock frequency */ SystemCoreClock >>= tmp; } #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /** * @brief Setup the external memory controller. Called in startup_stm32f1xx.s * before jump to __main * @param None * @retval None */ #ifdef DATA_IN_ExtSRAM /** * @brief Setup the external memory controller. * Called in startup_stm32f1xx_xx.s/.c before jump to main. * This function configures the external SRAM mounted on STM3210E-EVAL * board (STM32 High density devices). This SRAM will be used as program * data memory (including heap and stack). * @param None * @retval None */ void SystemInit_ExtMemCtl(void) { __IO uint32_t tmpreg; /*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is required, then adjust the Register Addresses */ /* Enable FSMC clock */ RCC->AHBENR = 0x00000114; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN); /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */ RCC->APB2ENR = 0x000001E0; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN); (void)(tmpreg); /* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/ /*---------------- SRAM Address lines configuration -------------------------*/ /*---------------- NOE and NWE configuration --------------------------------*/ /*---------------- NE3 configuration ----------------------------------------*/ /*---------------- NBL0, NBL1 configuration ---------------------------------*/ GPIOD->CRL = 0x44BB44BB; GPIOD->CRH = 0xBBBBBBBB; GPIOE->CRL = 0xB44444BB; GPIOE->CRH = 0xBBBBBBBB; GPIOF->CRL = 0x44BBBBBB; GPIOF->CRH = 0xBBBB4444; GPIOG->CRL = 0x44BBBBBB; GPIOG->CRH = 0x444B4B44; /*---------------- FSMC Configuration ---------------------------------------*/ /*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/ FSMC_Bank1->BTCR[4] = 0x00001091; FSMC_Bank1->BTCR[5] = 0x00110212; } #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_Printf
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_Printf\SW4STM32\syscalls.c
/* Support files for GNU libc. Files in the system namespace go here. Files in the C namespace (ie those that do not start with an underscore) go in .c. */ /* Includes */ #include <sys/stat.h> #include <stdlib.h> #include <errno.h> #include <stdio.h> #include <signal.h> #include <time.h> #include <sys/time.h> #include <sys/times.h> /* Variables */ //#undef errno extern int errno; extern int __io_putchar(int ch) __attribute__((weak)); extern int __io_getchar(void) __attribute__((weak)); register char * stack_ptr asm("sp"); char *__env[1] = { 0 }; char **environ = __env; /* Functions */ void initialise_monitor_handles() { } int _getpid(void) { return 1; } int _kill(int pid, int sig) { errno = EINVAL; return -1; } void _exit (int status) { _kill(status, -1); while (1) {} /* Make sure we hang here */ } __attribute__((weak)) int _read(int file, char *ptr, int len) { int DataIdx; for (DataIdx = 0; DataIdx < len; DataIdx++) { *ptr++ = __io_getchar(); } return len; } __attribute__((weak)) int _write(int file, char *ptr, int len) { int DataIdx; for (DataIdx = 0; DataIdx < len; DataIdx++) { __io_putchar(*ptr++); } return len; } caddr_t _sbrk(int incr) { extern char end asm("end"); static char *heap_end; char *prev_heap_end; if (heap_end == 0) heap_end = &end; prev_heap_end = heap_end; if (heap_end + incr > stack_ptr) { // write(1, "Heap and stack collision\n", 25); // abort(); errno = ENOMEM; return (caddr_t) -1; } heap_end += incr; return (caddr_t) prev_heap_end; } int _close(int file) { return -1; } int _fstat(int file, struct stat *st) { st->st_mode = S_IFCHR; return 0; } int _isatty(int file) { return 1; } int _lseek(int file, int ptr, int dir) { return 0; } int _open(char *path, int flags, ...) { /* Pretend like we always fail */ return -1; } int _wait(int *status) { errno = ECHILD; return -1; } int _unlink(char *name) { errno = ENOENT; return -1; } int _times(struct tms *buf) { return -1; } int _stat(char *file, struct stat *st) { st->st_mode = S_IFCHR; return 0; } int _link(char *old, char *new) { errno = EMLINK; return -1; } int _fork(void) { errno = EAGAIN; return -1; } int _execve(char *name, char **argv, char **env) { errno = ENOMEM; return -1; }
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComDMA
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComDMA\Inc\main.h
/** ****************************************************************************** * @file UART/UART_TwoBoards_ComDMA/Inc/main.h * @author MCD Application Team * @brief Header for main.c module ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __MAIN_H #define __MAIN_H /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_hal.h" #include "stm32f1xx_nucleo.h" /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* User can use this section to tailor USARTx/UARTx instance used and associated resources */ /* Definition for USARTx clock resources */ #define USARTx USART1 #define USARTx_CLK_ENABLE() __HAL_RCC_USART1_CLK_ENABLE(); #define DMAx_CLK_ENABLE() __HAL_RCC_DMA1_CLK_ENABLE() #define USARTx_RX_GPIO_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() #define USARTx_TX_GPIO_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() #define USARTx_FORCE_RESET() __HAL_RCC_USART1_FORCE_RESET() #define USARTx_RELEASE_RESET() __HAL_RCC_USART1_RELEASE_RESET() /* Definition for USARTx Pins */ #define USARTx_TX_PIN GPIO_PIN_9 #define USARTx_TX_GPIO_PORT GPIOA #define USARTx_RX_PIN GPIO_PIN_10 #define USARTx_RX_GPIO_PORT GPIOA /* Definition for USARTx's DMA */ #define USARTx_TX_DMA_CHANNEL DMA1_Channel4 #define USARTx_RX_DMA_CHANNEL DMA1_Channel5 /* Definition for USARTx's NVIC */ #define USARTx_DMA_TX_IRQn DMA1_Channel4_IRQn #define USARTx_DMA_RX_IRQn DMA1_Channel5_IRQn #define USARTx_DMA_TX_IRQHandler DMA1_Channel4_IRQHandler #define USARTx_DMA_RX_IRQHandler DMA1_Channel5_IRQHandler /* Definition for USARTx's NVIC */ #define USARTx_IRQn USART1_IRQn #define USARTx_IRQHandler USART1_IRQHandler /* Size of Transmission buffer */ #define TXBUFFERSIZE (COUNTOF(aTxBuffer) - 1) /* Size of Reception buffer */ #define RXBUFFERSIZE TXBUFFERSIZE /* Exported macro ------------------------------------------------------------*/ #define COUNTOF(__BUFFER__) (sizeof(__BUFFER__) / sizeof(*(__BUFFER__))) /* Exported functions ------------------------------------------------------- */ #endif /* __MAIN_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComDMA
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComDMA\Inc\stm32f1xx_hal_conf.h
/** ****************************************************************************** * @file stm32f1xx_hal_conf.h * @author MCD Application Team * @brief HAL configuration file. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_HAL_CONF_H #define __STM32F1xx_HAL_CONF_H #ifdef __cplusplus extern "C" { #endif /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* ########################## Module Selection ############################## */ /** * @brief This is the list of modules to be used in the HAL driver */ #define HAL_MODULE_ENABLED /* #define HAL_ADC_MODULE_ENABLED */ /* #define HAL_CAN_MODULE_ENABLED */ /* #define HAL_CAN_LEGACY_MODULE_ENABLED */ /* #define HAL_CEC_MODULE_ENABLED */ #define HAL_CORTEX_MODULE_ENABLED /* #define HAL_CRC_MODULE_ENABLED */ /* #define HAL_DAC_MODULE_ENABLED */ #define HAL_DMA_MODULE_ENABLED /* #define HAL_ETH_MODULE_ENABLED */ /* #define HAL_EXTI_MODULE_ENABLED */ #define HAL_FLASH_MODULE_ENABLED #define HAL_GPIO_MODULE_ENABLED /* #define HAL_HCD_MODULE_ENABLED */ /* #define HAL_I2C_MODULE_ENABLED */ /* #define HAL_I2S_MODULE_ENABLED */ /* #define HAL_IRDA_MODULE_ENABLED */ /* #define HAL_IWDG_MODULE_ENABLED */ /* #define HAL_NAND_MODULE_ENABLED */ /* #define HAL_NOR_MODULE_ENABLED */ /* #define HAL_PCCARD_MODULE_ENABLED */ /* #define HAL_PCD_MODULE_ENABLED */ #define HAL_PWR_MODULE_ENABLED #define HAL_RCC_MODULE_ENABLED /* #define HAL_RTC_MODULE_ENABLED */ /* #define HAL_SD_MODULE_ENABLED */ /* #define HAL_SMARTCARD_MODULE_ENABLED */ /* #define HAL_SPI_MODULE_ENABLED */ /* #define HAL_SRAM_MODULE_ENABLED */ /* #define HAL_TIM_MODULE_ENABLED */ #define HAL_UART_MODULE_ENABLED /* #define HAL_USART_MODULE_ENABLED */ /* #define HAL_WWDG_MODULE_ENABLED */ /* ########################## Oscillator Values adaptation ####################*/ /** * @brief Adjust the value of External High Speed oscillator (HSE) used in your application. * This value is used by the RCC HAL module to compute the system frequency * (when HSE is used as system clock source, directly or through the PLL). */ #if !defined (HSE_VALUE) #if defined(USE_STM3210C_EVAL) #define HSE_VALUE 25000000U /*!< Value of the External oscillator in Hz */ #else #define HSE_VALUE 8000000U /*!< Value of the External oscillator in Hz */ #endif #endif /* HSE_VALUE */ #if !defined (HSE_STARTUP_TIMEOUT) #define HSE_STARTUP_TIMEOUT 100U /*!< Time out for HSE start up, in ms */ #endif /* HSE_STARTUP_TIMEOUT */ /** * @brief Internal High Speed oscillator (HSI) value. * This value is used by the RCC HAL module to compute the system frequency * (when HSI is used as system clock source, directly or through the PLL). */ #if !defined (HSI_VALUE) #define HSI_VALUE 8000000U /*!< Value of the Internal oscillator in Hz */ #endif /* HSI_VALUE */ /** * @brief Internal Low Speed oscillator (LSI) value. */ #if !defined (LSI_VALUE) #define LSI_VALUE 40000U /*!< LSI Typical Value in Hz */ #endif /* LSI_VALUE */ /*!< Value of the Internal Low Speed oscillator in Hz The real value may vary depending on the variations in voltage and temperature. */ /** * @brief External Low Speed oscillator (LSE) value. * This value is used by the UART, RTC HAL module to compute the system frequency */ #if !defined (LSE_VALUE) #define LSE_VALUE 32768U /*!< Value of the External oscillator in Hz*/ #endif /* LSE_VALUE */ #if !defined (LSE_STARTUP_TIMEOUT) #define LSE_STARTUP_TIMEOUT 5000U /*!< Time out for LSE start up, in ms */ #endif /* LSE_STARTUP_TIMEOUT */ /* Tip: To avoid modifying this file each time you need to use different HSE, === you can define the HSE value in your toolchain compiler preprocessor. */ /* ########################### System Configuration ######################### */ /** * @brief This is the HAL system configuration section */ #define VDD_VALUE 3300U /*!< Value of VDD in mv */ #define TICK_INT_PRIORITY 0x0FU /*!< tick interrupt priority */ #define USE_RTOS 0U #define PREFETCH_ENABLE 1U #define USE_HAL_ADC_REGISTER_CALLBACKS 0U /* ADC register callback disabled */ #define USE_HAL_CAN_REGISTER_CALLBACKS 0U /* CAN register callback disabled */ #define USE_HAL_CEC_REGISTER_CALLBACKS 0U /* CEC register callback disabled */ #define USE_HAL_DAC_REGISTER_CALLBACKS 0U /* DAC register callback disabled */ #define USE_HAL_ETH_REGISTER_CALLBACKS 0U /* ETH register callback disabled */ #define USE_HAL_HCD_REGISTER_CALLBACKS 0U /* HCD register callback disabled */ #define USE_HAL_I2C_REGISTER_CALLBACKS 0U /* I2C register callback disabled */ #define USE_HAL_I2S_REGISTER_CALLBACKS 0U /* I2S register callback disabled */ #define USE_HAL_MMC_REGISTER_CALLBACKS 0U /* MMC register callback disabled */ #define USE_HAL_NAND_REGISTER_CALLBACKS 0U /* NAND register callback disabled */ #define USE_HAL_NOR_REGISTER_CALLBACKS 0U /* NOR register callback disabled */ #define USE_HAL_PCCARD_REGISTER_CALLBACKS 0U /* PCCARD register callback disabled */ #define USE_HAL_PCD_REGISTER_CALLBACKS 0U /* PCD register callback disabled */ #define USE_HAL_RTC_REGISTER_CALLBACKS 0U /* RTC register callback disabled */ #define USE_HAL_SD_REGISTER_CALLBACKS 0U /* SD register callback disabled */ #define USE_HAL_SMARTCARD_REGISTER_CALLBACKS 0U /* SMARTCARD register callback disabled */ #define USE_HAL_IRDA_REGISTER_CALLBACKS 0U /* IRDA register callback disabled */ #define USE_HAL_SRAM_REGISTER_CALLBACKS 0U /* SRAM register callback disabled */ #define USE_HAL_SPI_REGISTER_CALLBACKS 0U /* SPI register callback disabled */ #define USE_HAL_TIM_REGISTER_CALLBACKS 0U /* TIM register callback disabled */ #define USE_HAL_UART_REGISTER_CALLBACKS 0U /* UART register callback disabled */ #define USE_HAL_USART_REGISTER_CALLBACKS 0U /* USART register callback disabled */ #define USE_HAL_WWDG_REGISTER_CALLBACKS 0U /* WWDG register callback disabled */ /* ########################## Assert Selection ############################## */ /** * @brief Uncomment the line below to expanse the "assert_param" macro in the * HAL drivers code */ /* #define USE_FULL_ASSERT 1U */ /* ################## Ethernet peripheral configuration ##################### */ /* Section 1 : Ethernet peripheral configuration */ /* MAC ADDRESS: MAC_ADDR0:MAC_ADDR1:MAC_ADDR2:MAC_ADDR3:MAC_ADDR4:MAC_ADDR5 */ #define MAC_ADDR0 2U #define MAC_ADDR1 0U #define MAC_ADDR2 0U #define MAC_ADDR3 0U #define MAC_ADDR4 0U #define MAC_ADDR5 0U /* Definition of the Ethernet driver buffers size and count */ #define ETH_RX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for receive */ #define ETH_TX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for transmit */ #define ETH_RXBUFNB 8U /* 8 Rx buffers of size ETH_RX_BUF_SIZE */ #define ETH_TXBUFNB 4U /* 4 Tx buffers of size ETH_TX_BUF_SIZE */ /* Section 2: PHY configuration section */ /* DP83848 PHY Address*/ #define DP83848_PHY_ADDRESS 0x01U /* PHY Reset delay these values are based on a 1 ms Systick interrupt*/ #define PHY_RESET_DELAY 0x000000FFU /* PHY Configuration delay */ #define PHY_CONFIG_DELAY 0x00000FFFU #define PHY_READ_TO 0x0000FFFFU #define PHY_WRITE_TO 0x0000FFFFU /* Section 3: Common PHY Registers */ #define PHY_BCR ((uint16_t)0x0000) /*!< Transceiver Basic Control Register */ #define PHY_BSR ((uint16_t)0x0001) /*!< Transceiver Basic Status Register */ #define PHY_RESET ((uint16_t)0x8000) /*!< PHY Reset */ #define PHY_LOOPBACK ((uint16_t)0x4000) /*!< Select loop-back mode */ #define PHY_FULLDUPLEX_100M ((uint16_t)0x2100) /*!< Set the full-duplex mode at 100 Mb/s */ #define PHY_HALFDUPLEX_100M ((uint16_t)0x2000) /*!< Set the half-duplex mode at 100 Mb/s */ #define PHY_FULLDUPLEX_10M ((uint16_t)0x0100) /*!< Set the full-duplex mode at 10 Mb/s */ #define PHY_HALFDUPLEX_10M ((uint16_t)0x0000) /*!< Set the half-duplex mode at 10 Mb/s */ #define PHY_AUTONEGOTIATION ((uint16_t)0x1000) /*!< Enable auto-negotiation function */ #define PHY_RESTART_AUTONEGOTIATION ((uint16_t)0x0200) /*!< Restart auto-negotiation function */ #define PHY_POWERDOWN ((uint16_t)0x0800) /*!< Select the power down mode */ #define PHY_ISOLATE ((uint16_t)0x0400) /*!< Isolate PHY from MII */ #define PHY_AUTONEGO_COMPLETE ((uint16_t)0x0020) /*!< Auto-Negotiation process completed */ #define PHY_LINKED_STATUS ((uint16_t)0x0004) /*!< Valid link established */ #define PHY_JABBER_DETECTION ((uint16_t)0x0002) /*!< Jabber condition detected */ /* Section 4: Extended PHY Registers */ #define PHY_SR ((uint16_t)0x0010) /*!< PHY status register Offset */ #define PHY_MICR ((uint16_t)0x0011) /*!< MII Interrupt Control Register */ #define PHY_MISR ((uint16_t)0x0012) /*!< MII Interrupt Status and Misc. Control Register */ #define PHY_LINK_STATUS ((uint16_t)0x0001) /*!< PHY Link mask */ #define PHY_SPEED_STATUS ((uint16_t)0x0002) /*!< PHY Speed mask */ #define PHY_DUPLEX_STATUS ((uint16_t)0x0004) /*!< PHY Duplex mask */ #define PHY_MICR_INT_EN ((uint16_t)0x0002) /*!< PHY Enable interrupts */ #define PHY_MICR_INT_OE ((uint16_t)0x0001) /*!< PHY Enable output interrupt events */ #define PHY_MISR_LINK_INT_EN ((uint16_t)0x0020) /*!< Enable Interrupt on change of link status */ #define PHY_LINK_INTERRUPT ((uint16_t)0x2000) /*!< PHY link status interrupt mask */ /* ################## SPI peripheral configuration ########################## */ /* CRC FEATURE: Use to activate CRC feature inside HAL SPI Driver * Activated: CRC code is present inside driver * Deactivated: CRC code cleaned from driver */ #define USE_SPI_CRC 1U /* Includes ------------------------------------------------------------------*/ /** * @brief Include module's header file */ #ifdef HAL_RCC_MODULE_ENABLED #include "stm32f1xx_hal_rcc.h" #endif /* HAL_RCC_MODULE_ENABLED */ #ifdef HAL_GPIO_MODULE_ENABLED #include "stm32f1xx_hal_gpio.h" #endif /* HAL_GPIO_MODULE_ENABLED */ #ifdef HAL_EXTI_MODULE_ENABLED #include "stm32f1xx_hal_exti.h" #endif /* HAL_EXTI_MODULE_ENABLED */ #ifdef HAL_DMA_MODULE_ENABLED #include "stm32f1xx_hal_dma.h" #endif /* HAL_DMA_MODULE_ENABLED */ #ifdef HAL_ETH_MODULE_ENABLED #include "stm32f1xx_hal_eth.h" #endif /* HAL_ETH_MODULE_ENABLED */ #ifdef HAL_CAN_MODULE_ENABLED #include "stm32f1xx_hal_can.h" #endif /* HAL_CAN_MODULE_ENABLED */ #ifdef HAL_CAN_LEGACY_MODULE_ENABLED #include "Legacy/stm32f1xx_hal_can_legacy.h" #endif /* HAL_CAN_LEGACY_MODULE_ENABLED */ #ifdef HAL_CEC_MODULE_ENABLED #include "stm32f1xx_hal_cec.h" #endif /* HAL_CEC_MODULE_ENABLED */ #ifdef HAL_CORTEX_MODULE_ENABLED #include "stm32f1xx_hal_cortex.h" #endif /* HAL_CORTEX_MODULE_ENABLED */ #ifdef HAL_ADC_MODULE_ENABLED #include "stm32f1xx_hal_adc.h" #endif /* HAL_ADC_MODULE_ENABLED */ #ifdef HAL_CRC_MODULE_ENABLED #include "stm32f1xx_hal_crc.h" #endif /* HAL_CRC_MODULE_ENABLED */ #ifdef HAL_DAC_MODULE_ENABLED #include "stm32f1xx_hal_dac.h" #endif /* HAL_DAC_MODULE_ENABLED */ #ifdef HAL_FLASH_MODULE_ENABLED #include "stm32f1xx_hal_flash.h" #endif /* HAL_FLASH_MODULE_ENABLED */ #ifdef HAL_SRAM_MODULE_ENABLED #include "stm32f1xx_hal_sram.h" #endif /* HAL_SRAM_MODULE_ENABLED */ #ifdef HAL_NOR_MODULE_ENABLED #include "stm32f1xx_hal_nor.h" #endif /* HAL_NOR_MODULE_ENABLED */ #ifdef HAL_I2C_MODULE_ENABLED #include "stm32f1xx_hal_i2c.h" #endif /* HAL_I2C_MODULE_ENABLED */ #ifdef HAL_I2S_MODULE_ENABLED #include "stm32f1xx_hal_i2s.h" #endif /* HAL_I2S_MODULE_ENABLED */ #ifdef HAL_IWDG_MODULE_ENABLED #include "stm32f1xx_hal_iwdg.h" #endif /* HAL_IWDG_MODULE_ENABLED */ #ifdef HAL_PWR_MODULE_ENABLED #include "stm32f1xx_hal_pwr.h" #endif /* HAL_PWR_MODULE_ENABLED */ #ifdef HAL_RTC_MODULE_ENABLED #include "stm32f1xx_hal_rtc.h" #endif /* HAL_RTC_MODULE_ENABLED */ #ifdef HAL_PCCARD_MODULE_ENABLED #include "stm32f1xx_hal_pccard.h" #endif /* HAL_PCCARD_MODULE_ENABLED */ #ifdef HAL_SD_MODULE_ENABLED #include "stm32f1xx_hal_sd.h" #endif /* HAL_SD_MODULE_ENABLED */ #ifdef HAL_NAND_MODULE_ENABLED #include "stm32f1xx_hal_nand.h" #endif /* HAL_NAND_MODULE_ENABLED */ #ifdef HAL_SPI_MODULE_ENABLED #include "stm32f1xx_hal_spi.h" #endif /* HAL_SPI_MODULE_ENABLED */ #ifdef HAL_TIM_MODULE_ENABLED #include "stm32f1xx_hal_tim.h" #endif /* HAL_TIM_MODULE_ENABLED */ #ifdef HAL_UART_MODULE_ENABLED #include "stm32f1xx_hal_uart.h" #endif /* HAL_UART_MODULE_ENABLED */ #ifdef HAL_USART_MODULE_ENABLED #include "stm32f1xx_hal_usart.h" #endif /* HAL_USART_MODULE_ENABLED */ #ifdef HAL_IRDA_MODULE_ENABLED #include "stm32f1xx_hal_irda.h" #endif /* HAL_IRDA_MODULE_ENABLED */ #ifdef HAL_SMARTCARD_MODULE_ENABLED #include "stm32f1xx_hal_smartcard.h" #endif /* HAL_SMARTCARD_MODULE_ENABLED */ #ifdef HAL_WWDG_MODULE_ENABLED #include "stm32f1xx_hal_wwdg.h" #endif /* HAL_WWDG_MODULE_ENABLED */ #ifdef HAL_PCD_MODULE_ENABLED #include "stm32f1xx_hal_pcd.h" #endif /* HAL_PCD_MODULE_ENABLED */ #ifdef HAL_HCD_MODULE_ENABLED #include "stm32f1xx_hal_hcd.h" #endif /* HAL_HCD_MODULE_ENABLED */ /* Exported macro ------------------------------------------------------------*/ #ifdef USE_FULL_ASSERT /** * @brief The assert_param macro is used for function's parameters check. * @param expr: If expr is false, it calls assert_failed function * which reports the name of the source file and the source * line number of the call that failed. * If expr is true, it returns no value. * @retval None */ #define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__)) /* Exported functions ------------------------------------------------------- */ void assert_failed(uint8_t* file, uint32_t line); #else #define assert_param(expr) ((void)0U) #endif /* USE_FULL_ASSERT */ #ifdef __cplusplus } #endif #endif /* __STM32F1xx_HAL_CONF_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComDMA
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComDMA\Inc\stm32f1xx_it.h
/** ****************************************************************************** * @file UART/UART_TwoBoards_ComDMA/Inc/stm32f1xx_it.h * @author MCD Application Team * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_IT_H #define __STM32F1xx_IT_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); void USARTx_DMA_RX_IRQHandler(void); void USARTx_DMA_TX_IRQHandler(void); void USARTx_IRQHandler(void); void EXTI15_10_IRQHandler(void); #ifdef __cplusplus } #endif #endif /* __STM32F1xx_IT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComDMA
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComDMA\Src\main.c
/** ****************************************************************************** * @file UART/UART_TwoBoards_ComDMA/Src/main.c * @author MCD Application Team * @brief This sample code shows how to use UART HAL API to transmit * and receive a data buffer with a communication process based on * DMA transfer. * The communication is done using 2 Boards. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @addtogroup UART_TwoBoards_ComDMA * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ #define TRANSMITTER_BOARD /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* UART handler declaration */ UART_HandleTypeDef UartHandle; __IO ITStatus UartReady = RESET; __IO uint32_t UserButtonStatus = 0; /* set to 1 after User Button interrupt */ /* Buffer used for transmission */ uint8_t aTxBuffer[] = " ****UART_TwoBoards communication based on DMA**** ****UART_TwoBoards communication based on DMA**** ****UART_TwoBoards communication based on DMA**** "; /* Buffer used for reception */ uint8_t aRxBuffer[RXBUFFERSIZE]; /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void Error_Handler(void); static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { /* STM32F103xB HAL library initialization: - Configure the Flash prefetch - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization */ HAL_Init(); /* Configure the system clock to 64 MHz */ SystemClock_Config(); /* Configure LED2 */ BSP_LED_Init(LED2); #ifdef TRANSMITTER_BOARD /* Configure User push-button in Interrupt mode */ BSP_PB_Init(BUTTON_USER, BUTTON_MODE_EXTI); /* Wait for User push-button press before starting the Communication. In the meantime, LED2 is blinking */ while(UserButtonStatus == 0) { /* Toggle LED2*/ BSP_LED_Toggle(LED2); HAL_Delay(100); } BSP_LED_Off(LED2); #endif /*##-1- Configure the UART peripheral ######################################*/ /* Put the USART peripheral in the Asynchronous mode (UART Mode) */ /* UART configured as follows: - Word Length = 8 Bits - Stop Bit = One Stop bit - Parity = None - BaudRate = 9600 baud - Hardware flow control disabled (RTS and CTS signals) */ UartHandle.Instance = USARTx; UartHandle.Init.BaudRate = 9600; UartHandle.Init.WordLength = UART_WORDLENGTH_8B; UartHandle.Init.StopBits = UART_STOPBITS_1; UartHandle.Init.Parity = UART_PARITY_NONE; UartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE; UartHandle.Init.Mode = UART_MODE_TX_RX; if(HAL_UART_DeInit(&UartHandle) != HAL_OK) { Error_Handler(); } if(HAL_UART_Init(&UartHandle) != HAL_OK) { Error_Handler(); } #ifdef TRANSMITTER_BOARD /* The board sends the message and expects to receive it back */ /* DMA is programmed for reception before starting the transmission, in order to be sure DMA Rx is ready when board 2 will start transmitting */ /*##-2- Program the Reception process #####################################*/ if(HAL_UART_Receive_DMA(&UartHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK) { Error_Handler(); } /*##-3- Start the transmission process #####################################*/ /* While the UART in reception process, user can transmit data through "aTxBuffer" buffer */ if(HAL_UART_Transmit_DMA(&UartHandle, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK) { Error_Handler(); } /*##-4- Wait for the end of the transfer ###################################*/ while (UartReady != SET) { } /* Reset transmission flag */ UartReady = RESET; #else /* The board receives the message and sends it back */ /*##-2- Put UART peripheral in reception process ###########################*/ if(HAL_UART_Receive_DMA(&UartHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK) { Error_Handler(); } /*##-3- Wait for the end of the transfer ###################################*/ /* While waiting for message to come from the other board, LED2 is blinking according to the following pattern: a double flash every half-second */ while (UartReady != SET) { BSP_LED_On(LED2); HAL_Delay(100); BSP_LED_Off(LED2); HAL_Delay(100); BSP_LED_On(LED2); HAL_Delay(100); BSP_LED_Off(LED2); HAL_Delay(500); } /* Reset transmission flag */ UartReady = RESET; BSP_LED_Off(LED2); /*##-4- Start the transmission process #####################################*/ /* While the UART in reception process, user can transmit data through "aTxBuffer" buffer */ if(HAL_UART_Transmit_DMA(&UartHandle, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK) { Error_Handler(); } #endif /* TRANSMITTER_BOARD */ /*##-5- Wait for the end of the transfer ###################################*/ while (UartReady != SET) { } /* Reset transmission flag */ UartReady = RESET; /*##-6- Compare the sent and received buffers ##############################*/ if(Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,RXBUFFERSIZE)) { Error_Handler(); } /* Turn on LED2 if test passes then enter infinite loop */ BSP_LED_On(LED2); /* Infinite loop */ while (1) { } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSI) * SYSCLK(Hz) = 64000000 * HCLK(Hz) = 64000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * PLLMUL = 16 * Flash Latency(WS) = 2 * @param None * @retval None */ void SystemClock_Config(void) { RCC_ClkInitTypeDef clkinitstruct = {0}; RCC_OscInitTypeDef oscinitstruct = {0}; /* Configure PLL ------------------------------------------------------*/ /* PLL configuration: PLLCLK = (HSI / 2) * PLLMUL = (8 / 2) * 16 = 64 MHz */ /* PREDIV1 configuration: PREDIV1CLK = PLLCLK / HSEPredivValue = 64 / 1 = 64 MHz */ /* Enable HSI and activate PLL with HSi_DIV2 as source */ oscinitstruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; oscinitstruct.HSEState = RCC_HSE_OFF; oscinitstruct.LSEState = RCC_LSE_OFF; oscinitstruct.HSIState = RCC_HSI_ON; oscinitstruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; oscinitstruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; oscinitstruct.PLL.PLLState = RCC_PLL_ON; oscinitstruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2; oscinitstruct.PLL.PLLMUL = RCC_PLL_MUL16; if (HAL_RCC_OscConfig(&oscinitstruct)!= HAL_OK) { /* Initialization Error */ while(1); } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ clkinitstruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); clkinitstruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; clkinitstruct.AHBCLKDivider = RCC_SYSCLK_DIV1; clkinitstruct.APB2CLKDivider = RCC_HCLK_DIV1; clkinitstruct.APB1CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&clkinitstruct, FLASH_LATENCY_2)!= HAL_OK) { /* Initialization Error */ while(1); } } /** * @brief Tx Transfer completed callback * @param UartHandle: UART handle. * @note This example shows a simple way to report end of DMA Tx transfer, and * you can add your own implementation. * @retval None */ void HAL_UART_TxCpltCallback(UART_HandleTypeDef *UartHandle) { /* Set transmission flag: transfer complete*/ UartReady = SET; } /** * @brief Rx Transfer completed callback * @param UartHandle: UART handle * @note This example shows a simple way to report end of DMA Rx transfer, and * you can add your own implementation. * @retval None */ void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle) { /* Set transmission flag: transfer complete*/ UartReady = SET; } /** * @brief UART error callbacks * @param UartHandle: UART handle * @note This example shows a simple way to report transfer error, and you can * add your own implementation. * @retval None */ void HAL_UART_ErrorCallback(UART_HandleTypeDef *UartHandle) { Error_Handler(); } /** * @brief EXTI line detection callbacks * @param GPIO_Pin: Specifies the pins connected EXTI line * @retval None */ void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { if(GPIO_Pin == USER_BUTTON_PIN) { UserButtonStatus = 1; } } /** * @brief Compares two buffers. * @param pBuffer1, pBuffer2: buffers to be compared. * @param BufferLength: buffer's length * @retval 0 : pBuffer1 identical to pBuffer2 * >0 : pBuffer1 differs from pBuffer2 */ static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength) { while (BufferLength--) { if ((*pBuffer1) != *pBuffer2) { return BufferLength; } pBuffer1++; pBuffer2++; } return 0; } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None */ static void Error_Handler(void) { /* Turn LED2 on */ BSP_LED_On(LED2); while(1) { /* Error if LED2 is slowly blinking (1 sec. period) */ BSP_LED_Toggle(LED2); HAL_Delay(1000); } } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t* file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComDMA
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComDMA\Src\stm32f1xx_hal_msp.c
/** ****************************************************************************** * @file UART/UART_TwoBoards_ComDMA/Src/stm32f1xx_hal_msp.c * @author MCD Application Team * @brief HAL MSP module. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @defgroup UART_TwoBoards_ComDMA * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /** @defgroup HAL_MSP_Private_Functions * @{ */ /** * @brief UART MSP Initialization * This function configures the hardware resources used in this example: * - Peripheral's clock enable * - Peripheral's GPIO Configuration * - DMA configuration for transmission request by peripheral * - NVIC configuration for DMA interrupt request enable * @param huart: UART handle pointer * @retval None */ void HAL_UART_MspInit(UART_HandleTypeDef *huart) { static DMA_HandleTypeDef hdma_tx; static DMA_HandleTypeDef hdma_rx; GPIO_InitTypeDef GPIO_InitStruct; /*##-1- Enable peripherals and GPIO Clocks #################################*/ /* Enable GPIO TX/RX clock */ USARTx_TX_GPIO_CLK_ENABLE(); USARTx_RX_GPIO_CLK_ENABLE(); /* Enable USARTx clock */ USARTx_CLK_ENABLE(); /* Enable DMA clock */ DMAx_CLK_ENABLE(); /*##-2- Configure peripheral GPIO ##########################################*/ /* UART TX GPIO pin configuration */ GPIO_InitStruct.Pin = USARTx_TX_PIN; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(USARTx_TX_GPIO_PORT, &GPIO_InitStruct); /* UART RX GPIO pin configuration */ GPIO_InitStruct.Pin = USARTx_RX_PIN; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; HAL_GPIO_Init(USARTx_RX_GPIO_PORT, &GPIO_InitStruct); /*##-3- Configure the DMA ##################################################*/ /* Configure the DMA handler for Transmission process */ hdma_tx.Instance = USARTx_TX_DMA_CHANNEL; hdma_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_tx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_tx.Init.MemInc = DMA_MINC_ENABLE; hdma_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_tx.Init.Mode = DMA_NORMAL; hdma_tx.Init.Priority = DMA_PRIORITY_LOW; HAL_DMA_Init(&hdma_tx); /* Associate the initialized DMA handle to the UART handle */ __HAL_LINKDMA(huart, hdmatx, hdma_tx); /* Configure the DMA handler for reception process */ hdma_rx.Instance = USARTx_RX_DMA_CHANNEL; hdma_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_rx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_rx.Init.MemInc = DMA_MINC_ENABLE; hdma_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_rx.Init.Mode = DMA_NORMAL; hdma_rx.Init.Priority = DMA_PRIORITY_HIGH; HAL_DMA_Init(&hdma_rx); /* Associate the initialized DMA handle to the the UART handle */ __HAL_LINKDMA(huart, hdmarx, hdma_rx); /*##-4- Configure the NVIC for DMA #########################################*/ /* NVIC configuration for DMA transfer complete interrupt (USART1_TX) */ HAL_NVIC_SetPriority(USARTx_DMA_TX_IRQn, 0, 1); HAL_NVIC_EnableIRQ(USARTx_DMA_TX_IRQn); /* NVIC configuration for DMA transfer complete interrupt (USART1_RX) */ HAL_NVIC_SetPriority(USARTx_DMA_RX_IRQn, 0, 0); HAL_NVIC_EnableIRQ(USARTx_DMA_RX_IRQn); /* NVIC for USART, to catch the TX complete */ HAL_NVIC_SetPriority(USARTx_IRQn, 0, 1); HAL_NVIC_EnableIRQ(USARTx_IRQn); } /** * @brief UART MSP De-Initialization * This function frees the hardware resources used in this example: * - Disable the Peripheral's clock * - Revert GPIO, DMA and NVIC configuration to their default state * @param huart: UART handle pointer * @retval None */ void HAL_UART_MspDeInit(UART_HandleTypeDef *huart) { /*##-1- Reset peripherals ##################################################*/ USARTx_FORCE_RESET(); USARTx_RELEASE_RESET(); /*##-2- Disable peripherals and GPIO Clocks #################################*/ /* Configure USARTx Tx as alternate function */ HAL_GPIO_DeInit(USARTx_TX_GPIO_PORT, USARTx_TX_PIN); /* Configure USARTx Rx as alternate function */ HAL_GPIO_DeInit(USARTx_RX_GPIO_PORT, USARTx_RX_PIN); /*##-3- Disable the DMA #####################################################*/ /* De-Initialize the DMA channel associated to reception process */ if(huart->hdmarx != 0) { HAL_DMA_DeInit(huart->hdmarx); } /* De-Initialize the DMA channel associated to transmission process */ if(huart->hdmatx != 0) { HAL_DMA_DeInit(huart->hdmatx); } /*##-4- Disable the NVIC for DMA ###########################################*/ HAL_NVIC_DisableIRQ(USARTx_DMA_TX_IRQn); HAL_NVIC_DisableIRQ(USARTx_DMA_RX_IRQn); } /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComDMA
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComDMA\Src\stm32f1xx_it.c
/** ****************************************************************************** * @file UART/UART_TwoBoards_ComDMA/Src/stm32f1xx_it.c * @author MCD Application Team * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "stm32f1xx_it.h" /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @addtogroup UART_TwoBoards_ComDMA * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* UART handler declared in "main.c" file */ extern UART_HandleTypeDef UartHandle; /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /******************************************************************************/ /* Cortex-M3 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /** * @brief This function handles PendSVC exception. * @param None * @retval None */ void PendSV_Handler(void) { } /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { HAL_IncTick(); } /******************************************************************************/ /* STM32F1xx Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f1xx.s). */ /******************************************************************************/ /** * @brief This function handles DMA interrupt request. * @param None * @retval None * @Note This function is redefined in "main.h" and related to DMA * used for USART data transmission */ void USARTx_DMA_RX_IRQHandler(void) { HAL_DMA_IRQHandler(UartHandle.hdmarx); } /** * @brief This function handles DMA interrupt request. * @param None * @retval None * @Note This function is redefined in "main.h" and related to DMA * used for USART data reception */ void USARTx_DMA_TX_IRQHandler(void) { HAL_DMA_IRQHandler(UartHandle.hdmatx); } /** * @brief This function handles UART interrupt request. * @param None * @retval None * @Note This function is redefined in "main.h" and related to DMA * used for USART data transmission */ void USARTx_IRQHandler(void) { HAL_UART_IRQHandler(&UartHandle); } /** * @brief This function handles external lines 10 to 15 interrupt request. * @param None * @retval None */ void EXTI15_10_IRQHandler(void) { HAL_GPIO_EXTI_IRQHandler(USER_BUTTON_PIN); } /** * @brief This function handles PPP interrupt request. * @param None * @retval None */ /*void PPP_IRQHandler(void) { }*/ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComDMA
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComDMA\Src\system_stm32f1xx.c
/** ****************************************************************************** * @file system_stm32f1xx.c * @author MCD Application Team * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File. * * 1. This file provides two functions and one global variable to be called from * user application: * - SystemInit(): Setups the system clock (System clock source, PLL Multiplier * factors, AHB/APBx prescalers and Flash settings). * This function is called at startup just after reset and * before branch to main program. This call is made inside * the "startup_stm32f1xx_xx.s" file. * * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used * by the user application to setup the SysTick * timer or configure other parameters. * * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must * be called whenever the core clock is changed * during program execution. * * 2. After each device reset the HSI (8 MHz) is used as system clock source. * Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to * configure the system clock before to branch to main program. * * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on * the product used), refer to "HSE_VALUE". * When HSE is used as system clock source, directly or through PLL, and you * are using different crystal you have to adapt the HSE value to your own * configuration. * ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32f1xx_system * @{ */ /** @addtogroup STM32F1xx_System_Private_Includes * @{ */ #include "stm32f1xx.h" /** * @} */ /** @addtogroup STM32F1xx_System_Private_TypesDefinitions * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Defines * @{ */ #if !defined (HSE_VALUE) #define HSE_VALUE ((uint32_t)8000000) /*!< Default value of the External oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSE_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE ((uint32_t)8000000) /*!< Default value of the Internal oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSI_VALUE */ /*!< Uncomment the following line if you need to use external SRAM */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /* #define DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /*!< Uncomment the following line if you need to relocate your vector Table in Internal SRAM. */ /* #define VECT_TAB_SRAM */ #define VECT_TAB_OFFSET 0x0 /*!< Vector Table base offset field. This value must be a multiple of 0x200. */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Macros * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Variables * @{ */ /* This variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetHCLKFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency Note: If you use this function to configure the system clock; then there is no need to call the 2 first functions listed above, since SystemCoreClock variable is updated automatically. */ uint32_t SystemCoreClock = 16000000; const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}; const uint8_t APBPrescTable[8] = {0, 0, 0, 0, 1, 2, 3, 4}; /** * @} */ /** @addtogroup STM32F1xx_System_Private_FunctionPrototypes * @{ */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM static void SystemInit_ExtMemCtl(void); #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Functions * @{ */ /** * @brief Setup the microcontroller system * Initialize the Embedded Flash Interface, the PLL and update the * SystemCoreClock variable. * @note This function should be used only after reset. * @param None * @retval None */ void SystemInit (void) { /* Reset the RCC clock configuration to the default reset state(for debug purpose) */ /* Set HSION bit */ RCC->CR |= (uint32_t)0x00000001; /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */ #if !defined(STM32F105xC) && !defined(STM32F107xC) RCC->CFGR &= (uint32_t)0xF8FF0000; #else RCC->CFGR &= (uint32_t)0xF0FF0000; #endif /* STM32F105xC */ /* Reset HSEON, CSSON and PLLON bits */ RCC->CR &= (uint32_t)0xFEF6FFFF; /* Reset HSEBYP bit */ RCC->CR &= (uint32_t)0xFFFBFFFF; /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */ RCC->CFGR &= (uint32_t)0xFF80FFFF; #if defined(STM32F105xC) || defined(STM32F107xC) /* Reset PLL2ON and PLL3ON bits */ RCC->CR &= (uint32_t)0xEBFFFFFF; /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x00FF0000; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000; #elif defined(STM32F100xB) || defined(STM32F100xE) /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000; #else /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; #endif /* STM32F105xC */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM SystemInit_ExtMemCtl(); #endif /* DATA_IN_ExtSRAM */ #endif #ifdef VECT_TAB_SRAM SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */ #else SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */ #endif } /** * @brief Update SystemCoreClock variable according to Clock Register Values. * The SystemCoreClock variable contains the core clock (HCLK), it can * be used by the user application to setup the SysTick timer or configure * other parameters. * * @note Each time the core clock (HCLK) changes, this function must be called * to update SystemCoreClock variable value. Otherwise, any configuration * based on this variable will be incorrect. * * @note - The system frequency computed by this function is not the real * frequency in the chip. It is calculated based on the predefined * constant and the selected clock source: * * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*) * * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**) * * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) * or HSI_VALUE(*) multiplied by the PLL factors. * * (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz) but the real value may vary depending on the variations * in voltage and temperature. * * (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz or 25 MHz, depending on the product used), user has to ensure * that HSE_VALUE is same as the real frequency of the crystal used. * Otherwise, this function may have wrong result. * * - The result of this function could be not correct when using fractional * value for HSE crystal. * @param None * @retval None */ void SystemCoreClockUpdate (void) { uint32_t tmp = 0, pllmull = 0, pllsource = 0; #if defined(STM32F105xC) || defined(STM32F107xC) uint32_t prediv1source = 0, prediv1factor = 0, prediv2factor = 0, pll2mull = 0; #endif /* STM32F105xC */ #if defined(STM32F100xB) || defined(STM32F100xE) uint32_t prediv1factor = 0; #endif /* STM32F100xB or STM32F100xE */ /* Get SYSCLK source -------------------------------------------------------*/ tmp = RCC->CFGR & RCC_CFGR_SWS; switch (tmp) { case 0x00: /* HSI used as system clock */ SystemCoreClock = HSI_VALUE; break; case 0x04: /* HSE used as system clock */ SystemCoreClock = HSE_VALUE; break; case 0x08: /* PLL used as system clock */ /* Get PLL clock source and multiplication factor ----------------------*/ pllmull = RCC->CFGR & RCC_CFGR_PLLMULL; pllsource = RCC->CFGR & RCC_CFGR_PLLSRC; #if !defined(STM32F105xC) && !defined(STM32F107xC) pllmull = ( pllmull >> 18) + 2; if (pllsource == 0x00) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1) * pllmull; } else { #if defined(STM32F100xB) || defined(STM32F100xE) prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1; /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; #else /* HSE selected as PLL clock entry */ if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET) {/* HSE oscillator clock divided by 2 */ SystemCoreClock = (HSE_VALUE >> 1) * pllmull; } else { SystemCoreClock = HSE_VALUE * pllmull; } #endif } #else pllmull = pllmull >> 18; if (pllmull != 0x0D) { pllmull += 2; } else { /* PLL multiplication factor = PLL input clock * 6.5 */ pllmull = 13 / 2; } if (pllsource == 0x00) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1) * pllmull; } else {/* PREDIV1 selected as PLL clock entry */ /* Get PREDIV1 clock source and division factor */ prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC; prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1; if (prediv1source == 0) { /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; } else {/* PLL2 clock selected as PREDIV1 clock entry */ /* Get PREDIV2 division factor and PLL2 multiplication factor */ prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4) + 1; pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8 ) + 2; SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull; } } #endif /* STM32F105xC */ break; default: SystemCoreClock = HSI_VALUE; break; } /* Compute HCLK clock frequency ----------------*/ /* Get HCLK prescaler */ tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)]; /* HCLK clock frequency */ SystemCoreClock >>= tmp; } #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /** * @brief Setup the external memory controller. Called in startup_stm32f1xx.s * before jump to __main * @param None * @retval None */ #ifdef DATA_IN_ExtSRAM /** * @brief Setup the external memory controller. * Called in startup_stm32f1xx_xx.s/.c before jump to main. * This function configures the external SRAM mounted on STM3210E-EVAL * board (STM32 High density devices). This SRAM will be used as program * data memory (including heap and stack). * @param None * @retval None */ void SystemInit_ExtMemCtl(void) { __IO uint32_t tmpreg; /*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is required, then adjust the Register Addresses */ /* Enable FSMC clock */ RCC->AHBENR = 0x00000114; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN); /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */ RCC->APB2ENR = 0x000001E0; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN); (void)(tmpreg); /* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/ /*---------------- SRAM Address lines configuration -------------------------*/ /*---------------- NOE and NWE configuration --------------------------------*/ /*---------------- NE3 configuration ----------------------------------------*/ /*---------------- NBL0, NBL1 configuration ---------------------------------*/ GPIOD->CRL = 0x44BB44BB; GPIOD->CRH = 0xBBBBBBBB; GPIOE->CRL = 0xB44444BB; GPIOE->CRH = 0xBBBBBBBB; GPIOF->CRL = 0x44BBBBBB; GPIOF->CRH = 0xBBBB4444; GPIOG->CRL = 0x44BBBBBB; GPIOG->CRH = 0x444B4B44; /*---------------- FSMC Configuration ---------------------------------------*/ /*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/ FSMC_Bank1->BTCR[4] = 0x00001091; FSMC_Bank1->BTCR[5] = 0x00110212; } #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComIT
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComIT\Inc\main.h
/** ****************************************************************************** * @file UART/UART_TwoBoards_ComIT/Inc/main.h * @author MCD Application Team * @brief Header for main.c module ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __MAIN_H #define __MAIN_H /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_hal.h" #include "stm32f1xx_nucleo.h" /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* User can use this section to tailor USARTx/UARTx instance used and associated resources */ /* Definition for USARTx clock resources */ #define USARTx USART1 #define USARTx_CLK_ENABLE() __HAL_RCC_USART1_CLK_ENABLE(); #define USARTx_RX_GPIO_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() #define USARTx_TX_GPIO_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() #define USARTx_FORCE_RESET() __HAL_RCC_USART1_FORCE_RESET() #define USARTx_RELEASE_RESET() __HAL_RCC_USART1_RELEASE_RESET() /* Definition for USARTx Pins */ #define USARTx_TX_PIN GPIO_PIN_9 #define USARTx_TX_GPIO_PORT GPIOA #define USARTx_RX_PIN GPIO_PIN_10 #define USARTx_RX_GPIO_PORT GPIOA /* Definition for USARTx's NVIC */ #define USARTx_IRQn USART1_IRQn #define USARTx_IRQHandler USART1_IRQHandler /* Size of Transmission buffer */ #define TXBUFFERSIZE (COUNTOF(aTxBuffer) - 1) /* Size of Reception buffer */ #define RXBUFFERSIZE TXBUFFERSIZE /* Exported macro ------------------------------------------------------------*/ #define COUNTOF(__BUFFER__) (sizeof(__BUFFER__) / sizeof(*(__BUFFER__))) /* Exported functions ------------------------------------------------------- */ #endif /* __MAIN_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComIT
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComIT\Inc\stm32f1xx_hal_conf.h
/** ****************************************************************************** * @file stm32f1xx_hal_conf.h * @author MCD Application Team * @brief HAL configuration file. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_HAL_CONF_H #define __STM32F1xx_HAL_CONF_H #ifdef __cplusplus extern "C" { #endif /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* ########################## Module Selection ############################## */ /** * @brief This is the list of modules to be used in the HAL driver */ #define HAL_MODULE_ENABLED /* #define HAL_ADC_MODULE_ENABLED */ /* #define HAL_CAN_MODULE_ENABLED */ /* #define HAL_CAN_LEGACY_MODULE_ENABLED */ /* #define HAL_CEC_MODULE_ENABLED */ #define HAL_CORTEX_MODULE_ENABLED /* #define HAL_CRC_MODULE_ENABLED */ /* #define HAL_DAC_MODULE_ENABLED */ #define HAL_DMA_MODULE_ENABLED /* #define HAL_ETH_MODULE_ENABLED */ /* #define HAL_EXTI_MODULE_ENABLED */ #define HAL_FLASH_MODULE_ENABLED #define HAL_GPIO_MODULE_ENABLED /* #define HAL_HCD_MODULE_ENABLED */ /* #define HAL_I2C_MODULE_ENABLED */ /* #define HAL_I2S_MODULE_ENABLED */ /* #define HAL_IRDA_MODULE_ENABLED */ /* #define HAL_IWDG_MODULE_ENABLED */ /* #define HAL_NAND_MODULE_ENABLED */ /* #define HAL_NOR_MODULE_ENABLED */ /* #define HAL_PCCARD_MODULE_ENABLED */ /* #define HAL_PCD_MODULE_ENABLED */ #define HAL_PWR_MODULE_ENABLED #define HAL_RCC_MODULE_ENABLED /* #define HAL_RTC_MODULE_ENABLED */ /* #define HAL_SD_MODULE_ENABLED */ /* #define HAL_SMARTCARD_MODULE_ENABLED */ /* #define HAL_SPI_MODULE_ENABLED */ /* #define HAL_SRAM_MODULE_ENABLED */ /* #define HAL_TIM_MODULE_ENABLED */ #define HAL_UART_MODULE_ENABLED /* #define HAL_USART_MODULE_ENABLED */ /* #define HAL_WWDG_MODULE_ENABLED */ /* ########################## Oscillator Values adaptation ####################*/ /** * @brief Adjust the value of External High Speed oscillator (HSE) used in your application. * This value is used by the RCC HAL module to compute the system frequency * (when HSE is used as system clock source, directly or through the PLL). */ #if !defined (HSE_VALUE) #if defined(USE_STM3210C_EVAL) #define HSE_VALUE 25000000U /*!< Value of the External oscillator in Hz */ #else #define HSE_VALUE 8000000U /*!< Value of the External oscillator in Hz */ #endif #endif /* HSE_VALUE */ #if !defined (HSE_STARTUP_TIMEOUT) #define HSE_STARTUP_TIMEOUT 100U /*!< Time out for HSE start up, in ms */ #endif /* HSE_STARTUP_TIMEOUT */ /** * @brief Internal High Speed oscillator (HSI) value. * This value is used by the RCC HAL module to compute the system frequency * (when HSI is used as system clock source, directly or through the PLL). */ #if !defined (HSI_VALUE) #define HSI_VALUE 8000000U /*!< Value of the Internal oscillator in Hz */ #endif /* HSI_VALUE */ /** * @brief Internal Low Speed oscillator (LSI) value. */ #if !defined (LSI_VALUE) #define LSI_VALUE 40000U /*!< LSI Typical Value in Hz */ #endif /* LSI_VALUE */ /*!< Value of the Internal Low Speed oscillator in Hz The real value may vary depending on the variations in voltage and temperature. */ /** * @brief External Low Speed oscillator (LSE) value. * This value is used by the UART, RTC HAL module to compute the system frequency */ #if !defined (LSE_VALUE) #define LSE_VALUE 32768U /*!< Value of the External oscillator in Hz*/ #endif /* LSE_VALUE */ #if !defined (LSE_STARTUP_TIMEOUT) #define LSE_STARTUP_TIMEOUT 5000U /*!< Time out for LSE start up, in ms */ #endif /* LSE_STARTUP_TIMEOUT */ /* Tip: To avoid modifying this file each time you need to use different HSE, === you can define the HSE value in your toolchain compiler preprocessor. */ /* ########################### System Configuration ######################### */ /** * @brief This is the HAL system configuration section */ #define VDD_VALUE 3300U /*!< Value of VDD in mv */ #define TICK_INT_PRIORITY 0x0FU /*!< tick interrupt priority */ #define USE_RTOS 0U #define PREFETCH_ENABLE 1U #define USE_HAL_ADC_REGISTER_CALLBACKS 0U /* ADC register callback disabled */ #define USE_HAL_CAN_REGISTER_CALLBACKS 0U /* CAN register callback disabled */ #define USE_HAL_CEC_REGISTER_CALLBACKS 0U /* CEC register callback disabled */ #define USE_HAL_DAC_REGISTER_CALLBACKS 0U /* DAC register callback disabled */ #define USE_HAL_ETH_REGISTER_CALLBACKS 0U /* ETH register callback disabled */ #define USE_HAL_HCD_REGISTER_CALLBACKS 0U /* HCD register callback disabled */ #define USE_HAL_I2C_REGISTER_CALLBACKS 0U /* I2C register callback disabled */ #define USE_HAL_I2S_REGISTER_CALLBACKS 0U /* I2S register callback disabled */ #define USE_HAL_MMC_REGISTER_CALLBACKS 0U /* MMC register callback disabled */ #define USE_HAL_NAND_REGISTER_CALLBACKS 0U /* NAND register callback disabled */ #define USE_HAL_NOR_REGISTER_CALLBACKS 0U /* NOR register callback disabled */ #define USE_HAL_PCCARD_REGISTER_CALLBACKS 0U /* PCCARD register callback disabled */ #define USE_HAL_PCD_REGISTER_CALLBACKS 0U /* PCD register callback disabled */ #define USE_HAL_RTC_REGISTER_CALLBACKS 0U /* RTC register callback disabled */ #define USE_HAL_SD_REGISTER_CALLBACKS 0U /* SD register callback disabled */ #define USE_HAL_SMARTCARD_REGISTER_CALLBACKS 0U /* SMARTCARD register callback disabled */ #define USE_HAL_IRDA_REGISTER_CALLBACKS 0U /* IRDA register callback disabled */ #define USE_HAL_SRAM_REGISTER_CALLBACKS 0U /* SRAM register callback disabled */ #define USE_HAL_SPI_REGISTER_CALLBACKS 0U /* SPI register callback disabled */ #define USE_HAL_TIM_REGISTER_CALLBACKS 0U /* TIM register callback disabled */ #define USE_HAL_UART_REGISTER_CALLBACKS 0U /* UART register callback disabled */ #define USE_HAL_USART_REGISTER_CALLBACKS 0U /* USART register callback disabled */ #define USE_HAL_WWDG_REGISTER_CALLBACKS 0U /* WWDG register callback disabled */ /* ########################## Assert Selection ############################## */ /** * @brief Uncomment the line below to expanse the "assert_param" macro in the * HAL drivers code */ /* #define USE_FULL_ASSERT 1U */ /* ################## Ethernet peripheral configuration ##################### */ /* Section 1 : Ethernet peripheral configuration */ /* MAC ADDRESS: MAC_ADDR0:MAC_ADDR1:MAC_ADDR2:MAC_ADDR3:MAC_ADDR4:MAC_ADDR5 */ #define MAC_ADDR0 2U #define MAC_ADDR1 0U #define MAC_ADDR2 0U #define MAC_ADDR3 0U #define MAC_ADDR4 0U #define MAC_ADDR5 0U /* Definition of the Ethernet driver buffers size and count */ #define ETH_RX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for receive */ #define ETH_TX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for transmit */ #define ETH_RXBUFNB 8U /* 8 Rx buffers of size ETH_RX_BUF_SIZE */ #define ETH_TXBUFNB 4U /* 4 Tx buffers of size ETH_TX_BUF_SIZE */ /* Section 2: PHY configuration section */ /* DP83848 PHY Address*/ #define DP83848_PHY_ADDRESS 0x01U /* PHY Reset delay these values are based on a 1 ms Systick interrupt*/ #define PHY_RESET_DELAY 0x000000FFU /* PHY Configuration delay */ #define PHY_CONFIG_DELAY 0x00000FFFU #define PHY_READ_TO 0x0000FFFFU #define PHY_WRITE_TO 0x0000FFFFU /* Section 3: Common PHY Registers */ #define PHY_BCR ((uint16_t)0x0000) /*!< Transceiver Basic Control Register */ #define PHY_BSR ((uint16_t)0x0001) /*!< Transceiver Basic Status Register */ #define PHY_RESET ((uint16_t)0x8000) /*!< PHY Reset */ #define PHY_LOOPBACK ((uint16_t)0x4000) /*!< Select loop-back mode */ #define PHY_FULLDUPLEX_100M ((uint16_t)0x2100) /*!< Set the full-duplex mode at 100 Mb/s */ #define PHY_HALFDUPLEX_100M ((uint16_t)0x2000) /*!< Set the half-duplex mode at 100 Mb/s */ #define PHY_FULLDUPLEX_10M ((uint16_t)0x0100) /*!< Set the full-duplex mode at 10 Mb/s */ #define PHY_HALFDUPLEX_10M ((uint16_t)0x0000) /*!< Set the half-duplex mode at 10 Mb/s */ #define PHY_AUTONEGOTIATION ((uint16_t)0x1000) /*!< Enable auto-negotiation function */ #define PHY_RESTART_AUTONEGOTIATION ((uint16_t)0x0200) /*!< Restart auto-negotiation function */ #define PHY_POWERDOWN ((uint16_t)0x0800) /*!< Select the power down mode */ #define PHY_ISOLATE ((uint16_t)0x0400) /*!< Isolate PHY from MII */ #define PHY_AUTONEGO_COMPLETE ((uint16_t)0x0020) /*!< Auto-Negotiation process completed */ #define PHY_LINKED_STATUS ((uint16_t)0x0004) /*!< Valid link established */ #define PHY_JABBER_DETECTION ((uint16_t)0x0002) /*!< Jabber condition detected */ /* Section 4: Extended PHY Registers */ #define PHY_SR ((uint16_t)0x0010) /*!< PHY status register Offset */ #define PHY_MICR ((uint16_t)0x0011) /*!< MII Interrupt Control Register */ #define PHY_MISR ((uint16_t)0x0012) /*!< MII Interrupt Status and Misc. Control Register */ #define PHY_LINK_STATUS ((uint16_t)0x0001) /*!< PHY Link mask */ #define PHY_SPEED_STATUS ((uint16_t)0x0002) /*!< PHY Speed mask */ #define PHY_DUPLEX_STATUS ((uint16_t)0x0004) /*!< PHY Duplex mask */ #define PHY_MICR_INT_EN ((uint16_t)0x0002) /*!< PHY Enable interrupts */ #define PHY_MICR_INT_OE ((uint16_t)0x0001) /*!< PHY Enable output interrupt events */ #define PHY_MISR_LINK_INT_EN ((uint16_t)0x0020) /*!< Enable Interrupt on change of link status */ #define PHY_LINK_INTERRUPT ((uint16_t)0x2000) /*!< PHY link status interrupt mask */ /* ################## SPI peripheral configuration ########################## */ /* CRC FEATURE: Use to activate CRC feature inside HAL SPI Driver * Activated: CRC code is present inside driver * Deactivated: CRC code cleaned from driver */ #define USE_SPI_CRC 1U /* Includes ------------------------------------------------------------------*/ /** * @brief Include module's header file */ #ifdef HAL_RCC_MODULE_ENABLED #include "stm32f1xx_hal_rcc.h" #endif /* HAL_RCC_MODULE_ENABLED */ #ifdef HAL_GPIO_MODULE_ENABLED #include "stm32f1xx_hal_gpio.h" #endif /* HAL_GPIO_MODULE_ENABLED */ #ifdef HAL_EXTI_MODULE_ENABLED #include "stm32f1xx_hal_exti.h" #endif /* HAL_EXTI_MODULE_ENABLED */ #ifdef HAL_DMA_MODULE_ENABLED #include "stm32f1xx_hal_dma.h" #endif /* HAL_DMA_MODULE_ENABLED */ #ifdef HAL_ETH_MODULE_ENABLED #include "stm32f1xx_hal_eth.h" #endif /* HAL_ETH_MODULE_ENABLED */ #ifdef HAL_CAN_MODULE_ENABLED #include "stm32f1xx_hal_can.h" #endif /* HAL_CAN_MODULE_ENABLED */ #ifdef HAL_CAN_LEGACY_MODULE_ENABLED #include "Legacy/stm32f1xx_hal_can_legacy.h" #endif /* HAL_CAN_LEGACY_MODULE_ENABLED */ #ifdef HAL_CEC_MODULE_ENABLED #include "stm32f1xx_hal_cec.h" #endif /* HAL_CEC_MODULE_ENABLED */ #ifdef HAL_CORTEX_MODULE_ENABLED #include "stm32f1xx_hal_cortex.h" #endif /* HAL_CORTEX_MODULE_ENABLED */ #ifdef HAL_ADC_MODULE_ENABLED #include "stm32f1xx_hal_adc.h" #endif /* HAL_ADC_MODULE_ENABLED */ #ifdef HAL_CRC_MODULE_ENABLED #include "stm32f1xx_hal_crc.h" #endif /* HAL_CRC_MODULE_ENABLED */ #ifdef HAL_DAC_MODULE_ENABLED #include "stm32f1xx_hal_dac.h" #endif /* HAL_DAC_MODULE_ENABLED */ #ifdef HAL_FLASH_MODULE_ENABLED #include "stm32f1xx_hal_flash.h" #endif /* HAL_FLASH_MODULE_ENABLED */ #ifdef HAL_SRAM_MODULE_ENABLED #include "stm32f1xx_hal_sram.h" #endif /* HAL_SRAM_MODULE_ENABLED */ #ifdef HAL_NOR_MODULE_ENABLED #include "stm32f1xx_hal_nor.h" #endif /* HAL_NOR_MODULE_ENABLED */ #ifdef HAL_I2C_MODULE_ENABLED #include "stm32f1xx_hal_i2c.h" #endif /* HAL_I2C_MODULE_ENABLED */ #ifdef HAL_I2S_MODULE_ENABLED #include "stm32f1xx_hal_i2s.h" #endif /* HAL_I2S_MODULE_ENABLED */ #ifdef HAL_IWDG_MODULE_ENABLED #include "stm32f1xx_hal_iwdg.h" #endif /* HAL_IWDG_MODULE_ENABLED */ #ifdef HAL_PWR_MODULE_ENABLED #include "stm32f1xx_hal_pwr.h" #endif /* HAL_PWR_MODULE_ENABLED */ #ifdef HAL_RTC_MODULE_ENABLED #include "stm32f1xx_hal_rtc.h" #endif /* HAL_RTC_MODULE_ENABLED */ #ifdef HAL_PCCARD_MODULE_ENABLED #include "stm32f1xx_hal_pccard.h" #endif /* HAL_PCCARD_MODULE_ENABLED */ #ifdef HAL_SD_MODULE_ENABLED #include "stm32f1xx_hal_sd.h" #endif /* HAL_SD_MODULE_ENABLED */ #ifdef HAL_NAND_MODULE_ENABLED #include "stm32f1xx_hal_nand.h" #endif /* HAL_NAND_MODULE_ENABLED */ #ifdef HAL_SPI_MODULE_ENABLED #include "stm32f1xx_hal_spi.h" #endif /* HAL_SPI_MODULE_ENABLED */ #ifdef HAL_TIM_MODULE_ENABLED #include "stm32f1xx_hal_tim.h" #endif /* HAL_TIM_MODULE_ENABLED */ #ifdef HAL_UART_MODULE_ENABLED #include "stm32f1xx_hal_uart.h" #endif /* HAL_UART_MODULE_ENABLED */ #ifdef HAL_USART_MODULE_ENABLED #include "stm32f1xx_hal_usart.h" #endif /* HAL_USART_MODULE_ENABLED */ #ifdef HAL_IRDA_MODULE_ENABLED #include "stm32f1xx_hal_irda.h" #endif /* HAL_IRDA_MODULE_ENABLED */ #ifdef HAL_SMARTCARD_MODULE_ENABLED #include "stm32f1xx_hal_smartcard.h" #endif /* HAL_SMARTCARD_MODULE_ENABLED */ #ifdef HAL_WWDG_MODULE_ENABLED #include "stm32f1xx_hal_wwdg.h" #endif /* HAL_WWDG_MODULE_ENABLED */ #ifdef HAL_PCD_MODULE_ENABLED #include "stm32f1xx_hal_pcd.h" #endif /* HAL_PCD_MODULE_ENABLED */ #ifdef HAL_HCD_MODULE_ENABLED #include "stm32f1xx_hal_hcd.h" #endif /* HAL_HCD_MODULE_ENABLED */ /* Exported macro ------------------------------------------------------------*/ #ifdef USE_FULL_ASSERT /** * @brief The assert_param macro is used for function's parameters check. * @param expr: If expr is false, it calls assert_failed function * which reports the name of the source file and the source * line number of the call that failed. * If expr is true, it returns no value. * @retval None */ #define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__)) /* Exported functions ------------------------------------------------------- */ void assert_failed(uint8_t* file, uint32_t line); #else #define assert_param(expr) ((void)0U) #endif /* USE_FULL_ASSERT */ #ifdef __cplusplus } #endif #endif /* __STM32F1xx_HAL_CONF_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComIT
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComIT\Inc\stm32f1xx_it.h
/** ****************************************************************************** * @file UART/UART_TwoBoards_ComIT/Inc/stm32f1xx_it.h * @author MCD Application Team * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_IT_H #define __STM32F1xx_IT_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); void USARTx_IRQHandler(void); void EXTI15_10_IRQHandler(void); #ifdef __cplusplus } #endif #endif /* __STM32F1xx_IT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComIT
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComIT\Src\main.c
/** ****************************************************************************** * @file UART/UART_TwoBoards_ComIT/Src/main.c * @author MCD Application Team * @brief This sample code shows how to use UART HAL API to transmit * and receive a data buffer with a communication process based on * IT transfer. * The communication is done using 2 Boards. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @addtogroup UART_TwoBoards_ComIT * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ #define TRANSMITTER_BOARD /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* UART handler declaration */ UART_HandleTypeDef UartHandle; __IO ITStatus UartReady = RESET; __IO uint32_t UserButtonStatus = 0; /* set to 1 after User Button interrupt */ /* Buffer used for transmission */ uint8_t aTxBuffer[] = " ****UART_TwoBoards_ComIT**** ****UART_TwoBoards_ComIT**** ****UART_TwoBoards_ComIT**** "; /* Buffer used for reception */ uint8_t aRxBuffer[RXBUFFERSIZE]; /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void Error_Handler(void); static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { /* STM32F103xB HAL library initialization: - Configure the Flash prefetch - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization */ HAL_Init(); /* Configure the system clock to 64 MHz */ SystemClock_Config(); /* Configure LED2 */ BSP_LED_Init(LED2); /*##-1- Configure the UART peripheral ######################################*/ /* Put the USART peripheral in the Asynchronous mode (UART Mode) */ /* UART configured as follows: - Word Length = 8 Bits - Stop Bit = One Stop bit - Parity = None - BaudRate = 9600 baud - Hardware flow control disabled (RTS and CTS signals) */ UartHandle.Instance = USARTx; UartHandle.Init.BaudRate = 9600; UartHandle.Init.WordLength = UART_WORDLENGTH_8B; UartHandle.Init.StopBits = UART_STOPBITS_1; UartHandle.Init.Parity = UART_PARITY_NONE; UartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE; UartHandle.Init.Mode = UART_MODE_TX_RX; if(HAL_UART_DeInit(&UartHandle) != HAL_OK) { Error_Handler(); } if(HAL_UART_Init(&UartHandle) != HAL_OK) { Error_Handler(); } #ifdef TRANSMITTER_BOARD /* Configure User push-button in Interrupt mode */ BSP_PB_Init(BUTTON_USER, BUTTON_MODE_EXTI); /* Wait for User push-button press before starting the Communication. In the meantime, LED2 is blinking */ while(UserButtonStatus == 0) { /* Toggle LED2*/ BSP_LED_Toggle(LED2); HAL_Delay(100); } BSP_LED_Off(LED2); /* The board sends the message and expects to receive it back */ /*##-2- Start the transmission process #####################################*/ /* While the UART in reception process, user can transmit data through "aTxBuffer" buffer */ if(HAL_UART_Transmit_IT(&UartHandle, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK) { Error_Handler(); } /*##-3- Wait for the end of the transfer ###################################*/ while (UartReady != SET) { } /* Reset transmission flag */ UartReady = RESET; /*##-4- Put UART peripheral in reception process ###########################*/ if(HAL_UART_Receive_IT(&UartHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK) { Error_Handler(); } #else /* The board receives the message and sends it back */ /*##-2- Put UART peripheral in reception process ###########################*/ if(HAL_UART_Receive_IT(&UartHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK) { Error_Handler(); } /*##-3- Wait for the end of the transfer ###################################*/ /* While waiting for message to come from the other board, LED2 is blinking according to the following pattern: a double flash every half-second */ while (UartReady != SET) { BSP_LED_On(LED2); HAL_Delay(100); BSP_LED_Off(LED2); HAL_Delay(100); BSP_LED_On(LED2); HAL_Delay(100); BSP_LED_Off(LED2); HAL_Delay(500); } /* Reset transmission flag */ UartReady = RESET; BSP_LED_Off(LED2); /*##-4- Start the transmission process #####################################*/ /* While the UART in reception process, user can transmit data through "aTxBuffer" buffer */ if(HAL_UART_Transmit_IT(&UartHandle, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK) { Error_Handler(); } #endif /* TRANSMITTER_BOARD */ /*##-5- Wait for the end of the transfer ###################################*/ while (UartReady != SET) { } /* Reset transmission flag */ UartReady = RESET; /*##-6- Compare the sent and received buffers ##############################*/ if(Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,RXBUFFERSIZE)) { Error_Handler(); } /* Turn on LED2 if test passes then enter infinite loop */ BSP_LED_On(LED2); /* Infinite loop */ while (1) { } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSI) * SYSCLK(Hz) = 64000000 * HCLK(Hz) = 64000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * PLLMUL = 16 * Flash Latency(WS) = 2 * @param None * @retval None */ void SystemClock_Config(void) { RCC_ClkInitTypeDef clkinitstruct = {0}; RCC_OscInitTypeDef oscinitstruct = {0}; /* Configure PLL ------------------------------------------------------*/ /* PLL configuration: PLLCLK = (HSI / 2) * PLLMUL = (8 / 2) * 16 = 64 MHz */ /* PREDIV1 configuration: PREDIV1CLK = PLLCLK / HSEPredivValue = 64 / 1 = 64 MHz */ /* Enable HSI and activate PLL with HSi_DIV2 as source */ oscinitstruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; oscinitstruct.HSEState = RCC_HSE_OFF; oscinitstruct.LSEState = RCC_LSE_OFF; oscinitstruct.HSIState = RCC_HSI_ON; oscinitstruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; oscinitstruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; oscinitstruct.PLL.PLLState = RCC_PLL_ON; oscinitstruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2; oscinitstruct.PLL.PLLMUL = RCC_PLL_MUL16; if (HAL_RCC_OscConfig(&oscinitstruct)!= HAL_OK) { /* Initialization Error */ while(1); } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ clkinitstruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); clkinitstruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; clkinitstruct.AHBCLKDivider = RCC_SYSCLK_DIV1; clkinitstruct.APB2CLKDivider = RCC_HCLK_DIV1; clkinitstruct.APB1CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&clkinitstruct, FLASH_LATENCY_2)!= HAL_OK) { /* Initialization Error */ while(1); } } /** * @brief Tx Transfer completed callback * @param UartHandle: UART handle. * @note This example shows a simple way to report end of IT Tx transfer, and * you can add your own implementation. * @retval None */ void HAL_UART_TxCpltCallback(UART_HandleTypeDef *UartHandle) { /* Set transmission flag: transfer complete */ UartReady = SET; } /** * @brief Rx Transfer completed callback * @param UartHandle: UART handle * @note This example shows a simple way to report end of DMA Rx transfer, and * you can add your own implementation. * @retval None */ void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle) { /* Set transmission flag: transfer complete */ UartReady = SET; } /** * @brief UART error callbacks * @param UartHandle: UART handle * @note This example shows a simple way to report transfer error, and you can * add your own implementation. * @retval None */ void HAL_UART_ErrorCallback(UART_HandleTypeDef *UartHandle) { Error_Handler(); } /** * @brief EXTI line detection callbacks * @param GPIO_Pin: Specifies the pins connected EXTI line * @retval None */ void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { if(GPIO_Pin == USER_BUTTON_PIN) { UserButtonStatus = 1; } } /** * @brief Compares two buffers. * @param pBuffer1, pBuffer2: buffers to be compared. * @param BufferLength: buffer's length * @retval 0 : pBuffer1 identical to pBuffer2 * >0 : pBuffer1 differs from pBuffer2 */ static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength) { while (BufferLength--) { if ((*pBuffer1) != *pBuffer2) { return BufferLength; } pBuffer1++; pBuffer2++; } return 0; } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None */ static void Error_Handler(void) { /* Turn LED2 on */ BSP_LED_On(LED2); while(1) { /* Error if LED2 is slowly blinking (1 sec. period) */ BSP_LED_Toggle(LED2); HAL_Delay(1000); } } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t* file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComIT
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComIT\Src\stm32f1xx_hal_msp.c
/** ****************************************************************************** * @file UART/UART_TwoBoards_ComIT/Src/stm32f1xx_hal_msp.c * @author MCD Application Team * @brief HAL MSP module. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @defgroup UART_TwoBoards_ComIT * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /** @defgroup HAL_MSP_Private_Functions * @{ */ /** * @brief UART MSP Initialization * This function configures the hardware resources used in this example: * - Peripheral's clock enable * - Peripheral's GPIO Configuration * - NVIC configuration for UART interrupt request enable * @param huart: UART handle pointer * @retval None */ void HAL_UART_MspInit(UART_HandleTypeDef *huart) { GPIO_InitTypeDef GPIO_InitStruct; /*##-1- Enable peripherals and GPIO Clocks #################################*/ /* Enable GPIO TX/RX clock */ USARTx_TX_GPIO_CLK_ENABLE(); USARTx_RX_GPIO_CLK_ENABLE(); /* Enable USARTx clock */ USARTx_CLK_ENABLE(); /*##-2- Configure peripheral GPIO ##########################################*/ /* UART TX GPIO pin configuration */ GPIO_InitStruct.Pin = USARTx_TX_PIN; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(USARTx_TX_GPIO_PORT, &GPIO_InitStruct); /* UART RX GPIO pin configuration */ GPIO_InitStruct.Pin = USARTx_RX_PIN; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; HAL_GPIO_Init(USARTx_RX_GPIO_PORT, &GPIO_InitStruct); /*##-3- Configure the NVIC for UART ########################################*/ /* NVIC for USART */ HAL_NVIC_SetPriority(USARTx_IRQn, 0, 1); HAL_NVIC_EnableIRQ(USARTx_IRQn); } /** * @brief UART MSP De-Initialization * This function frees the hardware resources used in this example: * - Disable the Peripheral's clock * - Revert GPIO and NVIC configuration to their default state * @param huart: UART handle pointer * @retval None */ void HAL_UART_MspDeInit(UART_HandleTypeDef *huart) { /*##-1- Reset peripherals ##################################################*/ USARTx_FORCE_RESET(); USARTx_RELEASE_RESET(); /*##-2- Disable peripherals and GPIO Clocks #################################*/ /* Configure UART Tx as alternate function */ HAL_GPIO_DeInit(USARTx_TX_GPIO_PORT, USARTx_TX_PIN); /* Configure UART Rx as alternate function */ HAL_GPIO_DeInit(USARTx_RX_GPIO_PORT, USARTx_RX_PIN); /*##-3- Disable the NVIC for UART ##########################################*/ HAL_NVIC_DisableIRQ(USARTx_IRQn); } /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComIT
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComIT\Src\stm32f1xx_it.c
/** ****************************************************************************** * @file UART/UART_TwoBoards_ComIT/Src/stm32f1xx_it.c * @author MCD Application Team * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "stm32f1xx_it.h" /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @addtogroup UART_TwoBoards_ComIT * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* UART handler declared in "main.c" file */ extern UART_HandleTypeDef UartHandle; /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /******************************************************************************/ /* Cortex-M3 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /** * @brief This function handles PendSVC exception. * @param None * @retval None */ void PendSV_Handler(void) { } /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { HAL_IncTick(); } /******************************************************************************/ /* STM32F1xx Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f1xx.s). */ /******************************************************************************/ /** * @brief This function handles UART interrupt request. * @param None * @retval None * @Note This function is redefined in "main.h" and related to DMA * used for USART data transmission */ void USARTx_IRQHandler(void) { HAL_UART_IRQHandler(&UartHandle); } /** * @brief This function handles external lines 10 to 15 interrupt request. * @param None * @retval None */ void EXTI15_10_IRQHandler(void) { HAL_GPIO_EXTI_IRQHandler(USER_BUTTON_PIN); } /** * @brief This function handles PPP interrupt request. * @param None * @retval None */ /*void PPP_IRQHandler(void) { }*/ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComIT
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComIT\Src\system_stm32f1xx.c
/** ****************************************************************************** * @file system_stm32f1xx.c * @author MCD Application Team * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File. * * 1. This file provides two functions and one global variable to be called from * user application: * - SystemInit(): Setups the system clock (System clock source, PLL Multiplier * factors, AHB/APBx prescalers and Flash settings). * This function is called at startup just after reset and * before branch to main program. This call is made inside * the "startup_stm32f1xx_xx.s" file. * * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used * by the user application to setup the SysTick * timer or configure other parameters. * * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must * be called whenever the core clock is changed * during program execution. * * 2. After each device reset the HSI (8 MHz) is used as system clock source. * Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to * configure the system clock before to branch to main program. * * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on * the product used), refer to "HSE_VALUE". * When HSE is used as system clock source, directly or through PLL, and you * are using different crystal you have to adapt the HSE value to your own * configuration. * ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32f1xx_system * @{ */ /** @addtogroup STM32F1xx_System_Private_Includes * @{ */ #include "stm32f1xx.h" /** * @} */ /** @addtogroup STM32F1xx_System_Private_TypesDefinitions * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Defines * @{ */ #if !defined (HSE_VALUE) #define HSE_VALUE ((uint32_t)8000000) /*!< Default value of the External oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSE_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE ((uint32_t)8000000) /*!< Default value of the Internal oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSI_VALUE */ /*!< Uncomment the following line if you need to use external SRAM */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /* #define DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /*!< Uncomment the following line if you need to relocate your vector Table in Internal SRAM. */ /* #define VECT_TAB_SRAM */ #define VECT_TAB_OFFSET 0x0 /*!< Vector Table base offset field. This value must be a multiple of 0x200. */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Macros * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Variables * @{ */ /* This variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetHCLKFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency Note: If you use this function to configure the system clock; then there is no need to call the 2 first functions listed above, since SystemCoreClock variable is updated automatically. */ uint32_t SystemCoreClock = 16000000; const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}; const uint8_t APBPrescTable[8] = {0, 0, 0, 0, 1, 2, 3, 4}; /** * @} */ /** @addtogroup STM32F1xx_System_Private_FunctionPrototypes * @{ */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM static void SystemInit_ExtMemCtl(void); #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Functions * @{ */ /** * @brief Setup the microcontroller system * Initialize the Embedded Flash Interface, the PLL and update the * SystemCoreClock variable. * @note This function should be used only after reset. * @param None * @retval None */ void SystemInit (void) { /* Reset the RCC clock configuration to the default reset state(for debug purpose) */ /* Set HSION bit */ RCC->CR |= (uint32_t)0x00000001; /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */ #if !defined(STM32F105xC) && !defined(STM32F107xC) RCC->CFGR &= (uint32_t)0xF8FF0000; #else RCC->CFGR &= (uint32_t)0xF0FF0000; #endif /* STM32F105xC */ /* Reset HSEON, CSSON and PLLON bits */ RCC->CR &= (uint32_t)0xFEF6FFFF; /* Reset HSEBYP bit */ RCC->CR &= (uint32_t)0xFFFBFFFF; /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */ RCC->CFGR &= (uint32_t)0xFF80FFFF; #if defined(STM32F105xC) || defined(STM32F107xC) /* Reset PLL2ON and PLL3ON bits */ RCC->CR &= (uint32_t)0xEBFFFFFF; /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x00FF0000; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000; #elif defined(STM32F100xB) || defined(STM32F100xE) /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000; #else /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; #endif /* STM32F105xC */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM SystemInit_ExtMemCtl(); #endif /* DATA_IN_ExtSRAM */ #endif #ifdef VECT_TAB_SRAM SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */ #else SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */ #endif } /** * @brief Update SystemCoreClock variable according to Clock Register Values. * The SystemCoreClock variable contains the core clock (HCLK), it can * be used by the user application to setup the SysTick timer or configure * other parameters. * * @note Each time the core clock (HCLK) changes, this function must be called * to update SystemCoreClock variable value. Otherwise, any configuration * based on this variable will be incorrect. * * @note - The system frequency computed by this function is not the real * frequency in the chip. It is calculated based on the predefined * constant and the selected clock source: * * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*) * * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**) * * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) * or HSI_VALUE(*) multiplied by the PLL factors. * * (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz) but the real value may vary depending on the variations * in voltage and temperature. * * (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz or 25 MHz, depending on the product used), user has to ensure * that HSE_VALUE is same as the real frequency of the crystal used. * Otherwise, this function may have wrong result. * * - The result of this function could be not correct when using fractional * value for HSE crystal. * @param None * @retval None */ void SystemCoreClockUpdate (void) { uint32_t tmp = 0, pllmull = 0, pllsource = 0; #if defined(STM32F105xC) || defined(STM32F107xC) uint32_t prediv1source = 0, prediv1factor = 0, prediv2factor = 0, pll2mull = 0; #endif /* STM32F105xC */ #if defined(STM32F100xB) || defined(STM32F100xE) uint32_t prediv1factor = 0; #endif /* STM32F100xB or STM32F100xE */ /* Get SYSCLK source -------------------------------------------------------*/ tmp = RCC->CFGR & RCC_CFGR_SWS; switch (tmp) { case 0x00: /* HSI used as system clock */ SystemCoreClock = HSI_VALUE; break; case 0x04: /* HSE used as system clock */ SystemCoreClock = HSE_VALUE; break; case 0x08: /* PLL used as system clock */ /* Get PLL clock source and multiplication factor ----------------------*/ pllmull = RCC->CFGR & RCC_CFGR_PLLMULL; pllsource = RCC->CFGR & RCC_CFGR_PLLSRC; #if !defined(STM32F105xC) && !defined(STM32F107xC) pllmull = ( pllmull >> 18) + 2; if (pllsource == 0x00) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1) * pllmull; } else { #if defined(STM32F100xB) || defined(STM32F100xE) prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1; /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; #else /* HSE selected as PLL clock entry */ if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET) {/* HSE oscillator clock divided by 2 */ SystemCoreClock = (HSE_VALUE >> 1) * pllmull; } else { SystemCoreClock = HSE_VALUE * pllmull; } #endif } #else pllmull = pllmull >> 18; if (pllmull != 0x0D) { pllmull += 2; } else { /* PLL multiplication factor = PLL input clock * 6.5 */ pllmull = 13 / 2; } if (pllsource == 0x00) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1) * pllmull; } else {/* PREDIV1 selected as PLL clock entry */ /* Get PREDIV1 clock source and division factor */ prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC; prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1; if (prediv1source == 0) { /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; } else {/* PLL2 clock selected as PREDIV1 clock entry */ /* Get PREDIV2 division factor and PLL2 multiplication factor */ prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4) + 1; pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8 ) + 2; SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull; } } #endif /* STM32F105xC */ break; default: SystemCoreClock = HSI_VALUE; break; } /* Compute HCLK clock frequency ----------------*/ /* Get HCLK prescaler */ tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)]; /* HCLK clock frequency */ SystemCoreClock >>= tmp; } #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /** * @brief Setup the external memory controller. Called in startup_stm32f1xx.s * before jump to __main * @param None * @retval None */ #ifdef DATA_IN_ExtSRAM /** * @brief Setup the external memory controller. * Called in startup_stm32f1xx_xx.s/.c before jump to main. * This function configures the external SRAM mounted on STM3210E-EVAL * board (STM32 High density devices). This SRAM will be used as program * data memory (including heap and stack). * @param None * @retval None */ void SystemInit_ExtMemCtl(void) { __IO uint32_t tmpreg; /*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is required, then adjust the Register Addresses */ /* Enable FSMC clock */ RCC->AHBENR = 0x00000114; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN); /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */ RCC->APB2ENR = 0x000001E0; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN); (void)(tmpreg); /* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/ /*---------------- SRAM Address lines configuration -------------------------*/ /*---------------- NOE and NWE configuration --------------------------------*/ /*---------------- NE3 configuration ----------------------------------------*/ /*---------------- NBL0, NBL1 configuration ---------------------------------*/ GPIOD->CRL = 0x44BB44BB; GPIOD->CRH = 0xBBBBBBBB; GPIOE->CRL = 0xB44444BB; GPIOE->CRH = 0xBBBBBBBB; GPIOF->CRL = 0x44BBBBBB; GPIOF->CRH = 0xBBBB4444; GPIOG->CRL = 0x44BBBBBB; GPIOG->CRH = 0x444B4B44; /*---------------- FSMC Configuration ---------------------------------------*/ /*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/ FSMC_Bank1->BTCR[4] = 0x00001091; FSMC_Bank1->BTCR[5] = 0x00110212; } #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComPolling
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComPolling\Inc\main.h
/** ****************************************************************************** * @file UART/UART_TwoBoards_ComPolling/Inc/main.h * @author MCD Application Team * @brief Header for main.c module ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __MAIN_H #define __MAIN_H /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_hal.h" #include "stm32f1xx_nucleo.h" /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* User can use this section to tailor USARTx/UARTx instance used and associated resources */ /* Definition for USARTx clock resources */ #define USARTx USART1 #define USARTx_CLK_ENABLE() __HAL_RCC_USART1_CLK_ENABLE(); #define USARTx_RX_GPIO_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() #define USARTx_TX_GPIO_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() #define USARTx_FORCE_RESET() __HAL_RCC_USART1_FORCE_RESET() #define USARTx_RELEASE_RESET() __HAL_RCC_USART1_RELEASE_RESET() /* Definition for USARTx Pins */ #define USARTx_TX_PIN GPIO_PIN_9 #define USARTx_TX_GPIO_PORT GPIOA #define USARTx_RX_PIN GPIO_PIN_10 #define USARTx_RX_GPIO_PORT GPIOA /* Size of Transmission buffer */ #define TXBUFFERSIZE (COUNTOF(aTxBuffer) - 1) /* Size of Reception buffer */ #define RXBUFFERSIZE TXBUFFERSIZE /* Exported macro ------------------------------------------------------------*/ #define COUNTOF(__BUFFER__) (sizeof(__BUFFER__) / sizeof(*(__BUFFER__))) /* Exported functions ------------------------------------------------------- */ #endif /* __MAIN_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComPolling
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComPolling\Inc\stm32f1xx_hal_conf.h
/** ****************************************************************************** * @file stm32f1xx_hal_conf.h * @author MCD Application Team * @brief HAL configuration file. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_HAL_CONF_H #define __STM32F1xx_HAL_CONF_H #ifdef __cplusplus extern "C" { #endif /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* ########################## Module Selection ############################## */ /** * @brief This is the list of modules to be used in the HAL driver */ #define HAL_MODULE_ENABLED /* #define HAL_ADC_MODULE_ENABLED */ /* #define HAL_CAN_MODULE_ENABLED */ /* #define HAL_CAN_LEGACY_MODULE_ENABLED */ /* #define HAL_CEC_MODULE_ENABLED */ #define HAL_CORTEX_MODULE_ENABLED /* #define HAL_CRC_MODULE_ENABLED */ /* #define HAL_DAC_MODULE_ENABLED */ #define HAL_DMA_MODULE_ENABLED /* #define HAL_ETH_MODULE_ENABLED */ /* #define HAL_EXTI_MODULE_ENABLED */ #define HAL_FLASH_MODULE_ENABLED #define HAL_GPIO_MODULE_ENABLED /* #define HAL_HCD_MODULE_ENABLED */ /* #define HAL_I2C_MODULE_ENABLED */ /* #define HAL_I2S_MODULE_ENABLED */ /* #define HAL_IRDA_MODULE_ENABLED */ /* #define HAL_IWDG_MODULE_ENABLED */ /* #define HAL_NAND_MODULE_ENABLED */ /* #define HAL_NOR_MODULE_ENABLED */ /* #define HAL_PCCARD_MODULE_ENABLED */ /* #define HAL_PCD_MODULE_ENABLED */ #define HAL_PWR_MODULE_ENABLED #define HAL_RCC_MODULE_ENABLED /* #define HAL_RTC_MODULE_ENABLED */ /* #define HAL_SD_MODULE_ENABLED */ /* #define HAL_SMARTCARD_MODULE_ENABLED */ /* #define HAL_SPI_MODULE_ENABLED */ /* #define HAL_SRAM_MODULE_ENABLED */ /* #define HAL_TIM_MODULE_ENABLED */ #define HAL_UART_MODULE_ENABLED /* #define HAL_USART_MODULE_ENABLED */ /* #define HAL_WWDG_MODULE_ENABLED */ /* ########################## Oscillator Values adaptation ####################*/ /** * @brief Adjust the value of External High Speed oscillator (HSE) used in your application. * This value is used by the RCC HAL module to compute the system frequency * (when HSE is used as system clock source, directly or through the PLL). */ #if !defined (HSE_VALUE) #if defined(USE_STM3210C_EVAL) #define HSE_VALUE 25000000U /*!< Value of the External oscillator in Hz */ #else #define HSE_VALUE 8000000U /*!< Value of the External oscillator in Hz */ #endif #endif /* HSE_VALUE */ #if !defined (HSE_STARTUP_TIMEOUT) #define HSE_STARTUP_TIMEOUT 100U /*!< Time out for HSE start up, in ms */ #endif /* HSE_STARTUP_TIMEOUT */ /** * @brief Internal High Speed oscillator (HSI) value. * This value is used by the RCC HAL module to compute the system frequency * (when HSI is used as system clock source, directly or through the PLL). */ #if !defined (HSI_VALUE) #define HSI_VALUE 8000000U /*!< Value of the Internal oscillator in Hz */ #endif /* HSI_VALUE */ /** * @brief Internal Low Speed oscillator (LSI) value. */ #if !defined (LSI_VALUE) #define LSI_VALUE 40000U /*!< LSI Typical Value in Hz */ #endif /* LSI_VALUE */ /*!< Value of the Internal Low Speed oscillator in Hz The real value may vary depending on the variations in voltage and temperature. */ /** * @brief External Low Speed oscillator (LSE) value. * This value is used by the UART, RTC HAL module to compute the system frequency */ #if !defined (LSE_VALUE) #define LSE_VALUE 32768U /*!< Value of the External oscillator in Hz*/ #endif /* LSE_VALUE */ #if !defined (LSE_STARTUP_TIMEOUT) #define LSE_STARTUP_TIMEOUT 5000U /*!< Time out for LSE start up, in ms */ #endif /* LSE_STARTUP_TIMEOUT */ /* Tip: To avoid modifying this file each time you need to use different HSE, === you can define the HSE value in your toolchain compiler preprocessor. */ /* ########################### System Configuration ######################### */ /** * @brief This is the HAL system configuration section */ #define VDD_VALUE 3300U /*!< Value of VDD in mv */ #define TICK_INT_PRIORITY 0x0FU /*!< tick interrupt priority */ #define USE_RTOS 0U #define PREFETCH_ENABLE 1U #define USE_HAL_ADC_REGISTER_CALLBACKS 0U /* ADC register callback disabled */ #define USE_HAL_CAN_REGISTER_CALLBACKS 0U /* CAN register callback disabled */ #define USE_HAL_CEC_REGISTER_CALLBACKS 0U /* CEC register callback disabled */ #define USE_HAL_DAC_REGISTER_CALLBACKS 0U /* DAC register callback disabled */ #define USE_HAL_ETH_REGISTER_CALLBACKS 0U /* ETH register callback disabled */ #define USE_HAL_HCD_REGISTER_CALLBACKS 0U /* HCD register callback disabled */ #define USE_HAL_I2C_REGISTER_CALLBACKS 0U /* I2C register callback disabled */ #define USE_HAL_I2S_REGISTER_CALLBACKS 0U /* I2S register callback disabled */ #define USE_HAL_MMC_REGISTER_CALLBACKS 0U /* MMC register callback disabled */ #define USE_HAL_NAND_REGISTER_CALLBACKS 0U /* NAND register callback disabled */ #define USE_HAL_NOR_REGISTER_CALLBACKS 0U /* NOR register callback disabled */ #define USE_HAL_PCCARD_REGISTER_CALLBACKS 0U /* PCCARD register callback disabled */ #define USE_HAL_PCD_REGISTER_CALLBACKS 0U /* PCD register callback disabled */ #define USE_HAL_RTC_REGISTER_CALLBACKS 0U /* RTC register callback disabled */ #define USE_HAL_SD_REGISTER_CALLBACKS 0U /* SD register callback disabled */ #define USE_HAL_SMARTCARD_REGISTER_CALLBACKS 0U /* SMARTCARD register callback disabled */ #define USE_HAL_IRDA_REGISTER_CALLBACKS 0U /* IRDA register callback disabled */ #define USE_HAL_SRAM_REGISTER_CALLBACKS 0U /* SRAM register callback disabled */ #define USE_HAL_SPI_REGISTER_CALLBACKS 0U /* SPI register callback disabled */ #define USE_HAL_TIM_REGISTER_CALLBACKS 0U /* TIM register callback disabled */ #define USE_HAL_UART_REGISTER_CALLBACKS 0U /* UART register callback disabled */ #define USE_HAL_USART_REGISTER_CALLBACKS 0U /* USART register callback disabled */ #define USE_HAL_WWDG_REGISTER_CALLBACKS 0U /* WWDG register callback disabled */ /* ########################## Assert Selection ############################## */ /** * @brief Uncomment the line below to expanse the "assert_param" macro in the * HAL drivers code */ /* #define USE_FULL_ASSERT 1U */ /* ################## Ethernet peripheral configuration ##################### */ /* Section 1 : Ethernet peripheral configuration */ /* MAC ADDRESS: MAC_ADDR0:MAC_ADDR1:MAC_ADDR2:MAC_ADDR3:MAC_ADDR4:MAC_ADDR5 */ #define MAC_ADDR0 2U #define MAC_ADDR1 0U #define MAC_ADDR2 0U #define MAC_ADDR3 0U #define MAC_ADDR4 0U #define MAC_ADDR5 0U /* Definition of the Ethernet driver buffers size and count */ #define ETH_RX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for receive */ #define ETH_TX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for transmit */ #define ETH_RXBUFNB 8U /* 8 Rx buffers of size ETH_RX_BUF_SIZE */ #define ETH_TXBUFNB 4U /* 4 Tx buffers of size ETH_TX_BUF_SIZE */ /* Section 2: PHY configuration section */ /* DP83848 PHY Address*/ #define DP83848_PHY_ADDRESS 0x01U /* PHY Reset delay these values are based on a 1 ms Systick interrupt*/ #define PHY_RESET_DELAY 0x000000FFU /* PHY Configuration delay */ #define PHY_CONFIG_DELAY 0x00000FFFU #define PHY_READ_TO 0x0000FFFFU #define PHY_WRITE_TO 0x0000FFFFU /* Section 3: Common PHY Registers */ #define PHY_BCR ((uint16_t)0x0000) /*!< Transceiver Basic Control Register */ #define PHY_BSR ((uint16_t)0x0001) /*!< Transceiver Basic Status Register */ #define PHY_RESET ((uint16_t)0x8000) /*!< PHY Reset */ #define PHY_LOOPBACK ((uint16_t)0x4000) /*!< Select loop-back mode */ #define PHY_FULLDUPLEX_100M ((uint16_t)0x2100) /*!< Set the full-duplex mode at 100 Mb/s */ #define PHY_HALFDUPLEX_100M ((uint16_t)0x2000) /*!< Set the half-duplex mode at 100 Mb/s */ #define PHY_FULLDUPLEX_10M ((uint16_t)0x0100) /*!< Set the full-duplex mode at 10 Mb/s */ #define PHY_HALFDUPLEX_10M ((uint16_t)0x0000) /*!< Set the half-duplex mode at 10 Mb/s */ #define PHY_AUTONEGOTIATION ((uint16_t)0x1000) /*!< Enable auto-negotiation function */ #define PHY_RESTART_AUTONEGOTIATION ((uint16_t)0x0200) /*!< Restart auto-negotiation function */ #define PHY_POWERDOWN ((uint16_t)0x0800) /*!< Select the power down mode */ #define PHY_ISOLATE ((uint16_t)0x0400) /*!< Isolate PHY from MII */ #define PHY_AUTONEGO_COMPLETE ((uint16_t)0x0020) /*!< Auto-Negotiation process completed */ #define PHY_LINKED_STATUS ((uint16_t)0x0004) /*!< Valid link established */ #define PHY_JABBER_DETECTION ((uint16_t)0x0002) /*!< Jabber condition detected */ /* Section 4: Extended PHY Registers */ #define PHY_SR ((uint16_t)0x0010) /*!< PHY status register Offset */ #define PHY_MICR ((uint16_t)0x0011) /*!< MII Interrupt Control Register */ #define PHY_MISR ((uint16_t)0x0012) /*!< MII Interrupt Status and Misc. Control Register */ #define PHY_LINK_STATUS ((uint16_t)0x0001) /*!< PHY Link mask */ #define PHY_SPEED_STATUS ((uint16_t)0x0002) /*!< PHY Speed mask */ #define PHY_DUPLEX_STATUS ((uint16_t)0x0004) /*!< PHY Duplex mask */ #define PHY_MICR_INT_EN ((uint16_t)0x0002) /*!< PHY Enable interrupts */ #define PHY_MICR_INT_OE ((uint16_t)0x0001) /*!< PHY Enable output interrupt events */ #define PHY_MISR_LINK_INT_EN ((uint16_t)0x0020) /*!< Enable Interrupt on change of link status */ #define PHY_LINK_INTERRUPT ((uint16_t)0x2000) /*!< PHY link status interrupt mask */ /* ################## SPI peripheral configuration ########################## */ /* CRC FEATURE: Use to activate CRC feature inside HAL SPI Driver * Activated: CRC code is present inside driver * Deactivated: CRC code cleaned from driver */ #define USE_SPI_CRC 1U /* Includes ------------------------------------------------------------------*/ /** * @brief Include module's header file */ #ifdef HAL_RCC_MODULE_ENABLED #include "stm32f1xx_hal_rcc.h" #endif /* HAL_RCC_MODULE_ENABLED */ #ifdef HAL_GPIO_MODULE_ENABLED #include "stm32f1xx_hal_gpio.h" #endif /* HAL_GPIO_MODULE_ENABLED */ #ifdef HAL_EXTI_MODULE_ENABLED #include "stm32f1xx_hal_exti.h" #endif /* HAL_EXTI_MODULE_ENABLED */ #ifdef HAL_DMA_MODULE_ENABLED #include "stm32f1xx_hal_dma.h" #endif /* HAL_DMA_MODULE_ENABLED */ #ifdef HAL_ETH_MODULE_ENABLED #include "stm32f1xx_hal_eth.h" #endif /* HAL_ETH_MODULE_ENABLED */ #ifdef HAL_CAN_MODULE_ENABLED #include "stm32f1xx_hal_can.h" #endif /* HAL_CAN_MODULE_ENABLED */ #ifdef HAL_CAN_LEGACY_MODULE_ENABLED #include "Legacy/stm32f1xx_hal_can_legacy.h" #endif /* HAL_CAN_LEGACY_MODULE_ENABLED */ #ifdef HAL_CEC_MODULE_ENABLED #include "stm32f1xx_hal_cec.h" #endif /* HAL_CEC_MODULE_ENABLED */ #ifdef HAL_CORTEX_MODULE_ENABLED #include "stm32f1xx_hal_cortex.h" #endif /* HAL_CORTEX_MODULE_ENABLED */ #ifdef HAL_ADC_MODULE_ENABLED #include "stm32f1xx_hal_adc.h" #endif /* HAL_ADC_MODULE_ENABLED */ #ifdef HAL_CRC_MODULE_ENABLED #include "stm32f1xx_hal_crc.h" #endif /* HAL_CRC_MODULE_ENABLED */ #ifdef HAL_DAC_MODULE_ENABLED #include "stm32f1xx_hal_dac.h" #endif /* HAL_DAC_MODULE_ENABLED */ #ifdef HAL_FLASH_MODULE_ENABLED #include "stm32f1xx_hal_flash.h" #endif /* HAL_FLASH_MODULE_ENABLED */ #ifdef HAL_SRAM_MODULE_ENABLED #include "stm32f1xx_hal_sram.h" #endif /* HAL_SRAM_MODULE_ENABLED */ #ifdef HAL_NOR_MODULE_ENABLED #include "stm32f1xx_hal_nor.h" #endif /* HAL_NOR_MODULE_ENABLED */ #ifdef HAL_I2C_MODULE_ENABLED #include "stm32f1xx_hal_i2c.h" #endif /* HAL_I2C_MODULE_ENABLED */ #ifdef HAL_I2S_MODULE_ENABLED #include "stm32f1xx_hal_i2s.h" #endif /* HAL_I2S_MODULE_ENABLED */ #ifdef HAL_IWDG_MODULE_ENABLED #include "stm32f1xx_hal_iwdg.h" #endif /* HAL_IWDG_MODULE_ENABLED */ #ifdef HAL_PWR_MODULE_ENABLED #include "stm32f1xx_hal_pwr.h" #endif /* HAL_PWR_MODULE_ENABLED */ #ifdef HAL_RTC_MODULE_ENABLED #include "stm32f1xx_hal_rtc.h" #endif /* HAL_RTC_MODULE_ENABLED */ #ifdef HAL_PCCARD_MODULE_ENABLED #include "stm32f1xx_hal_pccard.h" #endif /* HAL_PCCARD_MODULE_ENABLED */ #ifdef HAL_SD_MODULE_ENABLED #include "stm32f1xx_hal_sd.h" #endif /* HAL_SD_MODULE_ENABLED */ #ifdef HAL_NAND_MODULE_ENABLED #include "stm32f1xx_hal_nand.h" #endif /* HAL_NAND_MODULE_ENABLED */ #ifdef HAL_SPI_MODULE_ENABLED #include "stm32f1xx_hal_spi.h" #endif /* HAL_SPI_MODULE_ENABLED */ #ifdef HAL_TIM_MODULE_ENABLED #include "stm32f1xx_hal_tim.h" #endif /* HAL_TIM_MODULE_ENABLED */ #ifdef HAL_UART_MODULE_ENABLED #include "stm32f1xx_hal_uart.h" #endif /* HAL_UART_MODULE_ENABLED */ #ifdef HAL_USART_MODULE_ENABLED #include "stm32f1xx_hal_usart.h" #endif /* HAL_USART_MODULE_ENABLED */ #ifdef HAL_IRDA_MODULE_ENABLED #include "stm32f1xx_hal_irda.h" #endif /* HAL_IRDA_MODULE_ENABLED */ #ifdef HAL_SMARTCARD_MODULE_ENABLED #include "stm32f1xx_hal_smartcard.h" #endif /* HAL_SMARTCARD_MODULE_ENABLED */ #ifdef HAL_WWDG_MODULE_ENABLED #include "stm32f1xx_hal_wwdg.h" #endif /* HAL_WWDG_MODULE_ENABLED */ #ifdef HAL_PCD_MODULE_ENABLED #include "stm32f1xx_hal_pcd.h" #endif /* HAL_PCD_MODULE_ENABLED */ #ifdef HAL_HCD_MODULE_ENABLED #include "stm32f1xx_hal_hcd.h" #endif /* HAL_HCD_MODULE_ENABLED */ /* Exported macro ------------------------------------------------------------*/ #ifdef USE_FULL_ASSERT /** * @brief The assert_param macro is used for function's parameters check. * @param expr: If expr is false, it calls assert_failed function * which reports the name of the source file and the source * line number of the call that failed. * If expr is true, it returns no value. * @retval None */ #define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__)) /* Exported functions ------------------------------------------------------- */ void assert_failed(uint8_t* file, uint32_t line); #else #define assert_param(expr) ((void)0U) #endif /* USE_FULL_ASSERT */ #ifdef __cplusplus } #endif #endif /* __STM32F1xx_HAL_CONF_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComPolling
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComPolling\Inc\stm32f1xx_it.h
/** ****************************************************************************** * @file UART/UART_TwoBoards_ComPolling/Inc/stm32f1xx_it.h * @author MCD Application Team * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_IT_H #define __STM32F1xx_IT_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); void EXTI15_10_IRQHandler(void); #ifdef __cplusplus } #endif #endif /* __STM32F1xx_IT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComPolling
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComPolling\Src\main.c
/** ****************************************************************************** * @file UART/UART_TwoBoards_ComPolling/Src/main.c * @author MCD Application Team * @brief This sample code shows how to use UART HAL API to transmit * and receive a data buffer with a communication process based on * polling transfer. * The communication is done using 2 Boards. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @addtogroup UART_TwoBoards_ComPolling * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ //#define TRANSMITTER_BOARD /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* UART handler declaration */ UART_HandleTypeDef UartHandle; __IO uint32_t UserButtonStatus = 0; /* set to 1 after User Button interrupt */ /* Buffer used for transmission */ uint8_t aTxBuffer[] = " **** UART_TwoBoards_ComPolling **** **** UART_TwoBoards_ComPolling **** **** UART_TwoBoards_ComPolling **** "; /* Buffer used for reception */ uint8_t aRxBuffer[RXBUFFERSIZE]; /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void Error_Handler(void); static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { /* STM32F103xB HAL library initialization: - Configure the Flash prefetch - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization */ HAL_Init(); /* Configure the system clock to 64 MHz */ SystemClock_Config(); /* Configure LED2 */ BSP_LED_Init(LED2); /*##-1- Configure the UART peripheral ######################################*/ /* Put the USART peripheral in the Asynchronous mode (UART Mode) */ /* UART configured as follows: - Word Length = 8 Bits - Stop Bit = One Stop bit - Parity = None - BaudRate = 9600 baud - Hardware flow control disabled (RTS and CTS signals) */ UartHandle.Instance = USARTx; UartHandle.Init.BaudRate = 9600; UartHandle.Init.WordLength = UART_WORDLENGTH_8B; UartHandle.Init.StopBits = UART_STOPBITS_1; UartHandle.Init.Parity = UART_PARITY_NONE; UartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE; UartHandle.Init.Mode = UART_MODE_TX_RX; if(HAL_UART_DeInit(&UartHandle) != HAL_OK) { Error_Handler(); } if(HAL_UART_Init(&UartHandle) != HAL_OK) { Error_Handler(); } #ifdef TRANSMITTER_BOARD /* Configure User push-button in Interrupt mode */ BSP_PB_Init(BUTTON_USER, BUTTON_MODE_EXTI); /* Wait for User push-button press before starting the Communication. In the meantime, LED2 is blinking */ while(UserButtonStatus == 0) { /* Toggle LED2*/ BSP_LED_Toggle(LED2); HAL_Delay(100); } BSP_LED_Off(LED2); /* The board sends the message and expects to receive it back */ /*##-2- Start the transmission process #####################################*/ /* While the UART in reception process, user can transmit data through "aTxBuffer" buffer */ if(HAL_UART_Transmit(&UartHandle, (uint8_t*)aTxBuffer, TXBUFFERSIZE, 5000)!= HAL_OK) { Error_Handler(); } /*##-3- Put UART peripheral in reception process ###########################*/ if(HAL_UART_Receive(&UartHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE, 5000) != HAL_OK) { Error_Handler(); } #else /* The board receives the message and sends it back */ /*##-2- Put UART peripheral in reception process ###########################*/ if(HAL_UART_Receive(&UartHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE, 0x1FFFFFF) != HAL_OK) { Error_Handler(); } /*##-3- Start the transmission process #####################################*/ /* While the UART in reception process, user can transmit data through "aTxBuffer" buffer */ if(HAL_UART_Transmit(&UartHandle, (uint8_t*)aTxBuffer, TXBUFFERSIZE, 5000)!= HAL_OK) { Error_Handler(); } #endif /* TRANSMITTER_BOARD */ /*##-4- Compare the sent and received buffers ##############################*/ if(Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,RXBUFFERSIZE)) { Error_Handler(); } /* Turn on LED2 if test passes then enter infinite loop */ BSP_LED_On(LED2); /* Infinite loop */ while (1) { } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSI) * SYSCLK(Hz) = 64000000 * HCLK(Hz) = 64000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * PLLMUL = 16 * Flash Latency(WS) = 2 * @param None * @retval None */ void SystemClock_Config(void) { RCC_ClkInitTypeDef clkinitstruct = {0}; RCC_OscInitTypeDef oscinitstruct = {0}; /* Configure PLL ------------------------------------------------------*/ /* PLL configuration: PLLCLK = (HSI / 2) * PLLMUL = (8 / 2) * 16 = 64 MHz */ /* PREDIV1 configuration: PREDIV1CLK = PLLCLK / HSEPredivValue = 64 / 1 = 64 MHz */ /* Enable HSI and activate PLL with HSi_DIV2 as source */ oscinitstruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; oscinitstruct.HSEState = RCC_HSE_OFF; oscinitstruct.LSEState = RCC_LSE_OFF; oscinitstruct.HSIState = RCC_HSI_ON; oscinitstruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; oscinitstruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; oscinitstruct.PLL.PLLState = RCC_PLL_ON; oscinitstruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2; oscinitstruct.PLL.PLLMUL = RCC_PLL_MUL16; if (HAL_RCC_OscConfig(&oscinitstruct)!= HAL_OK) { /* Initialization Error */ while(1); } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ clkinitstruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); clkinitstruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; clkinitstruct.AHBCLKDivider = RCC_SYSCLK_DIV1; clkinitstruct.APB2CLKDivider = RCC_HCLK_DIV1; clkinitstruct.APB1CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&clkinitstruct, FLASH_LATENCY_2)!= HAL_OK) { /* Initialization Error */ while(1); } } /** * @brief UART error callbacks * @param UartHandle: UART handle * @note This example shows a simple way to report transfer error, and you can * add your own implementation. * @retval None */ void HAL_UART_ErrorCallback(UART_HandleTypeDef *UartHandle) { Error_Handler(); } /** * @brief EXTI line detection callbacks * @param GPIO_Pin: Specifies the pins connected EXTI line * @retval None */ void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { if(GPIO_Pin == USER_BUTTON_PIN) { UserButtonStatus = 1; } } /** * @brief Compares two buffers. * @param pBuffer1, pBuffer2: buffers to be compared. * @param BufferLength: buffer's length * @retval 0 : pBuffer1 identical to pBuffer2 * >0 : pBuffer1 differs from pBuffer2 */ static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength) { while (BufferLength--) { if ((*pBuffer1) != *pBuffer2) { return BufferLength; } pBuffer1++; pBuffer2++; } return 0; } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None */ static void Error_Handler(void) { /* Turn LED2 on */ BSP_LED_On(LED2); while(1) { /* Error if LED2 is slowly blinking (1 sec. period) */ BSP_LED_Toggle(LED2); HAL_Delay(1000); } } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t* file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComPolling
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComPolling\Src\stm32f1xx_hal_msp.c
/** ****************************************************************************** * @file UART/UART_TwoBoards_ComPolling/Src/stm32f1xx_hal_msp.c * @author MCD Application Team * @brief HAL MSP module. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @defgroup UART_TwoBoards_ComPolling * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /** @defgroup HAL_MSP_Private_Functions * @{ */ /** * @brief UART MSP Initialization * This function configures the hardware resources used in this example: * - Peripheral's clock enable * - Peripheral's GPIO Configuration * @param huart: UART handle pointer * @retval None */ void HAL_UART_MspInit(UART_HandleTypeDef *huart) { GPIO_InitTypeDef GPIO_InitStruct; /*##-1- Enable peripherals and GPIO Clocks #################################*/ /* Enable GPIO TX/RX clock */ USARTx_TX_GPIO_CLK_ENABLE(); USARTx_RX_GPIO_CLK_ENABLE(); /* Enable USARTx clock */ USARTx_CLK_ENABLE(); /*##-2- Configure peripheral GPIO ##########################################*/ /* UART TX GPIO pin configuration */ GPIO_InitStruct.Pin = USARTx_TX_PIN; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(USARTx_TX_GPIO_PORT, &GPIO_InitStruct); /* UART RX GPIO pin configuration */ GPIO_InitStruct.Pin = USARTx_RX_PIN; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; HAL_GPIO_Init(USARTx_RX_GPIO_PORT, &GPIO_InitStruct); } /** * @brief UART MSP De-Initialization * This function frees the hardware resources used in this example: * - Disable the Peripheral's clock * - Revert GPIO configuration to their default state * @param huart: UART handle pointer * @retval None */ void HAL_UART_MspDeInit(UART_HandleTypeDef *huart) { /*##-1- Reset peripherals ##################################################*/ USARTx_FORCE_RESET(); USARTx_RELEASE_RESET(); /*##-2- Disable peripherals and GPIO Clocks #################################*/ /* Configure USART1 Tx as alternate function */ HAL_GPIO_DeInit(USARTx_TX_GPIO_PORT, USARTx_TX_PIN); /* Configure USART1 Rx as alternate function */ HAL_GPIO_DeInit(USARTx_RX_GPIO_PORT, USARTx_RX_PIN); } /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComPolling
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComPolling\Src\stm32f1xx_it.c
/** ****************************************************************************** * @file UART/UART_TwoBoards_ComPolling/Src/stm32f1xx_it.c * @author MCD Application Team * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "stm32f1xx_it.h" /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @addtogroup UART_TwoBoards_ComPolling * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /******************************************************************************/ /* Cortex-M3 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /** * @brief This function handles PendSVC exception. * @param None * @retval None */ void PendSV_Handler(void) { } /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { HAL_IncTick(); } /******************************************************************************/ /* STM32F1xx Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f1xx.s). */ /******************************************************************************/ /** * @brief This function handles external lines 10 to 15 interrupt request. * @param None * @retval None */ void EXTI15_10_IRQHandler(void) { HAL_GPIO_EXTI_IRQHandler(USER_BUTTON_PIN); } /** * @brief This function handles PPP interrupt request. * @param None * @retval None */ /*void PPP_IRQHandler(void) { }*/ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComPolling
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\UART\UART_TwoBoards_ComPolling\Src\system_stm32f1xx.c
/** ****************************************************************************** * @file system_stm32f1xx.c * @author MCD Application Team * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File. * * 1. This file provides two functions and one global variable to be called from * user application: * - SystemInit(): Setups the system clock (System clock source, PLL Multiplier * factors, AHB/APBx prescalers and Flash settings). * This function is called at startup just after reset and * before branch to main program. This call is made inside * the "startup_stm32f1xx_xx.s" file. * * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used * by the user application to setup the SysTick * timer or configure other parameters. * * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must * be called whenever the core clock is changed * during program execution. * * 2. After each device reset the HSI (8 MHz) is used as system clock source. * Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to * configure the system clock before to branch to main program. * * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on * the product used), refer to "HSE_VALUE". * When HSE is used as system clock source, directly or through PLL, and you * are using different crystal you have to adapt the HSE value to your own * configuration. * ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32f1xx_system * @{ */ /** @addtogroup STM32F1xx_System_Private_Includes * @{ */ #include "stm32f1xx.h" /** * @} */ /** @addtogroup STM32F1xx_System_Private_TypesDefinitions * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Defines * @{ */ #if !defined (HSE_VALUE) #define HSE_VALUE ((uint32_t)8000000) /*!< Default value of the External oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSE_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE ((uint32_t)8000000) /*!< Default value of the Internal oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSI_VALUE */ /*!< Uncomment the following line if you need to use external SRAM */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /* #define DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /*!< Uncomment the following line if you need to relocate your vector Table in Internal SRAM. */ /* #define VECT_TAB_SRAM */ #define VECT_TAB_OFFSET 0x0 /*!< Vector Table base offset field. This value must be a multiple of 0x200. */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Macros * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Variables * @{ */ /* This variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetHCLKFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency Note: If you use this function to configure the system clock; then there is no need to call the 2 first functions listed above, since SystemCoreClock variable is updated automatically. */ uint32_t SystemCoreClock = 16000000; const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}; const uint8_t APBPrescTable[8] = {0, 0, 0, 0, 1, 2, 3, 4}; /** * @} */ /** @addtogroup STM32F1xx_System_Private_FunctionPrototypes * @{ */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM static void SystemInit_ExtMemCtl(void); #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Functions * @{ */ /** * @brief Setup the microcontroller system * Initialize the Embedded Flash Interface, the PLL and update the * SystemCoreClock variable. * @note This function should be used only after reset. * @param None * @retval None */ void SystemInit (void) { /* Reset the RCC clock configuration to the default reset state(for debug purpose) */ /* Set HSION bit */ RCC->CR |= (uint32_t)0x00000001; /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */ #if !defined(STM32F105xC) && !defined(STM32F107xC) RCC->CFGR &= (uint32_t)0xF8FF0000; #else RCC->CFGR &= (uint32_t)0xF0FF0000; #endif /* STM32F105xC */ /* Reset HSEON, CSSON and PLLON bits */ RCC->CR &= (uint32_t)0xFEF6FFFF; /* Reset HSEBYP bit */ RCC->CR &= (uint32_t)0xFFFBFFFF; /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */ RCC->CFGR &= (uint32_t)0xFF80FFFF; #if defined(STM32F105xC) || defined(STM32F107xC) /* Reset PLL2ON and PLL3ON bits */ RCC->CR &= (uint32_t)0xEBFFFFFF; /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x00FF0000; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000; #elif defined(STM32F100xB) || defined(STM32F100xE) /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000; #else /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; #endif /* STM32F105xC */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM SystemInit_ExtMemCtl(); #endif /* DATA_IN_ExtSRAM */ #endif #ifdef VECT_TAB_SRAM SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */ #else SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */ #endif } /** * @brief Update SystemCoreClock variable according to Clock Register Values. * The SystemCoreClock variable contains the core clock (HCLK), it can * be used by the user application to setup the SysTick timer or configure * other parameters. * * @note Each time the core clock (HCLK) changes, this function must be called * to update SystemCoreClock variable value. Otherwise, any configuration * based on this variable will be incorrect. * * @note - The system frequency computed by this function is not the real * frequency in the chip. It is calculated based on the predefined * constant and the selected clock source: * * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*) * * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**) * * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) * or HSI_VALUE(*) multiplied by the PLL factors. * * (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz) but the real value may vary depending on the variations * in voltage and temperature. * * (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz or 25 MHz, depending on the product used), user has to ensure * that HSE_VALUE is same as the real frequency of the crystal used. * Otherwise, this function may have wrong result. * * - The result of this function could be not correct when using fractional * value for HSE crystal. * @param None * @retval None */ void SystemCoreClockUpdate (void) { uint32_t tmp = 0, pllmull = 0, pllsource = 0; #if defined(STM32F105xC) || defined(STM32F107xC) uint32_t prediv1source = 0, prediv1factor = 0, prediv2factor = 0, pll2mull = 0; #endif /* STM32F105xC */ #if defined(STM32F100xB) || defined(STM32F100xE) uint32_t prediv1factor = 0; #endif /* STM32F100xB or STM32F100xE */ /* Get SYSCLK source -------------------------------------------------------*/ tmp = RCC->CFGR & RCC_CFGR_SWS; switch (tmp) { case 0x00: /* HSI used as system clock */ SystemCoreClock = HSI_VALUE; break; case 0x04: /* HSE used as system clock */ SystemCoreClock = HSE_VALUE; break; case 0x08: /* PLL used as system clock */ /* Get PLL clock source and multiplication factor ----------------------*/ pllmull = RCC->CFGR & RCC_CFGR_PLLMULL; pllsource = RCC->CFGR & RCC_CFGR_PLLSRC; #if !defined(STM32F105xC) && !defined(STM32F107xC) pllmull = ( pllmull >> 18) + 2; if (pllsource == 0x00) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1) * pllmull; } else { #if defined(STM32F100xB) || defined(STM32F100xE) prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1; /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; #else /* HSE selected as PLL clock entry */ if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET) {/* HSE oscillator clock divided by 2 */ SystemCoreClock = (HSE_VALUE >> 1) * pllmull; } else { SystemCoreClock = HSE_VALUE * pllmull; } #endif } #else pllmull = pllmull >> 18; if (pllmull != 0x0D) { pllmull += 2; } else { /* PLL multiplication factor = PLL input clock * 6.5 */ pllmull = 13 / 2; } if (pllsource == 0x00) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1) * pllmull; } else {/* PREDIV1 selected as PLL clock entry */ /* Get PREDIV1 clock source and division factor */ prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC; prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1; if (prediv1source == 0) { /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; } else {/* PLL2 clock selected as PREDIV1 clock entry */ /* Get PREDIV2 division factor and PLL2 multiplication factor */ prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4) + 1; pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8 ) + 2; SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull; } } #endif /* STM32F105xC */ break; default: SystemCoreClock = HSI_VALUE; break; } /* Compute HCLK clock frequency ----------------*/ /* Get HCLK prescaler */ tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)]; /* HCLK clock frequency */ SystemCoreClock >>= tmp; } #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /** * @brief Setup the external memory controller. Called in startup_stm32f1xx.s * before jump to __main * @param None * @retval None */ #ifdef DATA_IN_ExtSRAM /** * @brief Setup the external memory controller. * Called in startup_stm32f1xx_xx.s/.c before jump to main. * This function configures the external SRAM mounted on STM3210E-EVAL * board (STM32 High density devices). This SRAM will be used as program * data memory (including heap and stack). * @param None * @retval None */ void SystemInit_ExtMemCtl(void) { __IO uint32_t tmpreg; /*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is required, then adjust the Register Addresses */ /* Enable FSMC clock */ RCC->AHBENR = 0x00000114; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN); /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */ RCC->APB2ENR = 0x000001E0; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN); (void)(tmpreg); /* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/ /*---------------- SRAM Address lines configuration -------------------------*/ /*---------------- NOE and NWE configuration --------------------------------*/ /*---------------- NE3 configuration ----------------------------------------*/ /*---------------- NBL0, NBL1 configuration ---------------------------------*/ GPIOD->CRL = 0x44BB44BB; GPIOD->CRH = 0xBBBBBBBB; GPIOE->CRL = 0xB44444BB; GPIOE->CRH = 0xBBBBBBBB; GPIOF->CRL = 0x44BBBBBB; GPIOF->CRH = 0xBBBB4444; GPIOG->CRL = 0x44BBBBBB; GPIOG->CRH = 0x444B4B44; /*---------------- FSMC Configuration ---------------------------------------*/ /*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/ FSMC_Bank1->BTCR[4] = 0x00001091; FSMC_Bank1->BTCR[5] = 0x00110212; } #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\WWDG\WWDG_Example
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\WWDG\WWDG_Example\Inc\main.h
/** ****************************************************************************** * @file WWDG/WWDG_Example/Inc/main.h * @author MCD Application Team * @brief Header for main.c module. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __MAIN_H #define __MAIN_H /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_hal.h" #include "stm32f1xx_nucleo.h" /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ #endif /* __MAIN_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\WWDG\WWDG_Example
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\WWDG\WWDG_Example\Inc\stm32f1xx_hal_conf.h
/** ****************************************************************************** * @file stm32f1xx_hal_conf.h * @author MCD Application Team * @brief HAL configuration file. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_HAL_CONF_H #define __STM32F1xx_HAL_CONF_H #ifdef __cplusplus extern "C" { #endif /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* ########################## Module Selection ############################## */ /** * @brief This is the list of modules to be used in the HAL driver */ #define HAL_MODULE_ENABLED /* #define HAL_ADC_MODULE_ENABLED */ /* #define HAL_CAN_MODULE_ENABLED */ /* #define HAL_CAN_LEGACY_MODULE_ENABLED */ /* #define HAL_CEC_MODULE_ENABLED */ #define HAL_CORTEX_MODULE_ENABLED /* #define HAL_CRC_MODULE_ENABLED */ /* #define HAL_DAC_MODULE_ENABLED */ /* #define HAL_DMA_MODULE_ENABLED */ /* #define HAL_ETH_MODULE_ENABLED */ /* #define HAL_EXTI_MODULE_ENABLED */ #define HAL_FLASH_MODULE_ENABLED #define HAL_GPIO_MODULE_ENABLED /* #define HAL_HCD_MODULE_ENABLED */ /* #define HAL_I2C_MODULE_ENABLED */ /* #define HAL_I2S_MODULE_ENABLED */ /* #define HAL_IRDA_MODULE_ENABLED */ /* #define HAL_IWDG_MODULE_ENABLED */ /* #define HAL_NAND_MODULE_ENABLED */ /* #define HAL_NOR_MODULE_ENABLED */ /* #define HAL_PCCARD_MODULE_ENABLED */ /* #define HAL_PCD_MODULE_ENABLED */ /* #define HAL_PWR_MODULE_ENABLED */ #define HAL_RCC_MODULE_ENABLED /* #define HAL_RTC_MODULE_ENABLED */ /* #define HAL_SD_MODULE_ENABLED */ /* #define HAL_SMARTCARD_MODULE_ENABLED */ /* #define HAL_SPI_MODULE_ENABLED */ /* #define HAL_SRAM_MODULE_ENABLED */ /* #define HAL_TIM_MODULE_ENABLED */ /* #define HAL_UART_MODULE_ENABLED */ /* #define HAL_USART_MODULE_ENABLED */ #define HAL_WWDG_MODULE_ENABLED /* ########################## Oscillator Values adaptation ####################*/ /** * @brief Adjust the value of External High Speed oscillator (HSE) used in your application. * This value is used by the RCC HAL module to compute the system frequency * (when HSE is used as system clock source, directly or through the PLL). */ #if !defined (HSE_VALUE) #if defined(USE_STM3210C_EVAL) #define HSE_VALUE 25000000U /*!< Value of the External oscillator in Hz */ #else #define HSE_VALUE 8000000U /*!< Value of the External oscillator in Hz */ #endif #endif /* HSE_VALUE */ #if !defined (HSE_STARTUP_TIMEOUT) #define HSE_STARTUP_TIMEOUT 100U /*!< Time out for HSE start up, in ms */ #endif /* HSE_STARTUP_TIMEOUT */ /** * @brief Internal High Speed oscillator (HSI) value. * This value is used by the RCC HAL module to compute the system frequency * (when HSI is used as system clock source, directly or through the PLL). */ #if !defined (HSI_VALUE) #define HSI_VALUE 8000000U /*!< Value of the Internal oscillator in Hz */ #endif /* HSI_VALUE */ /** * @brief Internal Low Speed oscillator (LSI) value. */ #if !defined (LSI_VALUE) #define LSI_VALUE 40000U /*!< LSI Typical Value in Hz */ #endif /* LSI_VALUE */ /*!< Value of the Internal Low Speed oscillator in Hz The real value may vary depending on the variations in voltage and temperature. */ /** * @brief External Low Speed oscillator (LSE) value. * This value is used by the UART, RTC HAL module to compute the system frequency */ #if !defined (LSE_VALUE) #define LSE_VALUE 32768U /*!< Value of the External oscillator in Hz*/ #endif /* LSE_VALUE */ #if !defined (LSE_STARTUP_TIMEOUT) #define LSE_STARTUP_TIMEOUT 5000U /*!< Time out for LSE start up, in ms */ #endif /* LSE_STARTUP_TIMEOUT */ /* Tip: To avoid modifying this file each time you need to use different HSE, === you can define the HSE value in your toolchain compiler preprocessor. */ /* ########################### System Configuration ######################### */ /** * @brief This is the HAL system configuration section */ #define VDD_VALUE 3300U /*!< Value of VDD in mv */ #define TICK_INT_PRIORITY 0x0FU /*!< tick interrupt priority */ #define USE_RTOS 0U #define PREFETCH_ENABLE 1U #define USE_HAL_ADC_REGISTER_CALLBACKS 0U /* ADC register callback disabled */ #define USE_HAL_CAN_REGISTER_CALLBACKS 0U /* CAN register callback disabled */ #define USE_HAL_CEC_REGISTER_CALLBACKS 0U /* CEC register callback disabled */ #define USE_HAL_DAC_REGISTER_CALLBACKS 0U /* DAC register callback disabled */ #define USE_HAL_ETH_REGISTER_CALLBACKS 0U /* ETH register callback disabled */ #define USE_HAL_HCD_REGISTER_CALLBACKS 0U /* HCD register callback disabled */ #define USE_HAL_I2C_REGISTER_CALLBACKS 0U /* I2C register callback disabled */ #define USE_HAL_I2S_REGISTER_CALLBACKS 0U /* I2S register callback disabled */ #define USE_HAL_MMC_REGISTER_CALLBACKS 0U /* MMC register callback disabled */ #define USE_HAL_NAND_REGISTER_CALLBACKS 0U /* NAND register callback disabled */ #define USE_HAL_NOR_REGISTER_CALLBACKS 0U /* NOR register callback disabled */ #define USE_HAL_PCCARD_REGISTER_CALLBACKS 0U /* PCCARD register callback disabled */ #define USE_HAL_PCD_REGISTER_CALLBACKS 0U /* PCD register callback disabled */ #define USE_HAL_RTC_REGISTER_CALLBACKS 0U /* RTC register callback disabled */ #define USE_HAL_SD_REGISTER_CALLBACKS 0U /* SD register callback disabled */ #define USE_HAL_SMARTCARD_REGISTER_CALLBACKS 0U /* SMARTCARD register callback disabled */ #define USE_HAL_IRDA_REGISTER_CALLBACKS 0U /* IRDA register callback disabled */ #define USE_HAL_SRAM_REGISTER_CALLBACKS 0U /* SRAM register callback disabled */ #define USE_HAL_SPI_REGISTER_CALLBACKS 0U /* SPI register callback disabled */ #define USE_HAL_TIM_REGISTER_CALLBACKS 0U /* TIM register callback disabled */ #define USE_HAL_UART_REGISTER_CALLBACKS 0U /* UART register callback disabled */ #define USE_HAL_USART_REGISTER_CALLBACKS 0U /* USART register callback disabled */ #define USE_HAL_WWDG_REGISTER_CALLBACKS 0U /* WWDG register callback disabled */ /* ########################## Assert Selection ############################## */ /** * @brief Uncomment the line below to expanse the "assert_param" macro in the * HAL drivers code */ /* #define USE_FULL_ASSERT 1U */ /* ################## Ethernet peripheral configuration ##################### */ /* Section 1 : Ethernet peripheral configuration */ /* MAC ADDRESS: MAC_ADDR0:MAC_ADDR1:MAC_ADDR2:MAC_ADDR3:MAC_ADDR4:MAC_ADDR5 */ #define MAC_ADDR0 2U #define MAC_ADDR1 0U #define MAC_ADDR2 0U #define MAC_ADDR3 0U #define MAC_ADDR4 0U #define MAC_ADDR5 0U /* Definition of the Ethernet driver buffers size and count */ #define ETH_RX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for receive */ #define ETH_TX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for transmit */ #define ETH_RXBUFNB 8U /* 8 Rx buffers of size ETH_RX_BUF_SIZE */ #define ETH_TXBUFNB 4U /* 4 Tx buffers of size ETH_TX_BUF_SIZE */ /* Section 2: PHY configuration section */ /* DP83848 PHY Address*/ #define DP83848_PHY_ADDRESS 0x01U /* PHY Reset delay these values are based on a 1 ms Systick interrupt*/ #define PHY_RESET_DELAY 0x000000FFU /* PHY Configuration delay */ #define PHY_CONFIG_DELAY 0x00000FFFU #define PHY_READ_TO 0x0000FFFFU #define PHY_WRITE_TO 0x0000FFFFU /* Section 3: Common PHY Registers */ #define PHY_BCR ((uint16_t)0x0000) /*!< Transceiver Basic Control Register */ #define PHY_BSR ((uint16_t)0x0001) /*!< Transceiver Basic Status Register */ #define PHY_RESET ((uint16_t)0x8000) /*!< PHY Reset */ #define PHY_LOOPBACK ((uint16_t)0x4000) /*!< Select loop-back mode */ #define PHY_FULLDUPLEX_100M ((uint16_t)0x2100) /*!< Set the full-duplex mode at 100 Mb/s */ #define PHY_HALFDUPLEX_100M ((uint16_t)0x2000) /*!< Set the half-duplex mode at 100 Mb/s */ #define PHY_FULLDUPLEX_10M ((uint16_t)0x0100) /*!< Set the full-duplex mode at 10 Mb/s */ #define PHY_HALFDUPLEX_10M ((uint16_t)0x0000) /*!< Set the half-duplex mode at 10 Mb/s */ #define PHY_AUTONEGOTIATION ((uint16_t)0x1000) /*!< Enable auto-negotiation function */ #define PHY_RESTART_AUTONEGOTIATION ((uint16_t)0x0200) /*!< Restart auto-negotiation function */ #define PHY_POWERDOWN ((uint16_t)0x0800) /*!< Select the power down mode */ #define PHY_ISOLATE ((uint16_t)0x0400) /*!< Isolate PHY from MII */ #define PHY_AUTONEGO_COMPLETE ((uint16_t)0x0020) /*!< Auto-Negotiation process completed */ #define PHY_LINKED_STATUS ((uint16_t)0x0004) /*!< Valid link established */ #define PHY_JABBER_DETECTION ((uint16_t)0x0002) /*!< Jabber condition detected */ /* Section 4: Extended PHY Registers */ #define PHY_SR ((uint16_t)0x0010) /*!< PHY status register Offset */ #define PHY_MICR ((uint16_t)0x0011) /*!< MII Interrupt Control Register */ #define PHY_MISR ((uint16_t)0x0012) /*!< MII Interrupt Status and Misc. Control Register */ #define PHY_LINK_STATUS ((uint16_t)0x0001) /*!< PHY Link mask */ #define PHY_SPEED_STATUS ((uint16_t)0x0002) /*!< PHY Speed mask */ #define PHY_DUPLEX_STATUS ((uint16_t)0x0004) /*!< PHY Duplex mask */ #define PHY_MICR_INT_EN ((uint16_t)0x0002) /*!< PHY Enable interrupts */ #define PHY_MICR_INT_OE ((uint16_t)0x0001) /*!< PHY Enable output interrupt events */ #define PHY_MISR_LINK_INT_EN ((uint16_t)0x0020) /*!< Enable Interrupt on change of link status */ #define PHY_LINK_INTERRUPT ((uint16_t)0x2000) /*!< PHY link status interrupt mask */ /* ################## SPI peripheral configuration ########################## */ /* CRC FEATURE: Use to activate CRC feature inside HAL SPI Driver * Activated: CRC code is present inside driver * Deactivated: CRC code cleaned from driver */ #define USE_SPI_CRC 1U /* Includes ------------------------------------------------------------------*/ /** * @brief Include module's header file */ #ifdef HAL_RCC_MODULE_ENABLED #include "stm32f1xx_hal_rcc.h" #endif /* HAL_RCC_MODULE_ENABLED */ #ifdef HAL_GPIO_MODULE_ENABLED #include "stm32f1xx_hal_gpio.h" #endif /* HAL_GPIO_MODULE_ENABLED */ #ifdef HAL_EXTI_MODULE_ENABLED #include "stm32f1xx_hal_exti.h" #endif /* HAL_EXTI_MODULE_ENABLED */ #ifdef HAL_DMA_MODULE_ENABLED #include "stm32f1xx_hal_dma.h" #endif /* HAL_DMA_MODULE_ENABLED */ #ifdef HAL_ETH_MODULE_ENABLED #include "stm32f1xx_hal_eth.h" #endif /* HAL_ETH_MODULE_ENABLED */ #ifdef HAL_CAN_MODULE_ENABLED #include "stm32f1xx_hal_can.h" #endif /* HAL_CAN_MODULE_ENABLED */ #ifdef HAL_CAN_LEGACY_MODULE_ENABLED #include "Legacy/stm32f1xx_hal_can_legacy.h" #endif /* HAL_CAN_LEGACY_MODULE_ENABLED */ #ifdef HAL_CEC_MODULE_ENABLED #include "stm32f1xx_hal_cec.h" #endif /* HAL_CEC_MODULE_ENABLED */ #ifdef HAL_CORTEX_MODULE_ENABLED #include "stm32f1xx_hal_cortex.h" #endif /* HAL_CORTEX_MODULE_ENABLED */ #ifdef HAL_ADC_MODULE_ENABLED #include "stm32f1xx_hal_adc.h" #endif /* HAL_ADC_MODULE_ENABLED */ #ifdef HAL_CRC_MODULE_ENABLED #include "stm32f1xx_hal_crc.h" #endif /* HAL_CRC_MODULE_ENABLED */ #ifdef HAL_DAC_MODULE_ENABLED #include "stm32f1xx_hal_dac.h" #endif /* HAL_DAC_MODULE_ENABLED */ #ifdef HAL_FLASH_MODULE_ENABLED #include "stm32f1xx_hal_flash.h" #endif /* HAL_FLASH_MODULE_ENABLED */ #ifdef HAL_SRAM_MODULE_ENABLED #include "stm32f1xx_hal_sram.h" #endif /* HAL_SRAM_MODULE_ENABLED */ #ifdef HAL_NOR_MODULE_ENABLED #include "stm32f1xx_hal_nor.h" #endif /* HAL_NOR_MODULE_ENABLED */ #ifdef HAL_I2C_MODULE_ENABLED #include "stm32f1xx_hal_i2c.h" #endif /* HAL_I2C_MODULE_ENABLED */ #ifdef HAL_I2S_MODULE_ENABLED #include "stm32f1xx_hal_i2s.h" #endif /* HAL_I2S_MODULE_ENABLED */ #ifdef HAL_IWDG_MODULE_ENABLED #include "stm32f1xx_hal_iwdg.h" #endif /* HAL_IWDG_MODULE_ENABLED */ #ifdef HAL_PWR_MODULE_ENABLED #include "stm32f1xx_hal_pwr.h" #endif /* HAL_PWR_MODULE_ENABLED */ #ifdef HAL_RTC_MODULE_ENABLED #include "stm32f1xx_hal_rtc.h" #endif /* HAL_RTC_MODULE_ENABLED */ #ifdef HAL_PCCARD_MODULE_ENABLED #include "stm32f1xx_hal_pccard.h" #endif /* HAL_PCCARD_MODULE_ENABLED */ #ifdef HAL_SD_MODULE_ENABLED #include "stm32f1xx_hal_sd.h" #endif /* HAL_SD_MODULE_ENABLED */ #ifdef HAL_NAND_MODULE_ENABLED #include "stm32f1xx_hal_nand.h" #endif /* HAL_NAND_MODULE_ENABLED */ #ifdef HAL_SPI_MODULE_ENABLED #include "stm32f1xx_hal_spi.h" #endif /* HAL_SPI_MODULE_ENABLED */ #ifdef HAL_TIM_MODULE_ENABLED #include "stm32f1xx_hal_tim.h" #endif /* HAL_TIM_MODULE_ENABLED */ #ifdef HAL_UART_MODULE_ENABLED #include "stm32f1xx_hal_uart.h" #endif /* HAL_UART_MODULE_ENABLED */ #ifdef HAL_USART_MODULE_ENABLED #include "stm32f1xx_hal_usart.h" #endif /* HAL_USART_MODULE_ENABLED */ #ifdef HAL_IRDA_MODULE_ENABLED #include "stm32f1xx_hal_irda.h" #endif /* HAL_IRDA_MODULE_ENABLED */ #ifdef HAL_SMARTCARD_MODULE_ENABLED #include "stm32f1xx_hal_smartcard.h" #endif /* HAL_SMARTCARD_MODULE_ENABLED */ #ifdef HAL_WWDG_MODULE_ENABLED #include "stm32f1xx_hal_wwdg.h" #endif /* HAL_WWDG_MODULE_ENABLED */ #ifdef HAL_PCD_MODULE_ENABLED #include "stm32f1xx_hal_pcd.h" #endif /* HAL_PCD_MODULE_ENABLED */ #ifdef HAL_HCD_MODULE_ENABLED #include "stm32f1xx_hal_hcd.h" #endif /* HAL_HCD_MODULE_ENABLED */ /* Exported macro ------------------------------------------------------------*/ #ifdef USE_FULL_ASSERT /** * @brief The assert_param macro is used for function's parameters check. * @param expr: If expr is false, it calls assert_failed function * which reports the name of the source file and the source * line number of the call that failed. * If expr is true, it returns no value. * @retval None */ #define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__)) /* Exported functions ------------------------------------------------------- */ void assert_failed(uint8_t* file, uint32_t line); #else #define assert_param(expr) ((void)0U) #endif /* USE_FULL_ASSERT */ #ifdef __cplusplus } #endif #endif /* __STM32F1xx_HAL_CONF_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\WWDG\WWDG_Example
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\WWDG\WWDG_Example\Inc\stm32f1xx_it.h
/** ****************************************************************************** * @file WWDG/WWDG_Example/Inc/stm32f1xx_it.h * @author MCD Application Team * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_IT_H #define __STM32F1xx_IT_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); void EXTI15_10_IRQHandler(void); #ifdef __cplusplus } #endif #endif /* __STM32F1xx_IT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\WWDG\WWDG_Example
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\WWDG\WWDG_Example\Src\main.c
/** ****************************************************************************** * @file WWDG/WWDG_Example/Src/main.c * @author MCD Application Team * @brief This sample code shows how to use the STM32F103xB WWDG HAL API * to update at regular period the WWDG counter and how to simulate * a software fault generating an MCU WWDG reset on expiry of a * programmed time period. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @addtogroup WWDG_Example * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* WWDG handler declaration */ static WWDG_HandleTypeDef WwdgHandle; /* Private function prototypes -----------------------------------------------*/ static uint32_t TimeoutCalculation(uint32_t timevalue); void SystemClock_Config(void); static void Error_Handler(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { uint32_t delay; /* STM32F103xB HAL library initialization: - Configure the Flash prefetch - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization */ HAL_Init(); /* Configure the system clock to 64 MHz */ SystemClock_Config(); /* Configure LED2 */ BSP_LED_Init(LED2); /* Configure User push-button */ BSP_PB_Init(BUTTON_USER, BUTTON_MODE_EXTI); /*##-1- Check if the system has resumed from WWDG reset ####################*/ if (__HAL_RCC_GET_FLAG(RCC_FLAG_WWDGRST) != RESET) { /* WWDGRST flag set: Turn LED2 on */ BSP_LED_On(LED2); /* Insert 4s delay */ HAL_Delay(4000); /* Clear reset flags */ __HAL_RCC_CLEAR_RESET_FLAGS(); } else { /* WWDGRST flag is not set: Turn LED2 off */ BSP_LED_Off(LED2); } /*##-2- Configure the WWDG peripheral ######################################*/ /* WWDG clock counter = (PCLK1 (32MHz)/4096)/8) = 976.56 Hz (~1024 us) WWDG Window value = 80 means that the WWDG counter should be refreshed only when the counter is below 80 (and greater than 64/0x40) otherwise a reset will be generated. WWDG Counter value = 127, WWDG timeout = ~1024 us * 64 = 65 ms */ WwdgHandle.Instance = WWDG; WwdgHandle.Init.Prescaler = WWDG_PRESCALER_8; WwdgHandle.Init.Window = 80U; WwdgHandle.Init.Counter = 127U; if (HAL_WWDG_Init(&WwdgHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /* calculate delay to enter window. Add 1ms to secure round number to upper number Time to enter inside window Window timeout (in ms) = (127 - 80 + 1) * 1.024 = 49.152 ms */ delay = TimeoutCalculation((WwdgHandle.Init.Counter - WwdgHandle.Init.Window) + 1) + 1; /* Infinite loop */ while (1) { /* Toggle LED2 */ BSP_LED_Toggle(LED2); /* Insert calculated delay */ HAL_Delay(delay); /* Refresh WWDG */ if (HAL_WWDG_Refresh(&WwdgHandle) != HAL_OK) { Error_Handler(); } } } /** * @brief Timeout calculation function. * This function calculates any timeout related to * WWDG with given prescaler and system clock. * @param timevalue: period in term of WWDG counter cycle. * @retval None */ static uint32_t TimeoutCalculation(uint32_t timevalue) { uint32_t timeoutvalue = 0; uint32_t pclk1 = 0; uint32_t wdgtb = 0; /* considering APB divider is still 1, use HCLK value */ pclk1 = HAL_RCC_GetPCLK1Freq(); /* get prescaler */ wdgtb = (1 << ((WwdgHandle.Init.Prescaler) >> 7)); /* 2^WDGTB[1:0] */ /* calculate timeout */ timeoutvalue = ((4096 * wdgtb * timevalue) / (pclk1 / 1000)); return timeoutvalue; } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSI) * SYSCLK(Hz) = 64000000 * HCLK(Hz) = 64000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * PLLMUL = 16 * Flash Latency(WS) = 2 * @param None * @retval None */ void SystemClock_Config(void) { RCC_ClkInitTypeDef clkinitstruct = {0}; RCC_OscInitTypeDef oscinitstruct = {0}; /* Configure PLL ------------------------------------------------------*/ /* PLL configuration: PLLCLK = (HSI / 2) * PLLMUL = (8 / 2) * 16 = 64 MHz */ /* PREDIV1 configuration: PREDIV1CLK = PLLCLK / HSEPredivValue = 64 / 1 = 64 MHz */ /* Enable HSI and activate PLL with HSi_DIV2 as source */ oscinitstruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; oscinitstruct.HSEState = RCC_HSE_OFF; oscinitstruct.LSEState = RCC_LSE_OFF; oscinitstruct.HSIState = RCC_HSI_ON; oscinitstruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; oscinitstruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; oscinitstruct.PLL.PLLState = RCC_PLL_ON; oscinitstruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2; oscinitstruct.PLL.PLLMUL = RCC_PLL_MUL16; if (HAL_RCC_OscConfig(&oscinitstruct)!= HAL_OK) { /* Initialization Error */ while(1); } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ clkinitstruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); clkinitstruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; clkinitstruct.AHBCLKDivider = RCC_SYSCLK_DIV1; clkinitstruct.APB2CLKDivider = RCC_HCLK_DIV1; clkinitstruct.APB1CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&clkinitstruct, FLASH_LATENCY_2)!= HAL_OK) { /* Initialization Error */ while(1); } } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None */ static void Error_Handler(void) { /* Turn LED2 off */ BSP_LED_Off(LED2); while(1) { } } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\WWDG\WWDG_Example
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\WWDG\WWDG_Example\Src\stm32f1xx_hal_msp.c
/** ****************************************************************************** * @file WWDG/WWDG_Example/Src/stm32f1xx_hal_msp.c * @author MCD Application Team * @brief HAL MSP module. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @defgroup HAL_MSP * @brief HAL MSP module. * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /** @defgroup HAL_MSP_Private_Functions * @{ */ /** * @brief WWDG MSP Initialization * This function configures the hardware resources used in this example: * - Peripheral's clock enable * @param hwwdg: WWDG handle pointer * @retval None */ void HAL_WWDG_MspInit(WWDG_HandleTypeDef *hwwdg) { /* WWDG Peripheral clock enable */ __HAL_RCC_WWDG_CLK_ENABLE(); } /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\WWDG\WWDG_Example
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\WWDG\WWDG_Example\Src\stm32f1xx_it.c
/** ****************************************************************************** * @file WWDG/WWDG_Example/Src/stm32f1xx_it.c * @author MCD Application Team * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "stm32f1xx_it.h" /** @addtogroup STM32F1xx_HAL_Examples * @{ */ /** @addtogroup WWDG_Example * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /******************************************************************************/ /* Cortex-M3 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /** * @brief This function handles PendSVC exception. * @param None * @retval None */ void PendSV_Handler(void) { } /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { HAL_IncTick(); } /******************************************************************************/ /* STM32F1xx Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f1xx.s). */ /******************************************************************************/ /** * @brief This function handles External lines 10 to 15 interrupt request. * @param None * @retval None */ void EXTI15_10_IRQHandler(void) { /* As the following address is invalid (not mapped), a Hardfault exception will be generated with an infinite loop and when the WWDG counter falls to 63 the WWDG reset occurs */ *(__IO uint32_t *) 0xA0001000 = 0xFF; } /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\WWDG\WWDG_Example
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples\WWDG\WWDG_Example\Src\system_stm32f1xx.c
/** ****************************************************************************** * @file system_stm32f1xx.c * @author MCD Application Team * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File. * * 1. This file provides two functions and one global variable to be called from * user application: * - SystemInit(): Setups the system clock (System clock source, PLL Multiplier * factors, AHB/APBx prescalers and Flash settings). * This function is called at startup just after reset and * before branch to main program. This call is made inside * the "startup_stm32f1xx_xx.s" file. * * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used * by the user application to setup the SysTick * timer or configure other parameters. * * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must * be called whenever the core clock is changed * during program execution. * * 2. After each device reset the HSI (8 MHz) is used as system clock source. * Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to * configure the system clock before to branch to main program. * * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on * the product used), refer to "HSE_VALUE". * When HSE is used as system clock source, directly or through PLL, and you * are using different crystal you have to adapt the HSE value to your own * configuration. * ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32f1xx_system * @{ */ /** @addtogroup STM32F1xx_System_Private_Includes * @{ */ #include "stm32f1xx.h" /** * @} */ /** @addtogroup STM32F1xx_System_Private_TypesDefinitions * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Defines * @{ */ #if !defined (HSE_VALUE) #define HSE_VALUE ((uint32_t)8000000) /*!< Default value of the External oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSE_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE ((uint32_t)8000000) /*!< Default value of the Internal oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSI_VALUE */ /*!< Uncomment the following line if you need to use external SRAM */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /* #define DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /*!< Uncomment the following line if you need to relocate your vector Table in Internal SRAM. */ /* #define VECT_TAB_SRAM */ #define VECT_TAB_OFFSET 0x0 /*!< Vector Table base offset field. This value must be a multiple of 0x200. */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Macros * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Variables * @{ */ /* This variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetHCLKFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency Note: If you use this function to configure the system clock; then there is no need to call the 2 first functions listed above, since SystemCoreClock variable is updated automatically. */ uint32_t SystemCoreClock = 16000000; const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}; const uint8_t APBPrescTable[8] = {0, 0, 0, 0, 1, 2, 3, 4}; /** * @} */ /** @addtogroup STM32F1xx_System_Private_FunctionPrototypes * @{ */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM static void SystemInit_ExtMemCtl(void); #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Functions * @{ */ /** * @brief Setup the microcontroller system * Initialize the Embedded Flash Interface, the PLL and update the * SystemCoreClock variable. * @note This function should be used only after reset. * @param None * @retval None */ void SystemInit (void) { /* Reset the RCC clock configuration to the default reset state(for debug purpose) */ /* Set HSION bit */ RCC->CR |= (uint32_t)0x00000001; /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */ #if !defined(STM32F105xC) && !defined(STM32F107xC) RCC->CFGR &= (uint32_t)0xF8FF0000; #else RCC->CFGR &= (uint32_t)0xF0FF0000; #endif /* STM32F105xC */ /* Reset HSEON, CSSON and PLLON bits */ RCC->CR &= (uint32_t)0xFEF6FFFF; /* Reset HSEBYP bit */ RCC->CR &= (uint32_t)0xFFFBFFFF; /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */ RCC->CFGR &= (uint32_t)0xFF80FFFF; #if defined(STM32F105xC) || defined(STM32F107xC) /* Reset PLL2ON and PLL3ON bits */ RCC->CR &= (uint32_t)0xEBFFFFFF; /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x00FF0000; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000; #elif defined(STM32F100xB) || defined(STM32F100xE) /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000; #else /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; #endif /* STM32F105xC */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM SystemInit_ExtMemCtl(); #endif /* DATA_IN_ExtSRAM */ #endif #ifdef VECT_TAB_SRAM SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */ #else SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */ #endif } /** * @brief Update SystemCoreClock variable according to Clock Register Values. * The SystemCoreClock variable contains the core clock (HCLK), it can * be used by the user application to setup the SysTick timer or configure * other parameters. * * @note Each time the core clock (HCLK) changes, this function must be called * to update SystemCoreClock variable value. Otherwise, any configuration * based on this variable will be incorrect. * * @note - The system frequency computed by this function is not the real * frequency in the chip. It is calculated based on the predefined * constant and the selected clock source: * * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*) * * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**) * * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) * or HSI_VALUE(*) multiplied by the PLL factors. * * (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz) but the real value may vary depending on the variations * in voltage and temperature. * * (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz or 25 MHz, depending on the product used), user has to ensure * that HSE_VALUE is same as the real frequency of the crystal used. * Otherwise, this function may have wrong result. * * - The result of this function could be not correct when using fractional * value for HSE crystal. * @param None * @retval None */ void SystemCoreClockUpdate (void) { uint32_t tmp = 0, pllmull = 0, pllsource = 0; #if defined(STM32F105xC) || defined(STM32F107xC) uint32_t prediv1source = 0, prediv1factor = 0, prediv2factor = 0, pll2mull = 0; #endif /* STM32F105xC */ #if defined(STM32F100xB) || defined(STM32F100xE) uint32_t prediv1factor = 0; #endif /* STM32F100xB or STM32F100xE */ /* Get SYSCLK source -------------------------------------------------------*/ tmp = RCC->CFGR & RCC_CFGR_SWS; switch (tmp) { case 0x00: /* HSI used as system clock */ SystemCoreClock = HSI_VALUE; break; case 0x04: /* HSE used as system clock */ SystemCoreClock = HSE_VALUE; break; case 0x08: /* PLL used as system clock */ /* Get PLL clock source and multiplication factor ----------------------*/ pllmull = RCC->CFGR & RCC_CFGR_PLLMULL; pllsource = RCC->CFGR & RCC_CFGR_PLLSRC; #if !defined(STM32F105xC) && !defined(STM32F107xC) pllmull = ( pllmull >> 18) + 2; if (pllsource == 0x00) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1) * pllmull; } else { #if defined(STM32F100xB) || defined(STM32F100xE) prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1; /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; #else /* HSE selected as PLL clock entry */ if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET) {/* HSE oscillator clock divided by 2 */ SystemCoreClock = (HSE_VALUE >> 1) * pllmull; } else { SystemCoreClock = HSE_VALUE * pllmull; } #endif } #else pllmull = pllmull >> 18; if (pllmull != 0x0D) { pllmull += 2; } else { /* PLL multiplication factor = PLL input clock * 6.5 */ pllmull = 13 / 2; } if (pllsource == 0x00) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1) * pllmull; } else {/* PREDIV1 selected as PLL clock entry */ /* Get PREDIV1 clock source and division factor */ prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC; prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1; if (prediv1source == 0) { /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; } else {/* PLL2 clock selected as PREDIV1 clock entry */ /* Get PREDIV2 division factor and PLL2 multiplication factor */ prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4) + 1; pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8 ) + 2; SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull; } } #endif /* STM32F105xC */ break; default: SystemCoreClock = HSI_VALUE; break; } /* Compute HCLK clock frequency ----------------*/ /* Get HCLK prescaler */ tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)]; /* HCLK clock frequency */ SystemCoreClock >>= tmp; } #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /** * @brief Setup the external memory controller. Called in startup_stm32f1xx.s * before jump to __main * @param None * @retval None */ #ifdef DATA_IN_ExtSRAM /** * @brief Setup the external memory controller. * Called in startup_stm32f1xx_xx.s/.c before jump to main. * This function configures the external SRAM mounted on STM3210E-EVAL * board (STM32 High density devices). This SRAM will be used as program * data memory (including heap and stack). * @param None * @retval None */ void SystemInit_ExtMemCtl(void) { __IO uint32_t tmpreg; /*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is required, then adjust the Register Addresses */ /* Enable FSMC clock */ RCC->AHBENR = 0x00000114; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN); /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */ RCC->APB2ENR = 0x000001E0; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN); (void)(tmpreg); /* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/ /*---------------- SRAM Address lines configuration -------------------------*/ /*---------------- NOE and NWE configuration --------------------------------*/ /*---------------- NE3 configuration ----------------------------------------*/ /*---------------- NBL0, NBL1 configuration ---------------------------------*/ GPIOD->CRL = 0x44BB44BB; GPIOD->CRH = 0xBBBBBBBB; GPIOE->CRL = 0xB44444BB; GPIOE->CRH = 0xBBBBBBBB; GPIOF->CRL = 0x44BBBBBB; GPIOF->CRH = 0xBBBB4444; GPIOG->CRL = 0x44BBBBBB; GPIOG->CRH = 0x44444B44; /*---------------- FSMC Configuration ---------------------------------------*/ /*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/ FSMC_Bank1->BTCR[4] = 0x00001091; FSMC_Bank1->BTCR[5] = 0x00110212; } #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_AnalogWatchdog
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_AnalogWatchdog\Inc\main.h
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_AnalogWatchdog/Inc/main.h * @author MCD Application Team * @brief Header for main.c module ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __MAIN_H #define __MAIN_H /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_ll_bus.h" #include "stm32f1xx_ll_rcc.h" #include "stm32f1xx_ll_system.h" #include "stm32f1xx_ll_utils.h" #include "stm32f1xx_ll_cortex.h" #include "stm32f1xx_ll_gpio.h" #include "stm32f1xx_ll_exti.h" #include "stm32f1xx_ll_adc.h" #include "stm32f1xx_ll_pwr.h" #if defined(USE_FULL_ASSERT) #include "stm32_assert.h" #endif /* USE_FULL_ASSERT */ /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Define used to enable time-out management*/ #define USE_TIMEOUT 0 /** * @brief LED2 */ #define LED2_PIN LL_GPIO_PIN_5 #define LED2_GPIO_PORT GPIOA #define LED2_GPIO_CLK_ENABLE() LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOA) /** * @brief Toggle periods for various blinking modes */ #define LED_BLINK_FAST 200 #define LED_BLINK_SLOW 500 #define LED_BLINK_ERROR 1000 /** * @brief Key push-button */ #define USER_BUTTON_PIN LL_GPIO_PIN_13 #define USER_BUTTON_GPIO_PORT GPIOC #define USER_BUTTON_GPIO_CLK_ENABLE() LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOC) #define USER_BUTTON_EXTI_LINE LL_EXTI_LINE_13 #define USER_BUTTON_EXTI_IRQn EXTI15_10_IRQn #define USER_BUTTON_EXTI_LINE_ENABLE() LL_EXTI_EnableIT_0_31(USER_BUTTON_EXTI_LINE) #define USER_BUTTON_EXTI_FALLING_TRIG_ENABLE() LL_EXTI_EnableFallingTrig_0_31(USER_BUTTON_EXTI_LINE) #define USER_BUTTON_SYSCFG_SET_EXTI() do { \ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_AFIO); \ LL_GPIO_AF_SetEXTISource(LL_GPIO_AF_EXTI_PORTC, LL_GPIO_AF_EXTI_LINE13); \ } while(0) #define USER_BUTTON_IRQHANDLER EXTI15_10_IRQHandler /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ /* IRQ Handler treatment */ void UserButton_Callback(void); void AdcAnalogWatchdog1_Callback(void); #endif /* __MAIN_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_AnalogWatchdog
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_AnalogWatchdog\Inc\stm32f1xx_it.h
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_AnalogWatchdog/Inc/stm32f1xx_it.h * @author MCD Application Team * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_IT_H #define __STM32F1xx_IT_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); void USER_BUTTON_IRQHANDLER(void); void ADC1_IRQHandler(void); #ifdef __cplusplus } #endif #endif /* __STM32F1xx_IT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_AnalogWatchdog
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_AnalogWatchdog\Inc\stm32_assert.h
/** ****************************************************************************** * @file stm32_assert.h * @author MCD Application Team * @brief STM32 assert template file. * This file should be copied to the application folder and renamed * to stm32_assert.h. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32_ASSERT_H #define __STM32_ASSERT_H #ifdef __cplusplus extern "C" { #endif /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Includes ------------------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ #ifdef USE_FULL_ASSERT /** * @brief The assert_param macro is used for function's parameters check. * @param expr: If expr is false, it calls assert_failed function * which reports the name of the source file and the source * line number of the call that failed. * If expr is true, it returns no value. * @retval None */ #define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__)) /* Exported functions ------------------------------------------------------- */ void assert_failed(uint8_t* file, uint32_t line); #else #define assert_param(expr) ((void)0U) #endif /* USE_FULL_ASSERT */ #ifdef __cplusplus } #endif #endif /* __STM32_ASSERT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_AnalogWatchdog
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_AnalogWatchdog\Src\main.c
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_AnalogWatchdog/Src/main.c * @author MCD Application Team * @brief This example describes how to use a ADC peripheral * with ADC analog watchdog to monitor a channel and detect * when the corresponding conversion data is out of window thresholds. * This example is based on the STM32F1xx ADC LL API; * Peripheral initialization done using LL unitary services functions. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_LL_Examples * @{ */ /** @addtogroup ADC_AnalogWatchdog * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Definitions of ADC hardware constraints delays */ /* Note: Only ADC IP HW delays are defined in ADC LL driver driver, */ /* not timeout values: */ /* Timeout values for ADC operations are dependent to device clock */ /* configuration (system clock versus ADC clock), */ /* and therefore must be defined in user application. */ /* Refer to @ref ADC_LL_EC_HW_DELAYS for description of ADC timeout */ /* values definition. */ /* Timeout values for ADC operations. */ /* (enable settling time, disable settling time, ...) */ /* Values defined to be higher than worst cases: low clock frequency, */ /* maximum prescalers. */ /* Example of profile very low frequency : ADC clock frequency 12MHz */ /* prescaler 6, sampling time 1.5 ADC clock cycles, resolution 12 bits. */ /* - ADC enable time: maximum delay is 1 us */ /* (refer to device datasheet, parameter "tSTAB") */ /* - ADC disable time: maximum delay should be a few ADC clock cycles */ /* - ADC stop conversion time: maximum delay should be a few ADC clock */ /* cycles */ /* - ADC conversion time: with this hypothesis of clock settings, maximum */ /* delay will be 7us. */ /* (refer to device reference manual, section "Timing") */ /* Unit: ms */ #define ADC_CALIBRATION_TIMEOUT_MS ((uint32_t) 1) #define ADC_ENABLE_TIMEOUT_MS ((uint32_t) 1) #define ADC_DISABLE_TIMEOUT_MS ((uint32_t) 1) #define ADC_STOP_CONVERSION_TIMEOUT_MS ((uint32_t) 1) #define ADC_CONVERSION_TIMEOUT_MS ((uint32_t) 2) /* Delay between ADC enable and ADC end of calibration. */ /* Delay estimation in CPU cycles: Case of ADC calibration done */ /* immediately after ADC enable, ADC clock setting slow */ /* (LL_ADC_CLOCK_ASYNC_DIV32). Use a higher delay if ratio */ /* (CPU clock / ADC clock) is above 32. */ #define ADC_DELAY_ENABLE_CALIB_CPU_CYCLES (LL_ADC_DELAY_ENABLE_CALIB_ADC_CYCLES * 32) /* Definitions of environment analog values */ /* Value of analog reference voltage (Vref+), connected to analog voltage */ /* supply Vdda (unit: mV). */ #define VDDA_APPLI ((uint32_t)3300) /* Definitions of data related to this example */ /* Definition of ADCx analog watchdog window thresholds */ /* Value of ADC analog watchdog threshold high */ #define ADC_AWD_THRESHOLD_HIGH (__LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B)/2) /* Value of ADC analog watchdog threshold low */ #define ADC_AWD_THRESHOLD_LOW ((uint32_t) 0) /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Variable to report status of ADC analog watchdog 1: */ /* 0: ADC conversion data into AWD window */ /* 1: ADC conversion data out of AWD window */ __IO uint8_t ubAnalogWatchdog1Status = 0; /* Variable set into analog watchdog 1 interruption callback */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void Configure_ADC(void); void Activate_ADC(void); void LED_Init(void); void LED_On(void); void LED_Off(void); void LED_Blinking(uint32_t Period); void UserButton_Init(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { /* Configure the system clock to 72 MHz */ SystemClock_Config(); /* Initialize LED2 */ LED_Init(); /* Initialize button in EXTI mode */ UserButton_Init(); /* Configure ADC */ /* Note: This function configures the ADC but does not enable it. */ /* To enable it, use function "Activate_ADC()". */ /* This is intended to optimize power consumption: */ /* 1. ADC configuration can be done once at the beginning */ /* (ADC disabled, minimal power consumption) */ /* 2. ADC enable (higher power consumption) can be done just before */ /* ADC conversions needed. */ /* Then, possible to perform successive "Activate_ADC()", */ /* "Deactivate_ADC()", ..., without having to set again */ /* ADC configuration. */ Configure_ADC(); /* Activate ADC */ /* Perform ADC activation procedure to make it ready to convert. */ Activate_ADC(); /* Start ADC group regular conversion */ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 1) { LL_ADC_REG_StartConversionSWStart(ADC1); } else { /* Error: ADC conversion start could not be performed */ LED_Blinking(LED_BLINK_ERROR); } /* Infinite loop */ while (1) { /* Note: LED state depending on ADC analog watchdog 1 status */ /* and status variable "ubAnalogWatchdog1Status" */ /* are set into ADC analog watchdog 1 IRQ handler, */ /* refer to function "AdcAnalogWatchdog1_Callback()". */ /* After analog watchdog interruption, press on push button */ /* to rearm ADC analog watchdog to be ready for another trig, */ /* refer to function "UserButton_Callback()". */ } } /** * @brief Configure ADC (ADC instance: ADC1) and GPIO used by ADC channels. * @note In case re-use of this function outside of this example: * This function includes checks of ADC hardware constraints before * executing some configuration functions. * - In this example, all these checks are not necessary but are * implemented anyway to show the best practice usages * corresponding to reference manual procedure. * (On some STM32 series, setting of ADC features are not * conditioned to ADC state. However, in order to be compliant with * other STM32 series and to show the best practice usages, * ADC state is checked anyway with same constraints). * Software can be optimized by removing some of these checks, * if they are not relevant considering previous settings and actions * in user application. * - If ADC is not in the appropriate state to modify some parameters, * the setting of these parameters is bypassed without error * reporting: * it can be the expected behavior in case of recall of this * function to update only a few parameters (which update fulfills * the ADC state). * Otherwise, it is up to the user to set the appropriate error * reporting in user application. * @note Peripheral configuration is minimal configuration from reset values. * Thus, some useless LL unitary functions calls below are provided as * commented examples - setting is default configuration from reset. * @param None * @retval None */ void Configure_ADC(void) { /*## Configuration of GPIO used by ADC channels ############################*/ /* Note: On this STM32 device, ADC1 channel 4 is mapped on GPIO pin PA.04 */ /* Enable GPIO Clock */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOA); /* Configure GPIO in analog mode to be used as ADC input */ LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_4, LL_GPIO_MODE_ANALOG); /*## Configuration of NVIC #################################################*/ /* Configure NVIC to enable ADC1 interruptions */ NVIC_SetPriority(ADC1_IRQn, 0); NVIC_EnableIRQ(ADC1_IRQn); /*## Configuration of ADC ##################################################*/ /*## Configuration of ADC hierarchical scope: common to several ADC ########*/ /* Enable ADC clock (core clock) */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_ADC1); /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if(__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE() == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC measurement path to internal channels */ // LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_PATH_INTERNAL_NONE); /*## Configuration of ADC hierarchical scope: multimode ####################*/ /* Set ADC multimode configuration */ // LL_ADC_SetMultimode(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_INDEPENDENT); /* Set ADC multimode DMA transfer */ // LL_ADC_SetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_REG_DMA_EACH_ADC); /* Set ADC multimode: delay between 2 sampling phases */ // LL_ADC_SetMultiTwoSamplingDelay(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_TWOSMP_DELAY_1CYCLE); } /*## Configuration of ADC hierarchical scope: ADC instance #################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC conversion data alignment */ // LL_ADC_SetResolution(ADC1, LL_ADC_DATA_ALIGN_RIGHT); /* Set Set ADC sequencers scan mode, for all ADC groups */ /* (group regular, group injected). */ // LL_ADC_SetSequencersScanMode(ADC1, LL_ADC_SEQ_SCAN_DISABLE); } /*## Configuration of ADC hierarchical scope: ADC group regular ############*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Set ADC group regular trigger source */ LL_ADC_REG_SetTriggerSource(ADC1, LL_ADC_REG_TRIG_SOFTWARE); /* Set ADC group regular trigger polarity */ // LL_ADC_REG_SetTriggerEdge(ADC1, LL_ADC_REG_TRIG_EXT_RISING); /* Set ADC group regular continuous mode */ LL_ADC_REG_SetContinuousMode(ADC1, LL_ADC_REG_CONV_CONTINUOUS); /* Set ADC group regular conversion data transfer */ // LL_ADC_REG_SetDMATransfer(ADC1, LL_ADC_REG_DMA_TRANSFER_NONE); /* Set ADC group regular sequencer */ /* Note: On this STM32 series, ADC group regular sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_REG_SetSequencerLength()". */ /* Set ADC group regular sequencer length and scan direction */ LL_ADC_REG_SetSequencerLength(ADC1, LL_ADC_REG_SEQ_SCAN_DISABLE); /* Set ADC group regular sequencer discontinuous mode */ // LL_ADC_REG_SetSequencerDiscont(ADC1, LL_ADC_REG_SEQ_DISCONT_DISABLE); /* Set ADC group regular sequence: channel on the selected sequence rank. */ LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_1, LL_ADC_CHANNEL_4); } /*## Configuration of ADC hierarchical scope: ADC group injected ###########*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC group injected trigger source */ // LL_ADC_INJ_SetTriggerSource(ADC1, LL_ADC_INJ_TRIG_SOFTWARE); /* Set ADC group injected trigger polarity */ // LL_ADC_INJ_SetTriggerEdge(ADC1, LL_ADC_INJ_TRIG_EXT_RISING); /* Set ADC group injected conversion trigger */ // LL_ADC_INJ_SetTrigAuto(ADC1, LL_ADC_INJ_TRIG_INDEPENDENT); /* Set ADC group injected sequencer */ /* Note: On this STM32 series, ADC group injected sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_INJ_SetSequencerLength()". */ /* Set ADC group injected sequencer length and scan direction */ // LL_ADC_INJ_SetSequencerLength(ADC1, LL_ADC_INJ_SEQ_SCAN_DISABLE); /* Set ADC group injected sequencer discontinuous mode */ // LL_ADC_INJ_SetSequencerDiscont(ADC1, LL_ADC_INJ_SEQ_DISCONT_DISABLE); /* Set ADC group injected sequence: channel on the selected sequence rank. */ // LL_ADC_INJ_SetSequencerRanks(ADC1, LL_ADC_INJ_RANK_1, LL_ADC_CHANNEL_4); } /*## Configuration of ADC hierarchical scope: channels #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Set ADC channels sampling time */ /* Note: Considering interruption occurring after each ADC conversion */ /* when ADC conversion is out of the analog watchdog window */ /* selected (IT from ADC analog watchdog), */ /* select sampling time and ADC clock with sufficient */ /* duration to not create an overhead situation in IRQHandler. */ LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_4, LL_ADC_SAMPLINGTIME_41CYCLES_5); } /*## Configuration of ADC transversal scope: analog watchdog ###############*/ /* Note: On this STM32 series, there is only 1 analog watchdog available. */ /* Set ADC analog watchdog: channels to be monitored */ LL_ADC_SetAnalogWDMonitChannels(ADC1, LL_ADC_AWD_ALL_CHANNELS_REG); /* Set ADC analog watchdog: thresholds */ LL_ADC_SetAnalogWDThresholds(ADC1, LL_ADC_AWD_THRESHOLD_HIGH, ADC_AWD_THRESHOLD_HIGH); LL_ADC_SetAnalogWDThresholds(ADC1, LL_ADC_AWD_THRESHOLD_LOW, ADC_AWD_THRESHOLD_LOW); /*## Configuration of ADC transversal scope: oversampling ##################*/ /* Note: Feature not available on this STM32 series */ /*## Configuration of ADC interruptions ####################################*/ /* Enable ADC analog watchdog 1 interruption */ LL_ADC_EnableIT_AWD1(ADC1); } /** * @brief Perform ADC activation procedure to make it ready to convert * (ADC instance: ADC1). * @note Operations: * - ADC instance * - Run ADC self calibration * - Enable ADC * - ADC group regular * none: ADC conversion start-stop to be performed * after this function * - ADC group injected * none: ADC conversion start-stop to be performed * after this function * @param None * @retval None */ void Activate_ADC(void) { __IO uint32_t wait_loop_index = 0; #if (USE_TIMEOUT == 1) uint32_t Timeout = 0; /* Variable used for timeout management */ #endif /* USE_TIMEOUT */ /*## Operation on ADC hierarchical scope: ADC instance #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Enable ADC */ LL_ADC_Enable(ADC1); /* Delay between ADC enable and ADC start of calibration. */ /* Note: Variable divided by 2 to compensate partially */ /* CPU processing cycles (depends on compilation optimization). */ wait_loop_index = (ADC_DELAY_ENABLE_CALIB_CPU_CYCLES >> 1); while(wait_loop_index != 0) { wait_loop_index--; } /* Run ADC self calibration */ LL_ADC_StartCalibration(ADC1); /* Poll for ADC effectively calibrated */ #if (USE_TIMEOUT == 1) Timeout = ADC_CALIBRATION_TIMEOUT_MS; #endif /* USE_TIMEOUT */ while (LL_ADC_IsCalibrationOnGoing(ADC1) != 0) { #if (USE_TIMEOUT == 1) /* Check Systick counter flag to decrement the time-out value */ if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { /* Time-out occurred. Set LED to blinking mode */ LED_Blinking(LED_BLINK_ERROR); } } #endif /* USE_TIMEOUT */ } } /*## Operation on ADC hierarchical scope: ADC group regular ################*/ /* Note: No operation on ADC group regular performed here. */ /* ADC group regular conversions to be performed after this function */ /* using function: */ /* "LL_ADC_REG_StartConversion();" */ /*## Operation on ADC hierarchical scope: ADC group injected ###############*/ /* Note: No operation on ADC group injected performed here. */ /* ADC group injected conversions to be performed after this function */ /* using function: */ /* "LL_ADC_INJ_StartConversion();" */ } /** * @brief Initialize LED2. * @param None * @retval None */ void LED_Init(void) { /* Enable the LED2 Clock */ LED2_GPIO_CLK_ENABLE(); /* Configure IO in output push-pull mode to drive external LED2 */ LL_GPIO_SetPinMode(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_MODE_OUTPUT); /* Reset value is LL_GPIO_OUTPUT_PUSHPULL */ //LL_GPIO_SetPinOutputType(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_OUTPUT_PUSHPULL); /* Reset value is LL_GPIO_SPEED_FREQ_LOW */ //LL_GPIO_SetPinSpeed(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_SPEED_FREQ_LOW); /* Reset value is LL_GPIO_PULL_DOWN */ //LL_GPIO_SetPinPull(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_PULL_DOWN); } /** * @brief Turn-on LED2. * @param None * @retval None */ void LED_On(void) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN); } /** * @brief Turn-off LED2. * @param None * @retval None */ void LED_Off(void) { /* Turn LED2 off */ LL_GPIO_ResetOutputPin(LED2_GPIO_PORT, LED2_PIN); } /** * @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter). * @param Period : Period of time (in ms) between each toggling of LED * This parameter can be user defined values. Pre-defined values used in that example are : * @arg LED_BLINK_FAST : Fast Blinking * @arg LED_BLINK_SLOW : Slow Blinking * @arg LED_BLINK_ERROR : Error specific Blinking * @retval None */ void LED_Blinking(uint32_t Period) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN); /* Toggle IO in an infinite loop */ while (1) { LL_GPIO_TogglePin(LED2_GPIO_PORT, LED2_PIN); LL_mDelay(Period); } } /** * @brief Configures User push-button in EXTI Line Mode. * @param None * @retval None */ void UserButton_Init(void) { /* Enable the BUTTON Clock */ USER_BUTTON_GPIO_CLK_ENABLE(); /* Configure GPIO for BUTTON */ LL_GPIO_SetPinMode(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_MODE_INPUT); LL_GPIO_SetPinPull(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_PULL_DOWN); /* if(Button_Mode == BUTTON_MODE_EXTI) */ { /* Connect External Line to the GPIO */ USER_BUTTON_SYSCFG_SET_EXTI(); /* Enable a rising trigger EXTI line 13 Interrupt */ USER_BUTTON_EXTI_LINE_ENABLE(); USER_BUTTON_EXTI_FALLING_TRIG_ENABLE(); /* Configure NVIC for USER_BUTTON_EXTI_IRQn */ NVIC_EnableIRQ(USER_BUTTON_EXTI_IRQn); NVIC_SetPriority(USER_BUTTON_EXTI_IRQn,0x03); } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 72000000 * HCLK(Hz) = 72000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSE Frequency(Hz) = 8000000 * PLLMUL = 9 * Flash Latency(WS) = 2 * @param None * @retval None */ void SystemClock_Config(void) { /* Set FLASH latency */ LL_FLASH_SetLatency(LL_FLASH_LATENCY_2); /* Enable HSE oscillator */ LL_RCC_HSE_EnableBypass(); LL_RCC_HSE_Enable(); while(LL_RCC_HSE_IsReady() != 1) { }; /* Main PLL configuration and activation */ LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE_DIV_1, LL_RCC_PLL_MUL_9); LL_RCC_PLL_Enable(); while(LL_RCC_PLL_IsReady() != 1) { }; /* Sysclk activation on the main PLL */ LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL); while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { }; /* Set APB1 & APB2 prescaler*/ LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_2); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1); /* Set systick to 1ms in using frequency set to 72MHz */ LL_Init1msTick(72000000); /* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */ LL_SetSystemCoreClock(72000000); } /******************************************************************************/ /* USER IRQ HANDLER TREATMENT */ /******************************************************************************/ /** * @brief Function to manage IRQ Handler * @param None * @retval None */ void UserButton_Callback(void) { /* Rearm ADC analog watchdog to be ready for another trig */ /* Turn LED2 off */ LED_Off(); /* Reset status variable of ADC analog watchdog 1 */ ubAnalogWatchdog1Status = 0; /* Clear flag ADC analog watchdog 1 */ LL_ADC_ClearFlag_AWD1(ADC1); /* Enable ADC analog watchdog 1 interruption */ LL_ADC_EnableIT_AWD1(ADC1); } /** * @brief ADC analog watchdog 1 interruption callback * @note This function is executed when the ADC conversion data is * out of analog watchdog 1 window thresholds. * @retval None */ void AdcAnalogWatchdog1_Callback() { /* Disable ADC analog watchdog 1 interruption */ LL_ADC_DisableIT_AWD1(ADC1); /* Update status variable of ADC analog watchdog 1 */ ubAnalogWatchdog1Status = 1; /* Set LED depending on ADC analog watchdog status */ /* - Turn-on if voltage is out of AWD window */ LED_On(); } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_AnalogWatchdog
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_AnalogWatchdog\Src\stm32f1xx_it.c
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_AnalogWatchdog/Src/stm32f1xx_it.c * @author MCD Application Team * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_it.h" /** @addtogroup STM32F1xx_LL_Examples * @{ */ /** @addtogroup ADC_AnalogWatchdog * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /******************************************************************************/ /* Cortex-M3 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /** * @brief This function handles PendSVC exception. * @param None * @retval None */ void PendSV_Handler(void) { } /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { } /******************************************************************************/ /* STM32F1xx Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f1xx.s). */ /******************************************************************************/ /** * @brief This function handles external lines 10 to 15 interrupt request. * @param None * @retval None */ void USER_BUTTON_IRQHANDLER(void) { /* Manage Flags */ if(LL_EXTI_IsActiveFlag_0_31(USER_BUTTON_EXTI_LINE) != RESET) { /* Call interruption treatment function */ UserButton_Callback(); /* Clear EXTI line flag */ /* Note: Clear flag after callback function to minimize user button */ /* switch debounce parasitics. */ LL_EXTI_ClearFlag_0_31(USER_BUTTON_EXTI_LINE); } } /** * @brief This function handles ADC1 interrupt request. * @param None * @retval None */ void ADC1_IRQHandler(void) { /* Check whether ADC analog watchdog 1 caused the ADC interruption */ if(LL_ADC_IsActiveFlag_AWD1(ADC1) != 0) { /* Clear flag ADC analog watchdog 1 */ LL_ADC_ClearFlag_AWD1(ADC1); /* Call interruption treatment function */ AdcAnalogWatchdog1_Callback(); } } /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_AnalogWatchdog
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_AnalogWatchdog\Src\system_stm32f1xx.c
/** ****************************************************************************** * @file system_stm32f1xx.c * @author MCD Application Team * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File. * * 1. This file provides two functions and one global variable to be called from * user application: * - SystemInit(): Setups the system clock (System clock source, PLL Multiplier * factors, AHB/APBx prescalers and Flash settings). * This function is called at startup just after reset and * before branch to main program. This call is made inside * the "startup_stm32f1xx_xx.s" file. * * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used * by the user application to setup the SysTick * timer or configure other parameters. * * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must * be called whenever the core clock is changed * during program execution. * * 2. After each device reset the HSI (8 MHz) is used as system clock source. * Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to * configure the system clock before to branch to main program. * * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on * the product used), refer to "HSE_VALUE". * When HSE is used as system clock source, directly or through PLL, and you * are using different crystal you have to adapt the HSE value to your own * configuration. * ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32f1xx_system * @{ */ /** @addtogroup STM32F1xx_System_Private_Includes * @{ */ #include "stm32f1xx.h" /** * @} */ /** @addtogroup STM32F1xx_System_Private_TypesDefinitions * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Defines * @{ */ #if !defined (HSE_VALUE) #define HSE_VALUE 8000000U /*!< Default value of the External oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSE_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE 8000000U /*!< Default value of the Internal oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSI_VALUE */ /*!< Uncomment the following line if you need to use external SRAM */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /* #define DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /*!< Uncomment the following line if you need to relocate your vector Table in Internal SRAM. */ /* #define VECT_TAB_SRAM */ #define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field. This value must be a multiple of 0x200. */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Macros * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Variables * @{ */ /* This variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetHCLKFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency Note: If you use this function to configure the system clock; then there is no need to call the 2 first functions listed above, since SystemCoreClock variable is updated automatically. */ uint32_t SystemCoreClock = 16000000; const uint8_t AHBPrescTable[16U] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}; const uint8_t APBPrescTable[8U] = {0, 0, 0, 0, 1, 2, 3, 4}; /** * @} */ /** @addtogroup STM32F1xx_System_Private_FunctionPrototypes * @{ */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM static void SystemInit_ExtMemCtl(void); #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Functions * @{ */ /** * @brief Setup the microcontroller system * Initialize the Embedded Flash Interface, the PLL and update the * SystemCoreClock variable. * @note This function should be used only after reset. * @param None * @retval None */ void SystemInit (void) { /* Reset the RCC clock configuration to the default reset state(for debug purpose) */ /* Set HSION bit */ RCC->CR |= 0x00000001U; /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */ #if !defined(STM32F105xC) && !defined(STM32F107xC) RCC->CFGR &= 0xF8FF0000U; #else RCC->CFGR &= 0xF0FF0000U; #endif /* STM32F105xC */ /* Reset HSEON, CSSON and PLLON bits */ RCC->CR &= 0xFEF6FFFFU; /* Reset HSEBYP bit */ RCC->CR &= 0xFFFBFFFFU; /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */ RCC->CFGR &= 0xFF80FFFFU; #if defined(STM32F105xC) || defined(STM32F107xC) /* Reset PLL2ON and PLL3ON bits */ RCC->CR &= 0xEBFFFFFFU; /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x00FF0000U; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000U; #elif defined(STM32F100xB) || defined(STM32F100xE) /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000U; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000U; #else /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000U; #endif /* STM32F105xC */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM SystemInit_ExtMemCtl(); #endif /* DATA_IN_ExtSRAM */ #endif #ifdef VECT_TAB_SRAM SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */ #else SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */ #endif } /** * @brief Update SystemCoreClock variable according to Clock Register Values. * The SystemCoreClock variable contains the core clock (HCLK), it can * be used by the user application to setup the SysTick timer or configure * other parameters. * * @note Each time the core clock (HCLK) changes, this function must be called * to update SystemCoreClock variable value. Otherwise, any configuration * based on this variable will be incorrect. * * @note - The system frequency computed by this function is not the real * frequency in the chip. It is calculated based on the predefined * constant and the selected clock source: * * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*) * * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**) * * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) * or HSI_VALUE(*) multiplied by the PLL factors. * * (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz) but the real value may vary depending on the variations * in voltage and temperature. * * (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz or 25 MHz, depending on the product used), user has to ensure * that HSE_VALUE is same as the real frequency of the crystal used. * Otherwise, this function may have wrong result. * * - The result of this function could be not correct when using fractional * value for HSE crystal. * @param None * @retval None */ void SystemCoreClockUpdate (void) { uint32_t tmp = 0U, pllmull = 0U, pllsource = 0U; #if defined(STM32F105xC) || defined(STM32F107xC) uint32_t prediv1source = 0U, prediv1factor = 0U, prediv2factor = 0U, pll2mull = 0U; #endif /* STM32F105xC */ #if defined(STM32F100xB) || defined(STM32F100xE) uint32_t prediv1factor = 0U; #endif /* STM32F100xB or STM32F100xE */ /* Get SYSCLK source -------------------------------------------------------*/ tmp = RCC->CFGR & RCC_CFGR_SWS; switch (tmp) { case 0x00U: /* HSI used as system clock */ SystemCoreClock = HSI_VALUE; break; case 0x04U: /* HSE used as system clock */ SystemCoreClock = HSE_VALUE; break; case 0x08U: /* PLL used as system clock */ /* Get PLL clock source and multiplication factor ----------------------*/ pllmull = RCC->CFGR & RCC_CFGR_PLLMULL; pllsource = RCC->CFGR & RCC_CFGR_PLLSRC; #if !defined(STM32F105xC) && !defined(STM32F107xC) pllmull = ( pllmull >> 18U) + 2U; if (pllsource == 0x00U) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1U) * pllmull; } else { #if defined(STM32F100xB) || defined(STM32F100xE) prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U; /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; #else /* HSE selected as PLL clock entry */ if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET) {/* HSE oscillator clock divided by 2 */ SystemCoreClock = (HSE_VALUE >> 1U) * pllmull; } else { SystemCoreClock = HSE_VALUE * pllmull; } #endif } #else pllmull = pllmull >> 18U; if (pllmull != 0x0DU) { pllmull += 2U; } else { /* PLL multiplication factor = PLL input clock * 6.5 */ pllmull = 13U / 2U; } if (pllsource == 0x00U) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1U) * pllmull; } else {/* PREDIV1 selected as PLL clock entry */ /* Get PREDIV1 clock source and division factor */ prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC; prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U; if (prediv1source == 0U) { /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; } else {/* PLL2 clock selected as PREDIV1 clock entry */ /* Get PREDIV2 division factor and PLL2 multiplication factor */ prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4U) + 1U; pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8U) + 2U; SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull; } } #endif /* STM32F105xC */ break; default: SystemCoreClock = HSI_VALUE; break; } /* Compute HCLK clock frequency ----------------*/ /* Get HCLK prescaler */ tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4U)]; /* HCLK clock frequency */ SystemCoreClock >>= tmp; } #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /** * @brief Setup the external memory controller. Called in startup_stm32f1xx.s * before jump to __main * @param None * @retval None */ #ifdef DATA_IN_ExtSRAM /** * @brief Setup the external memory controller. * Called in startup_stm32f1xx_xx.s/.c before jump to main. * This function configures the external SRAM mounted on STM3210E-EVAL * board (STM32 High density devices). This SRAM will be used as program * data memory (including heap and stack). * @param None * @retval None */ void SystemInit_ExtMemCtl(void) { __IO uint32_t tmpreg; /*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is required, then adjust the Register Addresses */ /* Enable FSMC clock */ RCC->AHBENR = 0x00000114U; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN); /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */ RCC->APB2ENR = 0x000001E0U; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN); (void)(tmpreg); /* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/ /*---------------- SRAM Address lines configuration -------------------------*/ /*---------------- NOE and NWE configuration --------------------------------*/ /*---------------- NE3 configuration ----------------------------------------*/ /*---------------- NBL0, NBL1 configuration ---------------------------------*/ GPIOD->CRL = 0x44BB44BBU; GPIOD->CRH = 0xBBBBBBBBU; GPIOE->CRL = 0xB44444BBU; GPIOE->CRH = 0xBBBBBBBBU; GPIOF->CRL = 0x44BBBBBBU; GPIOF->CRH = 0xBBBB4444U; GPIOG->CRL = 0x44BBBBBBU; GPIOG->CRH = 0x444B4B44U; /*---------------- FSMC Configuration ---------------------------------------*/ /*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/ FSMC_Bank1->BTCR[4U] = 0x00001091U; FSMC_Bank1->BTCR[5U] = 0x00110212U; } #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW\Inc\main.h
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_ContinuousConversion_TriggerSW/Inc/main.h * @author MCD Application Team * @brief Header for main.c module ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __MAIN_H #define __MAIN_H /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_ll_bus.h" #include "stm32f1xx_ll_rcc.h" #include "stm32f1xx_ll_system.h" #include "stm32f1xx_ll_utils.h" #include "stm32f1xx_ll_cortex.h" #include "stm32f1xx_ll_gpio.h" #include "stm32f1xx_ll_exti.h" #include "stm32f1xx_ll_adc.h" #include "stm32f1xx_ll_pwr.h" #if defined(USE_FULL_ASSERT) #include "stm32_assert.h" #endif /* USE_FULL_ASSERT */ /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Define used to enable time-out management*/ #define USE_TIMEOUT 0 /** * @brief LED2 */ #define LED2_PIN LL_GPIO_PIN_5 #define LED2_GPIO_PORT GPIOA #define LED2_GPIO_CLK_ENABLE() LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOA) /** * @brief Toggle periods for various blinking modes */ #define LED_BLINK_FAST 200 #define LED_BLINK_SLOW 500 #define LED_BLINK_ERROR 1000 /** * @brief Key push-button */ #define USER_BUTTON_PIN LL_GPIO_PIN_13 #define USER_BUTTON_GPIO_PORT GPIOC #define USER_BUTTON_GPIO_CLK_ENABLE() LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOC) #define USER_BUTTON_EXTI_LINE LL_EXTI_LINE_13 #define USER_BUTTON_EXTI_IRQn EXTI15_10_IRQn #define USER_BUTTON_EXTI_LINE_ENABLE() LL_EXTI_EnableIT_0_31(USER_BUTTON_EXTI_LINE) #define USER_BUTTON_EXTI_FALLING_TRIG_ENABLE() LL_EXTI_EnableFallingTrig_0_31(USER_BUTTON_EXTI_LINE) #define USER_BUTTON_SYSCFG_SET_EXTI() do { \ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_AFIO); \ LL_GPIO_AF_SetEXTISource(LL_GPIO_AF_EXTI_PORTC, LL_GPIO_AF_EXTI_LINE13); \ } while(0) #define USER_BUTTON_IRQHANDLER EXTI15_10_IRQHandler /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ /* IRQ Handler treatment */ void UserButton_Callback(void); #endif /* __MAIN_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW\Inc\stm32f1xx_it.h
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_ContinuousConversion_TriggerSW/Inc/stm32f1xx_it.h * @author MCD Application Team * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_IT_H #define __STM32F1xx_IT_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); void USER_BUTTON_IRQHANDLER(void); #ifdef __cplusplus } #endif #endif /* __STM32F1xx_IT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW\Inc\stm32_assert.h
/** ****************************************************************************** * @file stm32_assert.h * @author MCD Application Team * @brief STM32 assert template file. * This file should be copied to the application folder and renamed * to stm32_assert.h. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32_ASSERT_H #define __STM32_ASSERT_H #ifdef __cplusplus extern "C" { #endif /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Includes ------------------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ #ifdef USE_FULL_ASSERT /** * @brief The assert_param macro is used for function's parameters check. * @param expr: If expr is false, it calls assert_failed function * which reports the name of the source file and the source * line number of the call that failed. * If expr is true, it returns no value. * @retval None */ #define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__)) /* Exported functions ------------------------------------------------------- */ void assert_failed(uint8_t* file, uint32_t line); #else #define assert_param(expr) ((void)0U) #endif /* USE_FULL_ASSERT */ #ifdef __cplusplus } #endif #endif /* __STM32_ASSERT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW\Src\main.c
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_ContinuousConversion_TriggerSW/Src/main.c * @author MCD Application Team * @brief This example describes how to use a ADC peripheral to perform * continuous ADC conversions of a channel, from a SW start. * This example is based on the STM32F1xx ADC LL API; * Peripheral initialization done using LL unitary services functions. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_LL_Examples * @{ */ /** @addtogroup ADC_ContinuousConversion_TriggerSW * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Definitions of ADC hardware constraints delays */ /* Note: Only ADC IP HW delays are defined in ADC LL driver driver, */ /* not timeout values: */ /* Timeout values for ADC operations are dependent to device clock */ /* configuration (system clock versus ADC clock), */ /* and therefore must be defined in user application. */ /* Refer to @ref ADC_LL_EC_HW_DELAYS for description of ADC timeout */ /* values definition. */ /* Timeout values for ADC operations. */ /* (enable settling time, disable settling time, ...) */ /* Values defined to be higher than worst cases: low clock frequency, */ /* maximum prescalers. */ /* Example of profile very low frequency : ADC clock frequency 12MHz */ /* prescaler 6, sampling time 1.5 ADC clock cycles, resolution 12 bits. */ /* - ADC enable time: maximum delay is 1 us */ /* (refer to device datasheet, parameter "tSTAB") */ /* - ADC disable time: maximum delay should be a few ADC clock cycles */ /* - ADC stop conversion time: maximum delay should be a few ADC clock */ /* cycles */ /* - ADC conversion time: with this hypothesis of clock settings, maximum */ /* delay will be 7us. */ /* (refer to device reference manual, section "Timing") */ /* Unit: ms */ #define ADC_CALIBRATION_TIMEOUT_MS ((uint32_t) 1) #define ADC_ENABLE_TIMEOUT_MS ((uint32_t) 1) #define ADC_DISABLE_TIMEOUT_MS ((uint32_t) 1) #define ADC_STOP_CONVERSION_TIMEOUT_MS ((uint32_t) 1) #define ADC_CONVERSION_TIMEOUT_MS ((uint32_t) 2) /* Delay between ADC enable and ADC end of calibration. */ /* Delay estimation in CPU cycles: Case of ADC calibration done */ /* immediately after ADC enable, ADC clock setting slow */ /* (LL_ADC_CLOCK_ASYNC_DIV32). Use a higher delay if ratio */ /* (CPU clock / ADC clock) is above 32. */ #define ADC_DELAY_ENABLE_CALIB_CPU_CYCLES (LL_ADC_DELAY_ENABLE_CALIB_ADC_CYCLES * 32) /* Definitions of environment analog values */ /* Value of analog reference voltage (Vref+), connected to analog voltage */ /* supply Vdda (unit: mV). */ #define VDDA_APPLI ((uint32_t)3300) /* Definitions of data related to this example */ /* ADC unitary conversion timeout */ /* Considering ADC settings, duration of 1 ADC conversion should always */ /* be lower than 1ms. */ #define ADC_UNITARY_CONVERSION_TIMEOUT_MS ((uint32_t) 1) /* Init variable out of expected ADC conversion data range */ #define VAR_CONVERTED_DATA_INIT_VALUE (__LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B) + 1) /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ __IO uint32_t ubUserButtonPressed = 0; /* Variables for ADC conversion data */ __IO uint16_t uhADCxConvertedData = VAR_CONVERTED_DATA_INIT_VALUE; /* ADC group regular conversion data */ /* Variables for ADC conversion data computation to physical values */ __IO uint16_t uhADCxConvertedData_Voltage_mVolt = 0; /* Value of voltage calculated from ADC conversion data (unit: mV) */ /* Variable to report status of ADC group regular unitary conversion */ /* 0: ADC group regular unitary conversion is not completed */ /* 1: ADC group regular unitary conversion is completed */ /* 2: ADC group regular unitary conversion has not been started yet */ /* (initial state) */ __IO uint8_t ubAdcGrpRegularUnitaryConvStatus = 2; /* Variable set into ADC interruption callback */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void Configure_ADC(void); void Activate_ADC(void); void ConversionStartPoll_ADC_GrpRegular(void); void LED_Init(void); void LED_On(void); void LED_Off(void); void LED_Blinking(uint32_t Period); void UserButton_Init(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { /* Configure the system clock to 72 MHz */ SystemClock_Config(); /* Initialize LED2 */ LED_Init(); /* Initialize button in EXTI mode */ UserButton_Init(); /* Configure ADC */ /* Note: This function configures the ADC but does not enable it. */ /* To enable it, use function "Activate_ADC()". */ /* This is intended to optimize power consumption: */ /* 1. ADC configuration can be done once at the beginning */ /* (ADC disabled, minimal power consumption) */ /* 2. ADC enable (higher power consumption) can be done just before */ /* ADC conversions needed. */ /* Then, possible to perform successive "Activate_ADC()", */ /* "Deactivate_ADC()", ..., without having to set again */ /* ADC configuration. */ Configure_ADC(); /* Activate ADC */ /* Perform ADC activation procedure to make it ready to convert. */ Activate_ADC(); /* Wait for user press on push button */ while (ubUserButtonPressed != 1) { } ubUserButtonPressed = 0; /* Turn LED off before performing a new ADC conversion start */ LED_Off(); /* Reset status variable of ADC unitary conversion before performing */ /* a new ADC conversion start. */ /* Note: Optionally, for this example purpose, check ADC unitary */ /* conversion status before starting another ADC conversion. */ if (ubAdcGrpRegularUnitaryConvStatus != 0) { ubAdcGrpRegularUnitaryConvStatus = 0; } /* Init variable containing ADC conversion data */ uhADCxConvertedData = VAR_CONVERTED_DATA_INIT_VALUE; /* Perform ADC group regular conversion start, poll for conversion */ /* completion. */ ConversionStartPoll_ADC_GrpRegular(); /* Retrieve ADC conversion data */ /* (data scale corresponds to ADC resolution: 12 bits) */ uhADCxConvertedData = LL_ADC_REG_ReadConversionData12(ADC1); /* Computation of ADC conversions raw data to physical values */ /* using LL ADC driver helper macro. */ uhADCxConvertedData_Voltage_mVolt = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, uhADCxConvertedData, LL_ADC_RESOLUTION_12B); /* Update status variable of ADC unitary conversion */ ubAdcGrpRegularUnitaryConvStatus = 1; /* Set LED depending on ADC unitary conversion status */ /* - Turn-on if ADC unitary conversion is completed */ /* - Turn-off if ADC unitary conversion is not completed */ LED_On(); /* Infinite loop */ while (1) { /* Note: At this step, ADC is performing ADC conversions continuously, */ /* indefinitely (ADC continuous mode enabled in this example). */ /* Main program reads frequently ADC conversion data */ /* (without waiting for end of each conversion: software reads data */ /* when main program execution pointer is available and can let */ /* some ADC conversions data unread and overwritten by newer data) */ /* and stores it into the same variable. */ /* Retrieve ADC conversion data */ uhADCxConvertedData = LL_ADC_REG_ReadConversionData12(ADC1); /* Computation of ADC conversions raw data to physical values */ /* using LL ADC driver helper macro. */ uhADCxConvertedData_Voltage_mVolt = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, uhADCxConvertedData, LL_ADC_RESOLUTION_12B); } /* Note: ADC conversion data is stored into variable */ /* "uhADCxConvertedData". */ /* (for debug: see variable content into watch window). */ /* Note: ADC conversion data are computed to physical values */ /* into variable "uhADCxConvertedData_Voltage_mVolt" */ /* using ADC LL driver helper macro "__LL_ADC_CALC_DATA_TO_VOLTAGE()".*/ /* (for debug: see variable content into watch window). */ } /** * @brief Configure ADC (ADC instance: ADC1) and GPIO used by ADC channels. * @note In case re-use of this function outside of this example: * This function includes checks of ADC hardware constraints before * executing some configuration functions. * - In this example, all these checks are not necessary but are * implemented anyway to show the best practice usages * corresponding to reference manual procedure. * (On some STM32 series, setting of ADC features are not * conditioned to ADC state. However, in order to be compliant with * other STM32 series and to show the best practice usages, * ADC state is checked anyway with same constraints). * Software can be optimized by removing some of these checks, * if they are not relevant considering previous settings and actions * in user application. * - If ADC is not in the appropriate state to modify some parameters, * the setting of these parameters is bypassed without error * reporting: * it can be the expected behavior in case of recall of this * function to update only a few parameters (which update fulfills * the ADC state). * Otherwise, it is up to the user to set the appropriate error * reporting in user application. * @note Peripheral configuration is minimal configuration from reset values. * Thus, some useless LL unitary functions calls below are provided as * commented examples - setting is default configuration from reset. * @param None * @retval None */ void Configure_ADC(void) { /*## Configuration of GPIO used by ADC channels ############################*/ /* Note: On this STM32 device, ADC1 channel 4 is mapped on GPIO pin PA.04 */ /* Enable GPIO Clock */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOA); /* Configure GPIO in analog mode to be used as ADC input */ LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_4, LL_GPIO_MODE_ANALOG); /*## Configuration of NVIC #################################################*/ /* Configure NVIC to enable ADC1 interruptions */ NVIC_SetPriority(ADC1_IRQn, 0); NVIC_EnableIRQ(ADC1_IRQn); /*## Configuration of ADC ##################################################*/ /*## Configuration of ADC hierarchical scope: common to several ADC ########*/ /* Enable ADC clock (core clock) */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_ADC1); /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if(__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE() == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC measurement path to internal channels */ // LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_PATH_INTERNAL_NONE); /*## Configuration of ADC hierarchical scope: multimode ####################*/ /* Set ADC multimode configuration */ // LL_ADC_SetMultimode(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_INDEPENDENT); /* Set ADC multimode DMA transfer */ // LL_ADC_SetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_REG_DMA_EACH_ADC); /* Set ADC multimode: delay between 2 sampling phases */ // LL_ADC_SetMultiTwoSamplingDelay(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_TWOSMP_DELAY_1CYCLE); } /*## Configuration of ADC hierarchical scope: ADC instance #################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC conversion data alignment */ // LL_ADC_SetResolution(ADC1, LL_ADC_DATA_ALIGN_RIGHT); /* Set Set ADC sequencers scan mode, for all ADC groups */ /* (group regular, group injected). */ // LL_ADC_SetSequencersScanMode(ADC1, LL_ADC_SEQ_SCAN_DISABLE); } /*## Configuration of ADC hierarchical scope: ADC group regular ############*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Set ADC group regular trigger source */ LL_ADC_REG_SetTriggerSource(ADC1, LL_ADC_REG_TRIG_SOFTWARE); /* Set ADC group regular trigger polarity */ // LL_ADC_REG_SetTriggerEdge(ADC1, LL_ADC_REG_TRIG_EXT_RISING); /* Set ADC group regular continuous mode */ LL_ADC_REG_SetContinuousMode(ADC1, LL_ADC_REG_CONV_CONTINUOUS); /* Set ADC group regular conversion data transfer */ // LL_ADC_REG_SetDMATransfer(ADC1, LL_ADC_REG_DMA_TRANSFER_NONE); /* Set ADC group regular sequencer */ /* Note: On this STM32 series, ADC group regular sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_REG_SetSequencerLength()". */ /* Set ADC group regular sequencer length and scan direction */ LL_ADC_REG_SetSequencerLength(ADC1, LL_ADC_REG_SEQ_SCAN_DISABLE); /* Set ADC group regular sequencer discontinuous mode */ // LL_ADC_REG_SetSequencerDiscont(ADC1, LL_ADC_REG_SEQ_DISCONT_DISABLE); /* Set ADC group regular sequence: channel on the selected sequence rank. */ LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_1, LL_ADC_CHANNEL_4); } /*## Configuration of ADC hierarchical scope: ADC group injected ###########*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC group injected trigger source */ // LL_ADC_INJ_SetTriggerSource(ADC1, LL_ADC_INJ_TRIG_SOFTWARE); /* Set ADC group injected trigger polarity */ // LL_ADC_INJ_SetTriggerEdge(ADC1, LL_ADC_INJ_TRIG_EXT_RISING); /* Set ADC group injected conversion trigger */ // LL_ADC_INJ_SetTrigAuto(ADC1, LL_ADC_INJ_TRIG_INDEPENDENT); /* Set ADC group injected sequencer */ /* Note: On this STM32 series, ADC group injected sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_INJ_SetSequencerLength()". */ /* Set ADC group injected sequencer length and scan direction */ // LL_ADC_INJ_SetSequencerLength(ADC1, LL_ADC_INJ_SEQ_SCAN_DISABLE); /* Set ADC group injected sequencer discontinuous mode */ // LL_ADC_INJ_SetSequencerDiscont(ADC1, LL_ADC_INJ_SEQ_DISCONT_DISABLE); /* Set ADC group injected sequence: channel on the selected sequence rank. */ // LL_ADC_INJ_SetSequencerRanks(ADC1, LL_ADC_INJ_RANK_1, LL_ADC_CHANNEL_4); } /*## Configuration of ADC hierarchical scope: channels #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Set ADC channels sampling time */ LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_4, LL_ADC_SAMPLINGTIME_41CYCLES_5); } /*## Configuration of ADC transversal scope: analog watchdog ###############*/ /* Note: On this STM32 series, there is only 1 analog watchdog available. */ /* Set ADC analog watchdog: channels to be monitored */ // LL_ADC_SetAnalogWDMonitChannels(ADC1, LL_ADC_AWD_DISABLE); /* Set ADC analog watchdog: thresholds */ // LL_ADC_SetAnalogWDThresholds(ADC1, LL_ADC_AWD_THRESHOLD_HIGH, __LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B)); // LL_ADC_SetAnalogWDThresholds(ADC1, LL_ADC_AWD_THRESHOLD_LOW, 0x000); /*## Configuration of ADC transversal scope: oversampling ##################*/ /* Note: Feature not available on this STM32 series */ /*## Configuration of ADC interruptions ####################################*/ /* Note: In this example, no ADC interruption enabled */ } /** * @brief Perform ADC activation procedure to make it ready to convert * (ADC instance: ADC1). * @note Operations: * - ADC instance * - Run ADC self calibration * - Enable ADC * - ADC group regular * none: ADC conversion start-stop to be performed * after this function * - ADC group injected * none: ADC conversion start-stop to be performed * after this function * @param None * @retval None */ void Activate_ADC(void) { __IO uint32_t wait_loop_index = 0; #if (USE_TIMEOUT == 1) uint32_t Timeout = 0; /* Variable used for timeout management */ #endif /* USE_TIMEOUT */ /*## Operation on ADC hierarchical scope: ADC instance #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Enable ADC */ LL_ADC_Enable(ADC1); /* Delay between ADC enable and ADC start of calibration. */ /* Note: Variable divided by 2 to compensate partially */ /* CPU processing cycles (depends on compilation optimization). */ wait_loop_index = (ADC_DELAY_ENABLE_CALIB_CPU_CYCLES >> 1); while(wait_loop_index != 0) { wait_loop_index--; } /* Run ADC self calibration */ LL_ADC_StartCalibration(ADC1); /* Poll for ADC effectively calibrated */ #if (USE_TIMEOUT == 1) Timeout = ADC_CALIBRATION_TIMEOUT_MS; #endif /* USE_TIMEOUT */ while (LL_ADC_IsCalibrationOnGoing(ADC1) != 0) { #if (USE_TIMEOUT == 1) /* Check Systick counter flag to decrement the time-out value */ if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { /* Time-out occurred. Set LED to blinking mode */ LED_Blinking(LED_BLINK_ERROR); } } #endif /* USE_TIMEOUT */ } } /*## Operation on ADC hierarchical scope: ADC group regular ################*/ /* Note: No operation on ADC group regular performed here. */ /* ADC group regular conversions to be performed after this function */ /* using function: */ /* "LL_ADC_REG_StartConversion();" */ /*## Operation on ADC hierarchical scope: ADC group injected ###############*/ /* Note: No operation on ADC group injected performed here. */ /* ADC group injected conversions to be performed after this function */ /* using function: */ /* "LL_ADC_INJ_StartConversion();" */ } /** * @brief Perform ADC group regular conversion start, poll for conversion * completion. * (ADC instance: ADC1). * @note This function does not perform ADC group regular conversion stop: * intended to be used with ADC in single mode, trigger SW start * (only 1 ADC conversion done at each trigger, no conversion stop * needed). * In case of continuous mode or conversion trigger set to * external trigger, ADC group regular conversion stop must be added. * @param None * @retval None */ void ConversionStartPoll_ADC_GrpRegular(void) { #if (USE_TIMEOUT == 1) uint32_t Timeout = 0; /* Variable used for timeout management */ #endif /* USE_TIMEOUT */ /* Start ADC group regular conversion */ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 1) { LL_ADC_REG_StartConversionSWStart(ADC1); } else { /* Error: ADC conversion start could not be performed */ LED_Blinking(LED_BLINK_ERROR); } #if (USE_TIMEOUT == 1) Timeout = ADC_UNITARY_CONVERSION_TIMEOUT_MS; #endif /* USE_TIMEOUT */ while (LL_ADC_IsActiveFlag_EOS(ADC1) == 0) { #if (USE_TIMEOUT == 1) /* Check Systick counter flag to decrement the time-out value */ if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { /* Time-out occurred. Set LED to blinking mode */ LED_Blinking(LED_BLINK_SLOW); } } #endif /* USE_TIMEOUT */ } /* Clear flag ADC group regular end of unitary conversion */ /* Note: This action is not needed here, because flag ADC group regular */ /* end of unitary conversion is cleared automatically when */ /* software reads conversion data from ADC data register. */ /* Nevertheless, this action is done anyway to show how to clear */ /* this flag, needed if conversion data is not always read */ /* or if group injected end of unitary conversion is used (for */ /* devices with group injected available). */ LL_ADC_ClearFlag_EOS(ADC1); } /** * @brief Initialize LED2. * @param None * @retval None */ void LED_Init(void) { /* Enable the LED2 Clock */ LED2_GPIO_CLK_ENABLE(); /* Configure IO in output push-pull mode to drive external LED2 */ LL_GPIO_SetPinMode(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_MODE_OUTPUT); /* Reset value is LL_GPIO_OUTPUT_PUSHPULL */ //LL_GPIO_SetPinOutputType(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_OUTPUT_PUSHPULL); /* Reset value is LL_GPIO_SPEED_FREQ_LOW */ //LL_GPIO_SetPinSpeed(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_SPEED_FREQ_LOW); /* Reset value is LL_GPIO_PULL_DOWN */ //LL_GPIO_SetPinPull(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_PULL_DOWN); } /** * @brief Turn-on LED2. * @param None * @retval None */ void LED_On(void) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN); } /** * @brief Turn-off LED2. * @param None * @retval None */ void LED_Off(void) { /* Turn LED2 off */ LL_GPIO_ResetOutputPin(LED2_GPIO_PORT, LED2_PIN); } /** * @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter). * @param Period : Period of time (in ms) between each toggling of LED * This parameter can be user defined values. Pre-defined values used in that example are : * @arg LED_BLINK_FAST : Fast Blinking * @arg LED_BLINK_SLOW : Slow Blinking * @arg LED_BLINK_ERROR : Error specific Blinking * @retval None */ void LED_Blinking(uint32_t Period) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN); /* Toggle IO in an infinite loop */ while (1) { LL_GPIO_TogglePin(LED2_GPIO_PORT, LED2_PIN); LL_mDelay(Period); } } /** * @brief Configures User push-button in EXTI Line Mode. * @param None * @retval None */ void UserButton_Init(void) { /* Enable the BUTTON Clock */ USER_BUTTON_GPIO_CLK_ENABLE(); /* Configure GPIO for BUTTON */ LL_GPIO_SetPinMode(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_MODE_INPUT); LL_GPIO_SetPinPull(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_PULL_DOWN); /* if(Button_Mode == BUTTON_MODE_EXTI) */ { /* Connect External Line to the GPIO */ USER_BUTTON_SYSCFG_SET_EXTI(); /* Enable a rising trigger EXTI line 13 Interrupt */ USER_BUTTON_EXTI_LINE_ENABLE(); USER_BUTTON_EXTI_FALLING_TRIG_ENABLE(); /* Configure NVIC for USER_BUTTON_EXTI_IRQn */ NVIC_EnableIRQ(USER_BUTTON_EXTI_IRQn); NVIC_SetPriority(USER_BUTTON_EXTI_IRQn,0x03); } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 72000000 * HCLK(Hz) = 72000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSE Frequency(Hz) = 8000000 * PLLMUL = 9 * Flash Latency(WS) = 2 * @param None * @retval None */ void SystemClock_Config(void) { /* Set FLASH latency */ LL_FLASH_SetLatency(LL_FLASH_LATENCY_2); /* Enable HSE oscillator */ LL_RCC_HSE_EnableBypass(); LL_RCC_HSE_Enable(); while(LL_RCC_HSE_IsReady() != 1) { }; /* Main PLL configuration and activation */ LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE_DIV_1, LL_RCC_PLL_MUL_9); LL_RCC_PLL_Enable(); while(LL_RCC_PLL_IsReady() != 1) { }; /* Sysclk activation on the main PLL */ LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL); while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { }; /* Set APB1 & APB2 prescaler*/ LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_2); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1); /* Set systick to 1ms in using frequency set to 72MHz */ LL_Init1msTick(72000000); /* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */ LL_SetSystemCoreClock(72000000); } /******************************************************************************/ /* USER IRQ HANDLER TREATMENT */ /******************************************************************************/ /** * @brief Function to manage IRQ Handler * @param None * @retval None */ void UserButton_Callback(void) { ubUserButtonPressed = 1; } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW\Src\stm32f1xx_it.c
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_ContinuousConversion_TriggerSW/Src/stm32f1xx_it.c * @author MCD Application Team * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_it.h" /** @addtogroup STM32F1xx_LL_Examples * @{ */ /** @addtogroup ADC_ContinuousConversion_TriggerSW * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /******************************************************************************/ /* Cortex-M3 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /** * @brief This function handles PendSVC exception. * @param None * @retval None */ void PendSV_Handler(void) { } /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { } /******************************************************************************/ /* STM32F1xx Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f1xx.s). */ /******************************************************************************/ /** * @brief This function handles external lines 10 to 15 interrupt request. * @param None * @retval None */ void USER_BUTTON_IRQHANDLER(void) { /* Manage Flags */ if(LL_EXTI_IsActiveFlag_0_31(USER_BUTTON_EXTI_LINE) != RESET) { /* Call interruption treatment function */ UserButton_Callback(); /* Clear EXTI line flag */ /* Note: Clear flag after callback function to minimize user button */ /* switch debounce parasitics. */ LL_EXTI_ClearFlag_0_31(USER_BUTTON_EXTI_LINE); } } /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW\Src\system_stm32f1xx.c
/** ****************************************************************************** * @file system_stm32f1xx.c * @author MCD Application Team * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File. * * 1. This file provides two functions and one global variable to be called from * user application: * - SystemInit(): Setups the system clock (System clock source, PLL Multiplier * factors, AHB/APBx prescalers and Flash settings). * This function is called at startup just after reset and * before branch to main program. This call is made inside * the "startup_stm32f1xx_xx.s" file. * * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used * by the user application to setup the SysTick * timer or configure other parameters. * * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must * be called whenever the core clock is changed * during program execution. * * 2. After each device reset the HSI (8 MHz) is used as system clock source. * Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to * configure the system clock before to branch to main program. * * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on * the product used), refer to "HSE_VALUE". * When HSE is used as system clock source, directly or through PLL, and you * are using different crystal you have to adapt the HSE value to your own * configuration. * ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32f1xx_system * @{ */ /** @addtogroup STM32F1xx_System_Private_Includes * @{ */ #include "stm32f1xx.h" /** * @} */ /** @addtogroup STM32F1xx_System_Private_TypesDefinitions * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Defines * @{ */ #if !defined (HSE_VALUE) #define HSE_VALUE 8000000U /*!< Default value of the External oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSE_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE 8000000U /*!< Default value of the Internal oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSI_VALUE */ /*!< Uncomment the following line if you need to use external SRAM */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /* #define DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /*!< Uncomment the following line if you need to relocate your vector Table in Internal SRAM. */ /* #define VECT_TAB_SRAM */ #define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field. This value must be a multiple of 0x200. */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Macros * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Variables * @{ */ /* This variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetHCLKFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency Note: If you use this function to configure the system clock; then there is no need to call the 2 first functions listed above, since SystemCoreClock variable is updated automatically. */ uint32_t SystemCoreClock = 16000000; const uint8_t AHBPrescTable[16U] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}; const uint8_t APBPrescTable[8U] = {0, 0, 0, 0, 1, 2, 3, 4}; /** * @} */ /** @addtogroup STM32F1xx_System_Private_FunctionPrototypes * @{ */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM static void SystemInit_ExtMemCtl(void); #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Functions * @{ */ /** * @brief Setup the microcontroller system * Initialize the Embedded Flash Interface, the PLL and update the * SystemCoreClock variable. * @note This function should be used only after reset. * @param None * @retval None */ void SystemInit (void) { /* Reset the RCC clock configuration to the default reset state(for debug purpose) */ /* Set HSION bit */ RCC->CR |= 0x00000001U; /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */ #if !defined(STM32F105xC) && !defined(STM32F107xC) RCC->CFGR &= 0xF8FF0000U; #else RCC->CFGR &= 0xF0FF0000U; #endif /* STM32F105xC */ /* Reset HSEON, CSSON and PLLON bits */ RCC->CR &= 0xFEF6FFFFU; /* Reset HSEBYP bit */ RCC->CR &= 0xFFFBFFFFU; /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */ RCC->CFGR &= 0xFF80FFFFU; #if defined(STM32F105xC) || defined(STM32F107xC) /* Reset PLL2ON and PLL3ON bits */ RCC->CR &= 0xEBFFFFFFU; /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x00FF0000U; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000U; #elif defined(STM32F100xB) || defined(STM32F100xE) /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000U; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000U; #else /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000U; #endif /* STM32F105xC */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM SystemInit_ExtMemCtl(); #endif /* DATA_IN_ExtSRAM */ #endif #ifdef VECT_TAB_SRAM SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */ #else SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */ #endif } /** * @brief Update SystemCoreClock variable according to Clock Register Values. * The SystemCoreClock variable contains the core clock (HCLK), it can * be used by the user application to setup the SysTick timer or configure * other parameters. * * @note Each time the core clock (HCLK) changes, this function must be called * to update SystemCoreClock variable value. Otherwise, any configuration * based on this variable will be incorrect. * * @note - The system frequency computed by this function is not the real * frequency in the chip. It is calculated based on the predefined * constant and the selected clock source: * * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*) * * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**) * * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) * or HSI_VALUE(*) multiplied by the PLL factors. * * (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz) but the real value may vary depending on the variations * in voltage and temperature. * * (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz or 25 MHz, depending on the product used), user has to ensure * that HSE_VALUE is same as the real frequency of the crystal used. * Otherwise, this function may have wrong result. * * - The result of this function could be not correct when using fractional * value for HSE crystal. * @param None * @retval None */ void SystemCoreClockUpdate (void) { uint32_t tmp = 0U, pllmull = 0U, pllsource = 0U; #if defined(STM32F105xC) || defined(STM32F107xC) uint32_t prediv1source = 0U, prediv1factor = 0U, prediv2factor = 0U, pll2mull = 0U; #endif /* STM32F105xC */ #if defined(STM32F100xB) || defined(STM32F100xE) uint32_t prediv1factor = 0U; #endif /* STM32F100xB or STM32F100xE */ /* Get SYSCLK source -------------------------------------------------------*/ tmp = RCC->CFGR & RCC_CFGR_SWS; switch (tmp) { case 0x00U: /* HSI used as system clock */ SystemCoreClock = HSI_VALUE; break; case 0x04U: /* HSE used as system clock */ SystemCoreClock = HSE_VALUE; break; case 0x08U: /* PLL used as system clock */ /* Get PLL clock source and multiplication factor ----------------------*/ pllmull = RCC->CFGR & RCC_CFGR_PLLMULL; pllsource = RCC->CFGR & RCC_CFGR_PLLSRC; #if !defined(STM32F105xC) && !defined(STM32F107xC) pllmull = ( pllmull >> 18U) + 2U; if (pllsource == 0x00U) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1U) * pllmull; } else { #if defined(STM32F100xB) || defined(STM32F100xE) prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U; /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; #else /* HSE selected as PLL clock entry */ if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET) {/* HSE oscillator clock divided by 2 */ SystemCoreClock = (HSE_VALUE >> 1U) * pllmull; } else { SystemCoreClock = HSE_VALUE * pllmull; } #endif } #else pllmull = pllmull >> 18U; if (pllmull != 0x0DU) { pllmull += 2U; } else { /* PLL multiplication factor = PLL input clock * 6.5 */ pllmull = 13U / 2U; } if (pllsource == 0x00U) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1U) * pllmull; } else {/* PREDIV1 selected as PLL clock entry */ /* Get PREDIV1 clock source and division factor */ prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC; prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U; if (prediv1source == 0U) { /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; } else {/* PLL2 clock selected as PREDIV1 clock entry */ /* Get PREDIV2 division factor and PLL2 multiplication factor */ prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4U) + 1U; pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8U) + 2U; SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull; } } #endif /* STM32F105xC */ break; default: SystemCoreClock = HSI_VALUE; break; } /* Compute HCLK clock frequency ----------------*/ /* Get HCLK prescaler */ tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4U)]; /* HCLK clock frequency */ SystemCoreClock >>= tmp; } #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /** * @brief Setup the external memory controller. Called in startup_stm32f1xx.s * before jump to __main * @param None * @retval None */ #ifdef DATA_IN_ExtSRAM /** * @brief Setup the external memory controller. * Called in startup_stm32f1xx_xx.s/.c before jump to main. * This function configures the external SRAM mounted on STM3210E-EVAL * board (STM32 High density devices). This SRAM will be used as program * data memory (including heap and stack). * @param None * @retval None */ void SystemInit_ExtMemCtl(void) { __IO uint32_t tmpreg; /*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is required, then adjust the Register Addresses */ /* Enable FSMC clock */ RCC->AHBENR = 0x00000114U; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN); /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */ RCC->APB2ENR = 0x000001E0U; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN); (void)(tmpreg); /* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/ /*---------------- SRAM Address lines configuration -------------------------*/ /*---------------- NOE and NWE configuration --------------------------------*/ /*---------------- NE3 configuration ----------------------------------------*/ /*---------------- NBL0, NBL1 configuration ---------------------------------*/ GPIOD->CRL = 0x44BB44BBU; GPIOD->CRH = 0xBBBBBBBBU; GPIOE->CRL = 0xB44444BBU; GPIOE->CRH = 0xBBBBBBBBU; GPIOF->CRL = 0x44BBBBBBU; GPIOF->CRH = 0xBBBB4444U; GPIOG->CRL = 0x44BBBBBBU; GPIOG->CRH = 0x444B4B44U; /*---------------- FSMC Configuration ---------------------------------------*/ /*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/ FSMC_Bank1->BTCR[4U] = 0x00001091U; FSMC_Bank1->BTCR[5U] = 0x00110212U; } #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW_Init
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW_Init\Inc\main.h
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_ContinuousConversion_TriggerSW_Init/Inc/main.h * @author MCD Application Team * @brief Header for main.c module ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __MAIN_H #define __MAIN_H /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_ll_bus.h" #include "stm32f1xx_ll_rcc.h" #include "stm32f1xx_ll_system.h" #include "stm32f1xx_ll_utils.h" #include "stm32f1xx_ll_cortex.h" #include "stm32f1xx_ll_gpio.h" #include "stm32f1xx_ll_exti.h" #include "stm32f1xx_ll_adc.h" #include "stm32f1xx_ll_pwr.h" #if defined(USE_FULL_ASSERT) #include "stm32_assert.h" #endif /* USE_FULL_ASSERT */ /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Define used to enable time-out management*/ #define USE_TIMEOUT 0 /** * @brief LED2 */ #define LED2_PIN LL_GPIO_PIN_5 #define LED2_GPIO_PORT GPIOA #define LED2_GPIO_CLK_ENABLE() LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOA) /** * @brief Toggle periods for various blinking modes */ #define LED_BLINK_FAST 200 #define LED_BLINK_SLOW 500 #define LED_BLINK_ERROR 1000 /** * @brief Key push-button */ #define USER_BUTTON_PIN LL_GPIO_PIN_13 #define USER_BUTTON_GPIO_PORT GPIOC #define USER_BUTTON_GPIO_CLK_ENABLE() LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOC) #define USER_BUTTON_EXTI_LINE LL_EXTI_LINE_13 #define USER_BUTTON_EXTI_IRQn EXTI15_10_IRQn #define USER_BUTTON_EXTI_LINE_ENABLE() LL_EXTI_EnableIT_0_31(USER_BUTTON_EXTI_LINE) #define USER_BUTTON_EXTI_FALLING_TRIG_ENABLE() LL_EXTI_EnableFallingTrig_0_31(USER_BUTTON_EXTI_LINE) #define USER_BUTTON_SYSCFG_SET_EXTI() do { \ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_AFIO); \ LL_GPIO_AF_SetEXTISource(LL_GPIO_AF_EXTI_PORTC, LL_GPIO_AF_EXTI_LINE13); \ } while(0) #define USER_BUTTON_IRQHANDLER EXTI15_10_IRQHandler /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ /* IRQ Handler treatment */ void UserButton_Callback(void); #endif /* __MAIN_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW_Init
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW_Init\Inc\stm32f1xx_it.h
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_ContinuousConversion_TriggerSW_Init/Inc/stm32f1xx_it.h * @author MCD Application Team * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_IT_H #define __STM32F1xx_IT_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); void USER_BUTTON_IRQHANDLER(void); #ifdef __cplusplus } #endif #endif /* __STM32F1xx_IT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW_Init
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW_Init\Inc\stm32_assert.h
/** ****************************************************************************** * @file stm32_assert.h * @author MCD Application Team * @brief STM32 assert template file. * This file should be copied to the application folder and renamed * to stm32_assert.h. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32_ASSERT_H #define __STM32_ASSERT_H #ifdef __cplusplus extern "C" { #endif /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Includes ------------------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ #ifdef USE_FULL_ASSERT /** * @brief The assert_param macro is used for function's parameters check. * @param expr: If expr is false, it calls assert_failed function * which reports the name of the source file and the source * line number of the call that failed. * If expr is true, it returns no value. * @retval None */ #define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__)) /* Exported functions ------------------------------------------------------- */ void assert_failed(uint8_t* file, uint32_t line); #else #define assert_param(expr) ((void)0U) #endif /* USE_FULL_ASSERT */ #ifdef __cplusplus } #endif #endif /* __STM32_ASSERT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW_Init
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW_Init\Src\main.c
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_ContinuousConversion_TriggerSW_Init/Src/main.c * @author MCD Application Team * @brief This example describes how to use a ADC peripheral to perform * continuous ADC conversions of a channel, from a SW start. * This example is based on the STM32F1xx ADC LL API; * Peripheral initialization done using LL initialization function. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_LL_Examples * @{ */ /** @addtogroup ADC_ContinuousConversion_TriggerSW_Init * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Definitions of ADC hardware constraints delays */ /* Note: Only ADC IP HW delays are defined in ADC LL driver driver, */ /* not timeout values: */ /* Timeout values for ADC operations are dependent to device clock */ /* configuration (system clock versus ADC clock), */ /* and therefore must be defined in user application. */ /* Refer to @ref ADC_LL_EC_HW_DELAYS for description of ADC timeout */ /* values definition. */ /* Timeout values for ADC operations. */ /* (enable settling time, disable settling time, ...) */ /* Values defined to be higher than worst cases: low clock frequency, */ /* maximum prescalers. */ /* Example of profile very low frequency : ADC clock frequency 12MHz */ /* prescaler 6, sampling time 1.5 ADC clock cycles, resolution 12 bits. */ /* - ADC enable time: maximum delay is 1 us */ /* (refer to device datasheet, parameter "tSTAB") */ /* - ADC disable time: maximum delay should be a few ADC clock cycles */ /* - ADC stop conversion time: maximum delay should be a few ADC clock */ /* cycles */ /* - ADC conversion time: with this hypothesis of clock settings, maximum */ /* delay will be 7us. */ /* (refer to device reference manual, section "Timing") */ /* Unit: ms */ #define ADC_CALIBRATION_TIMEOUT_MS ((uint32_t) 1) #define ADC_ENABLE_TIMEOUT_MS ((uint32_t) 1) #define ADC_DISABLE_TIMEOUT_MS ((uint32_t) 1) #define ADC_STOP_CONVERSION_TIMEOUT_MS ((uint32_t) 1) #define ADC_CONVERSION_TIMEOUT_MS ((uint32_t) 2) /* Delay between ADC enable and ADC end of calibration. */ /* Delay estimation in CPU cycles: Case of ADC calibration done */ /* immediately after ADC enable, ADC clock setting slow */ /* (LL_ADC_CLOCK_ASYNC_DIV32). Use a higher delay if ratio */ /* (CPU clock / ADC clock) is above 32. */ #define ADC_DELAY_ENABLE_CALIB_CPU_CYCLES (LL_ADC_DELAY_ENABLE_CALIB_ADC_CYCLES * 32) /* Definitions of environment analog values */ /* Value of analog reference voltage (Vref+), connected to analog voltage */ /* supply Vdda (unit: mV). */ #define VDDA_APPLI ((uint32_t)3300) /* Definitions of data related to this example */ /* ADC unitary conversion timeout */ /* Considering ADC settings, duration of 1 ADC conversion should always */ /* be lower than 1ms. */ #define ADC_UNITARY_CONVERSION_TIMEOUT_MS ((uint32_t) 1) /* Init variable out of expected ADC conversion data range */ #define VAR_CONVERTED_DATA_INIT_VALUE (__LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B) + 1) /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ __IO uint32_t ubUserButtonPressed = 0; /* Variables for ADC conversion data */ __IO uint16_t uhADCxConvertedData = VAR_CONVERTED_DATA_INIT_VALUE; /* ADC group regular conversion data */ /* Variables for ADC conversion data computation to physical values */ __IO uint16_t uhADCxConvertedData_Voltage_mVolt = 0; /* Value of voltage calculated from ADC conversion data (unit: mV) */ /* Variable to report status of ADC group regular unitary conversion */ /* 0: ADC group regular unitary conversion is not completed */ /* 1: ADC group regular unitary conversion is completed */ /* 2: ADC group regular unitary conversion has not been started yet */ /* (initial state) */ __IO uint8_t ubAdcGrpRegularUnitaryConvStatus = 2; /* Variable set into ADC interruption callback */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void Configure_ADC(void); void Activate_ADC(void); void ConversionStartPoll_ADC_GrpRegular(void); void LED_Init(void); void LED_On(void); void LED_Off(void); void LED_Blinking(uint32_t Period); void UserButton_Init(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { /* Configure the system clock to 72 MHz */ SystemClock_Config(); /* Initialize LED2 */ LED_Init(); /* Initialize button in EXTI mode */ UserButton_Init(); /* Configure ADC */ /* Note: This function configures the ADC but does not enable it. */ /* To enable it, use function "Activate_ADC()". */ /* This is intended to optimize power consumption: */ /* 1. ADC configuration can be done once at the beginning */ /* (ADC disabled, minimal power consumption) */ /* 2. ADC enable (higher power consumption) can be done just before */ /* ADC conversions needed. */ /* Then, possible to perform successive "Activate_ADC()", */ /* "Deactivate_ADC()", ..., without having to set again */ /* ADC configuration. */ Configure_ADC(); /* Activate ADC */ /* Perform ADC activation procedure to make it ready to convert. */ Activate_ADC(); /* Wait for user press on push button */ while (ubUserButtonPressed != 1) { } ubUserButtonPressed = 0; /* Turn LED off before performing a new ADC conversion start */ LED_Off(); /* Reset status variable of ADC unitary conversion before performing */ /* a new ADC conversion start. */ /* Note: Optionally, for this example purpose, check ADC unitary */ /* conversion status before starting another ADC conversion. */ if (ubAdcGrpRegularUnitaryConvStatus != 0) { ubAdcGrpRegularUnitaryConvStatus = 0; } /* Init variable containing ADC conversion data */ uhADCxConvertedData = VAR_CONVERTED_DATA_INIT_VALUE; /* Perform ADC group regular conversion start, poll for conversion */ /* completion. */ ConversionStartPoll_ADC_GrpRegular(); /* Retrieve ADC conversion data */ /* (data scale corresponds to ADC resolution: 12 bits) */ uhADCxConvertedData = LL_ADC_REG_ReadConversionData12(ADC1); /* Computation of ADC conversions raw data to physical values */ /* using LL ADC driver helper macro. */ uhADCxConvertedData_Voltage_mVolt = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, uhADCxConvertedData, LL_ADC_RESOLUTION_12B); /* Update status variable of ADC unitary conversion */ ubAdcGrpRegularUnitaryConvStatus = 1; /* Set LED depending on ADC unitary conversion status */ /* - Turn-on if ADC unitary conversion is completed */ /* - Turn-off if ADC unitary conversion is not completed */ LED_On(); /* Infinite loop */ while (1) { /* Note: At this step, ADC is performing ADC conversions continuously, */ /* indefinitely (ADC continuous mode enabled in this example). */ /* Main program reads frequently ADC conversion data */ /* (without waiting for end of each conversion: software reads data */ /* when main program execution pointer is available and can let */ /* some ADC conversions data unread and overwritten by newer data) */ /* and stores it into the same variable. */ /* Retrieve ADC conversion data */ uhADCxConvertedData = LL_ADC_REG_ReadConversionData12(ADC1); /* Computation of ADC conversions raw data to physical values */ /* using LL ADC driver helper macro. */ uhADCxConvertedData_Voltage_mVolt = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, uhADCxConvertedData, LL_ADC_RESOLUTION_12B); } /* Note: ADC conversion data is stored into variable */ /* "uhADCxConvertedData". */ /* (for debug: see variable content into watch window). */ /* Note: ADC conversion data are computed to physical values */ /* into variable "uhADCxConvertedData_Voltage_mVolt" */ /* using ADC LL driver helper macro "__LL_ADC_CALC_DATA_TO_VOLTAGE()".*/ /* (for debug: see variable content into watch window). */ } /** * @brief Configure ADC (ADC instance: ADC1) and GPIO used by ADC channels. * @note In case re-use of this function outside of this example: * This function includes checks of ADC hardware constraints before * executing some configuration functions. * - In this example, all these checks are not necessary but are * implemented anyway to show the best practice usages * corresponding to reference manual procedure. * (On some STM32 series, setting of ADC features are not * conditioned to ADC state. However, in order to be compliant with * other STM32 series and to show the best practice usages, * ADC state is checked anyway with same constraints). * Software can be optimized by removing some of these checks, * if they are not relevant considering previous settings and actions * in user application. * - If ADC is not in the appropriate state to modify some parameters, * the setting of these parameters is bypassed without error * reporting: * it can be the expected behavior in case of recall of this * function to update only a few parameters (which update fulfills * the ADC state). * Otherwise, it is up to the user to set the appropriate error * reporting in user application. * @param None * @retval None */ void Configure_ADC(void) { LL_ADC_REG_InitTypeDef ADC_REG_InitStruct; /* Note: Additional initialization structures are available, not used */ /* in this example: */ /* ADC_CommonInitTypeDef, ADC_InitTypeDef, ... */ /*## Configuration of GPIO used by ADC channels ############################*/ /* Note: On this STM32 device, ADC1 channel 4 is mapped on GPIO pin PA.04 */ /* Enable GPIO Clock */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOA); /* Configure GPIO in analog mode to be used as ADC input */ LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_4, LL_GPIO_MODE_ANALOG); /*## Configuration of NVIC #################################################*/ /* Configure NVIC to enable ADC1 interruptions */ NVIC_SetPriority(ADC1_IRQn, 0); NVIC_EnableIRQ(ADC1_IRQn); /*## Configuration of ADC ##################################################*/ /*## Configuration of ADC hierarchical scope: common to several ADC ########*/ /* Enable ADC clock (core clock) */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_ADC1); /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if(__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE() == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC measurement path to internal channels */ // LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_PATH_INTERNAL_NONE); /*## Configuration of ADC hierarchical scope: multimode ####################*/ /* Set ADC multimode configuration */ // LL_ADC_SetMultimode(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_INDEPENDENT); /* Set ADC multimode DMA transfer */ // LL_ADC_SetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_REG_DMA_EACH_ADC); /* Set ADC multimode: delay between 2 sampling phases */ // LL_ADC_SetMultiTwoSamplingDelay(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_TWOSMP_DELAY_1CYCLE); } /*## Configuration of ADC hierarchical scope: ADC instance #################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC conversion data alignment */ // LL_ADC_SetResolution(ADC1, LL_ADC_DATA_ALIGN_RIGHT); /* Set Set ADC sequencers scan mode, for all ADC groups */ /* (group regular, group injected). */ // LL_ADC_SetSequencersScanMode(ADC1, LL_ADC_SEQ_SCAN_DISABLE); } /*## Configuration of ADC hierarchical scope: ADC group regular ############*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Update fields of initialization structure */ ADC_REG_InitStruct.TriggerSource = LL_ADC_REG_TRIG_SOFTWARE; ADC_REG_InitStruct.SequencerLength = LL_ADC_REG_SEQ_SCAN_DISABLE; ADC_REG_InitStruct.SequencerDiscont = LL_ADC_REG_SEQ_DISCONT_DISABLE; ADC_REG_InitStruct.ContinuousMode = LL_ADC_REG_CONV_CONTINUOUS; ADC_REG_InitStruct.DMATransfer = LL_ADC_REG_DMA_TRANSFER_NONE; /* Initialize ADC instance according to parameters defined in */ /* initialization structure. */ LL_ADC_REG_Init(ADC1, &ADC_REG_InitStruct); /* Note: On this STM32 series, ADC group regular sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_REG_SetSequencerLength()". */ /* Set ADC group regular sequence: channel on the selected sequence rank. */ LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_1, LL_ADC_CHANNEL_4); } /*## Configuration of ADC hierarchical scope: ADC group injected ###########*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC group injected trigger source */ // LL_ADC_INJ_SetTriggerSource(ADC1, LL_ADC_INJ_TRIG_SOFTWARE); /* Set ADC group injected trigger polarity */ // LL_ADC_INJ_SetTriggerEdge(ADC1, LL_ADC_INJ_TRIG_EXT_RISING); /* Set ADC group injected conversion trigger */ // LL_ADC_INJ_SetTrigAuto(ADC1, LL_ADC_INJ_TRIG_INDEPENDENT); /* Set ADC group injected sequencer */ /* Note: On this STM32 series, ADC group injected sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_INJ_SetSequencerLength()". */ /* Set ADC group injected sequencer length and scan direction */ // LL_ADC_INJ_SetSequencerLength(ADC1, LL_ADC_INJ_SEQ_SCAN_DISABLE); /* Set ADC group injected sequencer discontinuous mode */ // LL_ADC_INJ_SetSequencerDiscont(ADC1, LL_ADC_INJ_SEQ_DISCONT_DISABLE); /* Set ADC group injected sequence: channel on the selected sequence rank. */ // LL_ADC_INJ_SetSequencerRanks(ADC1, LL_ADC_INJ_RANK_1, LL_ADC_CHANNEL_4); } /*## Configuration of ADC hierarchical scope: channels #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Set ADC channels sampling time */ LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_4, LL_ADC_SAMPLINGTIME_41CYCLES_5); } /*## Configuration of ADC transversal scope: analog watchdog ###############*/ /* Note: On this STM32 series, there is only 1 analog watchdog available. */ /* Set ADC analog watchdog: channels to be monitored */ // LL_ADC_SetAnalogWDMonitChannels(ADC1, LL_ADC_AWD_DISABLE); /* Set ADC analog watchdog: thresholds */ // LL_ADC_SetAnalogWDThresholds(ADC1, LL_ADC_AWD_THRESHOLD_HIGH, __LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B)); // LL_ADC_SetAnalogWDThresholds(ADC1, LL_ADC_AWD_THRESHOLD_LOW, 0x000); /*## Configuration of ADC transversal scope: oversampling ##################*/ /* Note: Feature not available on this STM32 series */ /*## Configuration of ADC interruptions ####################################*/ /* Note: In this example, no ADC interruption enabled */ } /** * @brief Perform ADC activation procedure to make it ready to convert * (ADC instance: ADC1). * @note Operations: * - ADC instance * - Run ADC self calibration * - Enable ADC * - ADC group regular * none: ADC conversion start-stop to be performed * after this function * - ADC group injected * none: ADC conversion start-stop to be performed * after this function * @param None * @retval None */ void Activate_ADC(void) { __IO uint32_t wait_loop_index = 0; #if (USE_TIMEOUT == 1) uint32_t Timeout = 0; /* Variable used for timeout management */ #endif /* USE_TIMEOUT */ /*## Operation on ADC hierarchical scope: ADC instance #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Enable ADC */ LL_ADC_Enable(ADC1); /* Delay between ADC enable and ADC start of calibration. */ /* Note: Variable divided by 2 to compensate partially */ /* CPU processing cycles (depends on compilation optimization). */ wait_loop_index = (ADC_DELAY_ENABLE_CALIB_CPU_CYCLES >> 1); while(wait_loop_index != 0) { wait_loop_index--; } /* Run ADC self calibration */ LL_ADC_StartCalibration(ADC1); /* Poll for ADC effectively calibrated */ #if (USE_TIMEOUT == 1) Timeout = ADC_CALIBRATION_TIMEOUT_MS; #endif /* USE_TIMEOUT */ while (LL_ADC_IsCalibrationOnGoing(ADC1) != 0) { #if (USE_TIMEOUT == 1) /* Check Systick counter flag to decrement the time-out value */ if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { /* Time-out occurred. Set LED to blinking mode */ LED_Blinking(LED_BLINK_ERROR); } } #endif /* USE_TIMEOUT */ } } /*## Operation on ADC hierarchical scope: ADC group regular ################*/ /* Note: No operation on ADC group regular performed here. */ /* ADC group regular conversions to be performed after this function */ /* using function: */ /* "LL_ADC_REG_StartConversion();" */ /*## Operation on ADC hierarchical scope: ADC group injected ###############*/ /* Note: No operation on ADC group injected performed here. */ /* ADC group injected conversions to be performed after this function */ /* using function: */ /* "LL_ADC_INJ_StartConversion();" */ } /** * @brief Perform ADC group regular conversion start, poll for conversion * completion. * (ADC instance: ADC1). * @note This function does not perform ADC group regular conversion stop: * intended to be used with ADC in single mode, trigger SW start * (only 1 ADC conversion done at each trigger, no conversion stop * needed). * In case of continuous mode or conversion trigger set to * external trigger, ADC group regular conversion stop must be added. * @param None * @retval None */ void ConversionStartPoll_ADC_GrpRegular(void) { #if (USE_TIMEOUT == 1) uint32_t Timeout = 0; /* Variable used for timeout management */ #endif /* USE_TIMEOUT */ /* Start ADC group regular conversion */ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 1) { LL_ADC_REG_StartConversionSWStart(ADC1); } else { /* Error: ADC conversion start could not be performed */ LED_Blinking(LED_BLINK_ERROR); } #if (USE_TIMEOUT == 1) Timeout = ADC_UNITARY_CONVERSION_TIMEOUT_MS; #endif /* USE_TIMEOUT */ while (LL_ADC_IsActiveFlag_EOS(ADC1) == 0) { #if (USE_TIMEOUT == 1) /* Check Systick counter flag to decrement the time-out value */ if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { /* Time-out occurred. Set LED to blinking mode */ LED_Blinking(LED_BLINK_SLOW); } } #endif /* USE_TIMEOUT */ } /* Clear flag ADC group regular end of unitary conversion */ /* Note: This action is not needed here, because flag ADC group regular */ /* end of unitary conversion is cleared automatically when */ /* software reads conversion data from ADC data register. */ /* Nevertheless, this action is done anyway to show how to clear */ /* this flag, needed if conversion data is not always read */ /* or if group injected end of unitary conversion is used (for */ /* devices with group injected available). */ LL_ADC_ClearFlag_EOS(ADC1); } /** * @brief Initialize LED2. * @param None * @retval None */ void LED_Init(void) { /* Enable the LED2 Clock */ LED2_GPIO_CLK_ENABLE(); /* Configure IO in output push-pull mode to drive external LED2 */ LL_GPIO_SetPinMode(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_MODE_OUTPUT); /* Reset value is LL_GPIO_OUTPUT_PUSHPULL */ //LL_GPIO_SetPinOutputType(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_OUTPUT_PUSHPULL); /* Reset value is LL_GPIO_SPEED_FREQ_LOW */ //LL_GPIO_SetPinSpeed(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_SPEED_FREQ_LOW); /* Reset value is LL_GPIO_PULL_DOWN */ //LL_GPIO_SetPinPull(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_PULL_DOWN); } /** * @brief Turn-on LED2. * @param None * @retval None */ void LED_On(void) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN); } /** * @brief Turn-off LED2. * @param None * @retval None */ void LED_Off(void) { /* Turn LED2 off */ LL_GPIO_ResetOutputPin(LED2_GPIO_PORT, LED2_PIN); } /** * @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter). * @param Period : Period of time (in ms) between each toggling of LED * This parameter can be user defined values. Pre-defined values used in that example are : * @arg LED_BLINK_FAST : Fast Blinking * @arg LED_BLINK_SLOW : Slow Blinking * @arg LED_BLINK_ERROR : Error specific Blinking * @retval None */ void LED_Blinking(uint32_t Period) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN); /* Toggle IO in an infinite loop */ while (1) { LL_GPIO_TogglePin(LED2_GPIO_PORT, LED2_PIN); LL_mDelay(Period); } } /** * @brief Configures User push-button in EXTI Line Mode. * @param None * @retval None */ void UserButton_Init(void) { /* Enable the BUTTON Clock */ USER_BUTTON_GPIO_CLK_ENABLE(); /* Configure GPIO for BUTTON */ LL_GPIO_SetPinMode(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_MODE_INPUT); LL_GPIO_SetPinPull(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_PULL_DOWN); /* if(Button_Mode == BUTTON_MODE_EXTI) */ { /* Connect External Line to the GPIO */ USER_BUTTON_SYSCFG_SET_EXTI(); /* Enable a rising trigger EXTI line 13 Interrupt */ USER_BUTTON_EXTI_LINE_ENABLE(); USER_BUTTON_EXTI_FALLING_TRIG_ENABLE(); /* Configure NVIC for USER_BUTTON_EXTI_IRQn */ NVIC_EnableIRQ(USER_BUTTON_EXTI_IRQn); NVIC_SetPriority(USER_BUTTON_EXTI_IRQn,0x03); } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 72000000 * HCLK(Hz) = 72000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSE Frequency(Hz) = 8000000 * PLLMUL = 9 * Flash Latency(WS) = 2 * @param None * @retval None */ void SystemClock_Config(void) { /* Set FLASH latency */ LL_FLASH_SetLatency(LL_FLASH_LATENCY_2); /* Enable HSE oscillator */ LL_RCC_HSE_EnableBypass(); LL_RCC_HSE_Enable(); while(LL_RCC_HSE_IsReady() != 1) { }; /* Main PLL configuration and activation */ LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE_DIV_1, LL_RCC_PLL_MUL_9); LL_RCC_PLL_Enable(); while(LL_RCC_PLL_IsReady() != 1) { }; /* Sysclk activation on the main PLL */ LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL); while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { }; /* Set APB1 & APB2 prescaler*/ LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_2); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1); /* Set systick to 1ms in using frequency set to 72MHz */ LL_Init1msTick(72000000); /* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */ LL_SetSystemCoreClock(72000000); } /******************************************************************************/ /* USER IRQ HANDLER TREATMENT */ /******************************************************************************/ /** * @brief Function to manage IRQ Handler * @param None * @retval None */ void UserButton_Callback(void) { ubUserButtonPressed = 1; } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW_Init
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW_Init\Src\stm32f1xx_it.c
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_ContinuousConversion_TriggerSW_Init/Src/stm32f1xx_it.c * @author MCD Application Team * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_it.h" /** @addtogroup STM32F1xx_LL_Examples * @{ */ /** @addtogroup ADC_ContinuousConversion_TriggerSW_Init * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /******************************************************************************/ /* Cortex-M3 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /** * @brief This function handles PendSVC exception. * @param None * @retval None */ void PendSV_Handler(void) { } /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { } /******************************************************************************/ /* STM32F1xx Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f1xx.s). */ /******************************************************************************/ /** * @brief This function handles external lines 10 to 15 interrupt request. * @param None * @retval None */ void USER_BUTTON_IRQHANDLER(void) { /* Manage Flags */ if(LL_EXTI_IsActiveFlag_0_31(USER_BUTTON_EXTI_LINE) != RESET) { /* Call interruption treatment function */ UserButton_Callback(); /* Clear EXTI line flag */ /* Note: Clear flag after callback function to minimize user button */ /* switch debounce parasitics. */ LL_EXTI_ClearFlag_0_31(USER_BUTTON_EXTI_LINE); } } /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW_Init
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_ContinuousConversion_TriggerSW_Init\Src\system_stm32f1xx.c
/** ****************************************************************************** * @file system_stm32f1xx.c * @author MCD Application Team * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File. * * 1. This file provides two functions and one global variable to be called from * user application: * - SystemInit(): Setups the system clock (System clock source, PLL Multiplier * factors, AHB/APBx prescalers and Flash settings). * This function is called at startup just after reset and * before branch to main program. This call is made inside * the "startup_stm32f1xx_xx.s" file. * * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used * by the user application to setup the SysTick * timer or configure other parameters. * * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must * be called whenever the core clock is changed * during program execution. * * 2. After each device reset the HSI (8 MHz) is used as system clock source. * Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to * configure the system clock before to branch to main program. * * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on * the product used), refer to "HSE_VALUE". * When HSE is used as system clock source, directly or through PLL, and you * are using different crystal you have to adapt the HSE value to your own * configuration. * ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32f1xx_system * @{ */ /** @addtogroup STM32F1xx_System_Private_Includes * @{ */ #include "stm32f1xx.h" /** * @} */ /** @addtogroup STM32F1xx_System_Private_TypesDefinitions * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Defines * @{ */ #if !defined (HSE_VALUE) #define HSE_VALUE 8000000U /*!< Default value of the External oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSE_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE 8000000U /*!< Default value of the Internal oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSI_VALUE */ /*!< Uncomment the following line if you need to use external SRAM */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /* #define DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /*!< Uncomment the following line if you need to relocate your vector Table in Internal SRAM. */ /* #define VECT_TAB_SRAM */ #define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field. This value must be a multiple of 0x200. */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Macros * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Variables * @{ */ /* This variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetHCLKFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency Note: If you use this function to configure the system clock; then there is no need to call the 2 first functions listed above, since SystemCoreClock variable is updated automatically. */ uint32_t SystemCoreClock = 16000000; const uint8_t AHBPrescTable[16U] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}; const uint8_t APBPrescTable[8U] = {0, 0, 0, 0, 1, 2, 3, 4}; /** * @} */ /** @addtogroup STM32F1xx_System_Private_FunctionPrototypes * @{ */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM static void SystemInit_ExtMemCtl(void); #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Functions * @{ */ /** * @brief Setup the microcontroller system * Initialize the Embedded Flash Interface, the PLL and update the * SystemCoreClock variable. * @note This function should be used only after reset. * @param None * @retval None */ void SystemInit (void) { /* Reset the RCC clock configuration to the default reset state(for debug purpose) */ /* Set HSION bit */ RCC->CR |= 0x00000001U; /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */ #if !defined(STM32F105xC) && !defined(STM32F107xC) RCC->CFGR &= 0xF8FF0000U; #else RCC->CFGR &= 0xF0FF0000U; #endif /* STM32F105xC */ /* Reset HSEON, CSSON and PLLON bits */ RCC->CR &= 0xFEF6FFFFU; /* Reset HSEBYP bit */ RCC->CR &= 0xFFFBFFFFU; /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */ RCC->CFGR &= 0xFF80FFFFU; #if defined(STM32F105xC) || defined(STM32F107xC) /* Reset PLL2ON and PLL3ON bits */ RCC->CR &= 0xEBFFFFFFU; /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x00FF0000U; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000U; #elif defined(STM32F100xB) || defined(STM32F100xE) /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000U; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000U; #else /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000U; #endif /* STM32F105xC */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM SystemInit_ExtMemCtl(); #endif /* DATA_IN_ExtSRAM */ #endif #ifdef VECT_TAB_SRAM SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */ #else SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */ #endif } /** * @brief Update SystemCoreClock variable according to Clock Register Values. * The SystemCoreClock variable contains the core clock (HCLK), it can * be used by the user application to setup the SysTick timer or configure * other parameters. * * @note Each time the core clock (HCLK) changes, this function must be called * to update SystemCoreClock variable value. Otherwise, any configuration * based on this variable will be incorrect. * * @note - The system frequency computed by this function is not the real * frequency in the chip. It is calculated based on the predefined * constant and the selected clock source: * * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*) * * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**) * * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) * or HSI_VALUE(*) multiplied by the PLL factors. * * (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz) but the real value may vary depending on the variations * in voltage and temperature. * * (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz or 25 MHz, depending on the product used), user has to ensure * that HSE_VALUE is same as the real frequency of the crystal used. * Otherwise, this function may have wrong result. * * - The result of this function could be not correct when using fractional * value for HSE crystal. * @param None * @retval None */ void SystemCoreClockUpdate (void) { uint32_t tmp = 0U, pllmull = 0U, pllsource = 0U; #if defined(STM32F105xC) || defined(STM32F107xC) uint32_t prediv1source = 0U, prediv1factor = 0U, prediv2factor = 0U, pll2mull = 0U; #endif /* STM32F105xC */ #if defined(STM32F100xB) || defined(STM32F100xE) uint32_t prediv1factor = 0U; #endif /* STM32F100xB or STM32F100xE */ /* Get SYSCLK source -------------------------------------------------------*/ tmp = RCC->CFGR & RCC_CFGR_SWS; switch (tmp) { case 0x00U: /* HSI used as system clock */ SystemCoreClock = HSI_VALUE; break; case 0x04U: /* HSE used as system clock */ SystemCoreClock = HSE_VALUE; break; case 0x08U: /* PLL used as system clock */ /* Get PLL clock source and multiplication factor ----------------------*/ pllmull = RCC->CFGR & RCC_CFGR_PLLMULL; pllsource = RCC->CFGR & RCC_CFGR_PLLSRC; #if !defined(STM32F105xC) && !defined(STM32F107xC) pllmull = ( pllmull >> 18U) + 2U; if (pllsource == 0x00U) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1U) * pllmull; } else { #if defined(STM32F100xB) || defined(STM32F100xE) prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U; /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; #else /* HSE selected as PLL clock entry */ if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET) {/* HSE oscillator clock divided by 2 */ SystemCoreClock = (HSE_VALUE >> 1U) * pllmull; } else { SystemCoreClock = HSE_VALUE * pllmull; } #endif } #else pllmull = pllmull >> 18U; if (pllmull != 0x0DU) { pllmull += 2U; } else { /* PLL multiplication factor = PLL input clock * 6.5 */ pllmull = 13U / 2U; } if (pllsource == 0x00U) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1U) * pllmull; } else {/* PREDIV1 selected as PLL clock entry */ /* Get PREDIV1 clock source and division factor */ prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC; prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U; if (prediv1source == 0U) { /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; } else {/* PLL2 clock selected as PREDIV1 clock entry */ /* Get PREDIV2 division factor and PLL2 multiplication factor */ prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4U) + 1U; pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8U) + 2U; SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull; } } #endif /* STM32F105xC */ break; default: SystemCoreClock = HSI_VALUE; break; } /* Compute HCLK clock frequency ----------------*/ /* Get HCLK prescaler */ tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4U)]; /* HCLK clock frequency */ SystemCoreClock >>= tmp; } #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /** * @brief Setup the external memory controller. Called in startup_stm32f1xx.s * before jump to __main * @param None * @retval None */ #ifdef DATA_IN_ExtSRAM /** * @brief Setup the external memory controller. * Called in startup_stm32f1xx_xx.s/.c before jump to main. * This function configures the external SRAM mounted on STM3210E-EVAL * board (STM32 High density devices). This SRAM will be used as program * data memory (including heap and stack). * @param None * @retval None */ void SystemInit_ExtMemCtl(void) { __IO uint32_t tmpreg; /*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is required, then adjust the Register Addresses */ /* Enable FSMC clock */ RCC->AHBENR = 0x00000114U; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN); /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */ RCC->APB2ENR = 0x000001E0U; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN); (void)(tmpreg); /* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/ /*---------------- SRAM Address lines configuration -------------------------*/ /*---------------- NOE and NWE configuration --------------------------------*/ /*---------------- NE3 configuration ----------------------------------------*/ /*---------------- NBL0, NBL1 configuration ---------------------------------*/ GPIOD->CRL = 0x44BB44BBU; GPIOD->CRH = 0xBBBBBBBBU; GPIOE->CRL = 0xB44444BBU; GPIOE->CRH = 0xBBBBBBBBU; GPIOF->CRL = 0x44BBBBBBU; GPIOF->CRH = 0xBBBB4444U; GPIOG->CRL = 0x44BBBBBBU; GPIOG->CRH = 0x444B4B44U; /*---------------- FSMC Configuration ---------------------------------------*/ /*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/ FSMC_Bank1->BTCR[4U] = 0x00001091U; FSMC_Bank1->BTCR[5U] = 0x00110212U; } #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_GroupsRegularInjected
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_GroupsRegularInjected\Inc\main.h
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_GroupsRegularInjected/Inc/main.h * @author MCD Application Team * @brief Header for main.c module ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __MAIN_H #define __MAIN_H /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_ll_bus.h" #include "stm32f1xx_ll_rcc.h" #include "stm32f1xx_ll_system.h" #include "stm32f1xx_ll_utils.h" #include "stm32f1xx_ll_cortex.h" #include "stm32f1xx_ll_gpio.h" #include "stm32f1xx_ll_exti.h" #include "stm32f1xx_ll_adc.h" #include "stm32f1xx_ll_dma.h" #include "stm32f1xx_ll_tim.h" #include "stm32f1xx_ll_pwr.h" #if defined(USE_FULL_ASSERT) #include "stm32_assert.h" #endif /* USE_FULL_ASSERT */ /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Define used to enable time-out management*/ #define USE_TIMEOUT 0 /** * @brief LED2 */ #define LED2_PIN LL_GPIO_PIN_5 #define LED2_GPIO_PORT GPIOA #define LED2_GPIO_CLK_ENABLE() LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOA) /** * @brief Toggle periods for various blinking modes */ #define LED_BLINK_FAST 200 #define LED_BLINK_SLOW 500 #define LED_BLINK_ERROR 1000 /** * @brief Key push-button */ #define USER_BUTTON_PIN LL_GPIO_PIN_13 #define USER_BUTTON_GPIO_PORT GPIOC #define USER_BUTTON_GPIO_CLK_ENABLE() LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOC) #define USER_BUTTON_EXTI_LINE LL_EXTI_LINE_13 #define USER_BUTTON_EXTI_IRQn EXTI15_10_IRQn #define USER_BUTTON_EXTI_LINE_ENABLE() LL_EXTI_EnableIT_0_31(USER_BUTTON_EXTI_LINE) #define USER_BUTTON_EXTI_FALLING_TRIG_ENABLE() LL_EXTI_EnableFallingTrig_0_31(USER_BUTTON_EXTI_LINE) #define USER_BUTTON_SYSCFG_SET_EXTI() do { \ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_AFIO); \ LL_GPIO_AF_SetEXTISource(LL_GPIO_AF_EXTI_PORTC, LL_GPIO_AF_EXTI_LINE13); \ } while(0) #define USER_BUTTON_IRQHANDLER EXTI15_10_IRQHandler /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ /* IRQ Handler treatment */ void UserButton_Callback(void); void AdcDmaTransferComplete_Callback(void); void AdcDmaTransferHalf_Callback(void); void AdcDmaTransferError_Callback(void); void AdcGrpInjectedUnitaryConvComplete_Callback(void); #endif /* __MAIN_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_GroupsRegularInjected
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_GroupsRegularInjected\Inc\stm32f1xx_it.h
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_GroupsRegularInjected/Inc/stm32f1xx_it.h * @author MCD Application Team * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_IT_H #define __STM32F1xx_IT_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); void USER_BUTTON_IRQHANDLER(void); void DMA1_Channel1_IRQHandler(void); void ADC1_IRQHandler(void); #ifdef __cplusplus } #endif #endif /* __STM32F1xx_IT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_GroupsRegularInjected
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_GroupsRegularInjected\Inc\stm32_assert.h
/** ****************************************************************************** * @file stm32_assert.h * @author MCD Application Team * @brief STM32 assert template file. * This file should be copied to the application folder and renamed * to stm32_assert.h. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32_ASSERT_H #define __STM32_ASSERT_H #ifdef __cplusplus extern "C" { #endif /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Includes ------------------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ #ifdef USE_FULL_ASSERT /** * @brief The assert_param macro is used for function's parameters check. * @param expr: If expr is false, it calls assert_failed function * which reports the name of the source file and the source * line number of the call that failed. * If expr is true, it returns no value. * @retval None */ #define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__)) /* Exported functions ------------------------------------------------------- */ void assert_failed(uint8_t* file, uint32_t line); #else #define assert_param(expr) ((void)0U) #endif /* USE_FULL_ASSERT */ #ifdef __cplusplus } #endif #endif /* __STM32_ASSERT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_GroupsRegularInjected
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_GroupsRegularInjected\Src\main.c
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_GroupsRegularInjected/Src/main.c * @author MCD Application Team * @brief This example describes how to use a ADC peripheral with * both ADC groups (ADC group regular and ADC group injected) * in their intended use case: * - group regular for a high number of conversions and continuous * data stream, with DMA transfer capability * - group injected for punctual conversions inserted between * conversions of group regular * This example is based on the STM32F1xx ADC LL API; * Peripheral initialization done using LL unitary services functions. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_LL_Examples * @{ */ /** @addtogroup ADC_GroupsRegularInjected * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Definitions of ADC hardware constraints delays */ /* Note: Only ADC IP HW delays are defined in ADC LL driver driver, */ /* not timeout values: */ /* Timeout values for ADC operations are dependent to device clock */ /* configuration (system clock versus ADC clock), */ /* and therefore must be defined in user application. */ /* Refer to @ref ADC_LL_EC_HW_DELAYS for description of ADC timeout */ /* values definition. */ /* Timeout values for ADC operations. */ /* (enable settling time, disable settling time, ...) */ /* Values defined to be higher than worst cases: low clock frequency, */ /* maximum prescalers. */ /* Example of profile very low frequency : ADC clock frequency 12MHz */ /* prescaler 6, sampling time 1.5 ADC clock cycles, resolution 12 bits. */ /* - ADC enable time: maximum delay is 1 us */ /* (refer to device datasheet, parameter "tSTAB") */ /* - ADC disable time: maximum delay should be a few ADC clock cycles */ /* - ADC stop conversion time: maximum delay should be a few ADC clock */ /* cycles */ /* - ADC conversion time: with this hypothesis of clock settings, maximum */ /* delay will be 7us. */ /* (refer to device reference manual, section "Timing") */ /* Unit: ms */ #define ADC_CALIBRATION_TIMEOUT_MS ((uint32_t) 1) #define ADC_ENABLE_TIMEOUT_MS ((uint32_t) 1) #define ADC_DISABLE_TIMEOUT_MS ((uint32_t) 1) #define ADC_STOP_CONVERSION_TIMEOUT_MS ((uint32_t) 1) #define ADC_CONVERSION_TIMEOUT_MS ((uint32_t) 2) /* Delay between ADC enable and ADC end of calibration. */ /* Delay estimation in CPU cycles: Case of ADC calibration done */ /* immediately after ADC enable, ADC clock setting slow */ /* (LL_ADC_CLOCK_ASYNC_DIV32). Use a higher delay if ratio */ /* (CPU clock / ADC clock) is above 32. */ #define ADC_DELAY_ENABLE_CALIB_CPU_CYCLES (LL_ADC_DELAY_ENABLE_CALIB_ADC_CYCLES * 32) /* Definitions of environment analog values */ /* Value of analog reference voltage (Vref+), connected to analog voltage */ /* supply Vdda (unit: mV). */ #define VDDA_APPLI ((uint32_t)3300) /* Definitions of data related to this example */ /* Definition of ADCx conversions data table size */ #define ADC_CONVERTED_DATA_BUFFER_SIZE ((uint32_t) 64) /* Init variable out of expected ADC conversion data range */ #define VAR_CONVERTED_DATA_INIT_VALUE (__LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B) + 1) /* Parameters of timer (used as ADC conversion trigger) */ /* Timer frequency (unit: Hz). With a timer 16 bits and time base */ /* freq min 1Hz, range is min=1Hz, max=32kHz. */ #define TIMER_FREQUENCY ((uint32_t) 1000) /* Timer minimum frequency (unit: Hz), used to calculate frequency range. */ /* With a timer 16 bits, maximum frequency will be 32000 times this value. */ #define TIMER_FREQUENCY_RANGE_MIN ((uint32_t) 1) /* Timer prescaler maximum value (0xFFFF for a timer 16 bits) */ #define TIMER_PRESCALER_MAX_VALUE ((uint32_t)0xFFFF-1) /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Variables for ADC conversion data */ __IO uint16_t aADCxConvertedData[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* ADC group regular conversion data */ __IO uint16_t uhADCxGrpInjectedConvertedData = VAR_CONVERTED_DATA_INIT_VALUE; /* ADC group injected conversion data */ /* Variables for ADC conversion data computation to physical values */ __IO uint16_t uhADCxGrpInjectedConvertedData_Voltage_mVolt = 0; /* Value of voltage calculated from ADC conversion data (unit: mV) */ /* Variable to report status of DMA transfer of ADC group regular conversions */ /* 0: DMA transfer is not completed */ /* 1: DMA transfer is completed */ /* 2: DMA transfer has not been started yet (initial state) */ __IO uint8_t ubDmaTransferStatus = 2; /* Variable set into DMA interruption callback */ /* Variable to report status of ADC group injected unitary conversion */ /* 0: ADC group injected unitary conversion is not completed */ /* 1: ADC group injected unitary conversion is completed */ /* 2: ADC group injected unitary conversion has not been started yet */ __IO uint8_t ubAdcGrpInjectedUnitaryConvStatus = 2; /* Variable set into ADC interruption callback */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void Configure_DMA(void); void Configure_TIM_TimeBase_ADC_trigger(void); void Configure_ADC(void); void Activate_ADC(void); void LED_Init(void); void LED_On(void); void LED_Off(void); void LED_Blinking(uint32_t Period); void UserButton_Init(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { /* Configure the system clock to 72 MHz */ SystemClock_Config(); /* Initialize LED2 */ LED_Init(); /* Initialize button in EXTI mode */ UserButton_Init(); /* Configure DMA for data transfer from ADC */ Configure_DMA(); /* Configure timer as a time base used to trig ADC conversion start */ Configure_TIM_TimeBase_ADC_trigger(); /* Configure ADC */ /* Note: This function configures the ADC but does not enable it. */ /* To enable it, use function "Activate_ADC()". */ /* This is intended to optimize power consumption: */ /* 1. ADC configuration can be done once at the beginning */ /* (ADC disabled, minimal power consumption) */ /* 2. ADC enable (higher power consumption) can be done just before */ /* ADC conversions needed. */ /* Then, possible to perform successive "Activate_ADC()", */ /* "Deactivate_ADC()", ..., without having to set again */ /* ADC configuration. */ Configure_ADC(); /* Activate ADC */ /* Perform ADC activation procedure to make it ready to convert. */ Activate_ADC(); /* Start ADC group regular conversion */ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 1) { LL_ADC_REG_StartConversionExtTrig(ADC1, LL_ADC_REG_TRIG_EXT_RISING); } else { /* Error: ADC conversion start could not be performed */ LED_Blinking(LED_BLINK_ERROR); } /* Infinite loop */ while (1) { /* Note: ADC group injected conversion start is done into push button */ /* IRQ handler, refer to function "UserButton_Callback()". */ /* Note: LED state depending on ADC conversion status is set into ADC */ /* IRQ handler, refer to function */ /* "AdcGrpInjectedUnitaryConvComplete_Callback()". */ /* Note: ADC group regular conversions data are stored into array */ /* "aADCxConvertedData". */ /* ADC group injected conversions data are stored into variable */ /* "uhADCxGrpInjectedConvertedData". */ /* (for debug: see variable content into watch window). */ /* Note: ADC conversion data can be computed to physical values */ /* using ADC LL driver helper macro: */ /* uhADCxConvertedData_Voltage_mVolt */ /* = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, */ /* uhADCxConvertedData, */ /* LL_ADC_RESOLUTION_12B) */ } } /** * @brief This function configures DMA for transfer of data from ADC * @param None * @retval None */ void Configure_DMA(void) { /*## Configuration of NVIC #################################################*/ /* Configure NVIC to enable DMA interruptions */ NVIC_SetPriority(DMA1_Channel1_IRQn, 0); NVIC_EnableIRQ(DMA1_Channel1_IRQn); /*## Configuration of DMA ##################################################*/ /* Enable the peripheral clock of DMA */ LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_DMA1); /* Configure the DMA transfer */ /* - DMA transfer in circular mode to match with ADC configuration: */ /* DMA unlimited requests. */ /* - DMA transfer from ADC without address increment. */ /* - DMA transfer to memory with address increment. */ /* - DMA transfer from ADC by half-word to match with ADC configuration: */ /* ADC resolution 12 bits. */ /* - DMA transfer to memory by half-word to match with ADC conversion data */ /* buffer variable type: half-word. */ LL_DMA_ConfigTransfer(DMA1, LL_DMA_CHANNEL_1, LL_DMA_DIRECTION_PERIPH_TO_MEMORY | LL_DMA_MODE_CIRCULAR | LL_DMA_PERIPH_NOINCREMENT | LL_DMA_MEMORY_INCREMENT | LL_DMA_PDATAALIGN_HALFWORD | LL_DMA_MDATAALIGN_HALFWORD | LL_DMA_PRIORITY_HIGH ); /* Set DMA transfer addresses of source and destination */ LL_DMA_ConfigAddresses(DMA1, LL_DMA_CHANNEL_1, LL_ADC_DMA_GetRegAddr(ADC1, LL_ADC_DMA_REG_REGULAR_DATA), (uint32_t)&aADCxConvertedData, LL_DMA_DIRECTION_PERIPH_TO_MEMORY); /* Set DMA transfer size */ LL_DMA_SetDataLength(DMA1, LL_DMA_CHANNEL_1, ADC_CONVERTED_DATA_BUFFER_SIZE); /* Enable DMA transfer interruption: transfer complete */ LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_1); /* Enable DMA transfer interruption: half transfer */ LL_DMA_EnableIT_HT(DMA1, LL_DMA_CHANNEL_1); /* Enable DMA transfer interruption: transfer error */ LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_1); /*## Activation of DMA #####################################################*/ /* Enable the DMA transfer */ LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1); } /** * @brief Configure timer as a time base (timer instance: TIM3) * used to trig ADC conversion start. * @note In this ADC example, timer instance must be on APB1 (clocked by PCLK1) * to be compliant with frequency calculation used in this function. * @param None * @retval None */ void Configure_TIM_TimeBase_ADC_trigger(void) { uint32_t timer_clock_frequency = 0; /* Timer clock frequency */ uint32_t timer_prescaler = 0; /* Time base prescaler to have timebase aligned on minimum frequency possible */ uint32_t timer_reload = 0; /* Timer reload value in function of timer prescaler to achieve time base period */ /*## Configuration of NVIC #################################################*/ /* Note: In this example, timer interrupts are not activated. */ /* If needed, timer interruption at each time base period is */ /* possible. */ /* Refer to timer examples. */ /* Note: In this example, timer interrupts are not activated */ /* If needed, timer interruption at each time base */ /* period is possible. */ /* Refer to timer examples. */ /* Configuration of timer as time base: */ /* Caution: Computation of frequency is done for a timer instance on APB1 */ /* (clocked by PCLK1) */ /* Timer frequency is configured from the following constants: */ /* - TIMER_FREQUENCY: timer frequency (unit: Hz). */ /* - TIMER_FREQUENCY_RANGE_MIN: timer minimum frequency possible */ /* (unit: Hz). */ /* Note: Refer to comments at these literals definition for more details. */ /* Retrieve timer clock source frequency */ /* If APB1 prescaler is different of 1, timers have a factor x2 on their */ /* clock source. */ if (LL_RCC_GetAPB1Prescaler() == LL_RCC_APB1_DIV_1) { timer_clock_frequency = __LL_RCC_CALC_PCLK1_FREQ(SystemCoreClock, LL_RCC_GetAPB1Prescaler()); } else { timer_clock_frequency = (__LL_RCC_CALC_PCLK1_FREQ(SystemCoreClock, LL_RCC_GetAPB1Prescaler()) * 2); } /* Timer prescaler calculation */ /* (computation for timer 16 bits, additional + 1 to round the prescaler up) */ timer_prescaler = ((timer_clock_frequency / (TIMER_PRESCALER_MAX_VALUE * TIMER_FREQUENCY_RANGE_MIN)) +1); /* Timer reload calculation */ timer_reload = (timer_clock_frequency / (timer_prescaler * TIMER_FREQUENCY)); /* Enable the timer peripheral clock */ LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM3); /* Set timer pre-scaler value */ LL_TIM_SetPrescaler(TIM3, (timer_prescaler - 1)); /* Set timer auto-reload value */ LL_TIM_SetAutoReload(TIM3, (timer_reload - 1)); /* Counter mode: select up-counting mode */ LL_TIM_SetCounterMode(TIM3, LL_TIM_COUNTERMODE_UP); /* Set the repetition counter */ LL_TIM_SetRepetitionCounter(TIM3, 0); /* Note: In this example, timer interrupts are not activated. */ /* If needed, timer interruption at each time base period is */ /* possible. */ /* Refer to timer examples. */ /* Set timer the trigger output (TRGO) */ LL_TIM_SetTriggerOutput(TIM3, LL_TIM_TRGO_UPDATE); /* Enable counter */ LL_TIM_EnableCounter(TIM3); } /** * @brief Configure ADC (ADC instance: ADC1) and GPIO used by ADC channels. * @note In case re-use of this function outside of this example: * This function includes checks of ADC hardware constraints before * executing some configuration functions. * - In this example, all these checks are not necessary but are * implemented anyway to show the best practice usages * corresponding to reference manual procedure. * (On some STM32 series, setting of ADC features are not * conditioned to ADC state. However, in order to be compliant with * other STM32 series and to show the best practice usages, * ADC state is checked anyway with same constraints). * Software can be optimized by removing some of these checks, * if they are not relevant considering previous settings and actions * in user application. * - If ADC is not in the appropriate state to modify some parameters, * the setting of these parameters is bypassed without error * reporting: * it can be the expected behavior in case of recall of this * function to update only a few parameters (which update fulfills * the ADC state). * Otherwise, it is up to the user to set the appropriate error * reporting in user application. * @note Peripheral configuration is minimal configuration from reset values. * Thus, some useless LL unitary functions calls below are provided as * commented examples - setting is default configuration from reset. * @param None * @retval None */ void Configure_ADC(void) { /*## Configuration of GPIO used by ADC channels ############################*/ /* Note: On this STM32 device, ADC1 channel 4 is mapped on GPIO pin PA.04 */ /* Enable GPIO Clock */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOA); /* Configure GPIO in analog mode to be used as ADC input */ LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_4, LL_GPIO_MODE_ANALOG); /*## Configuration of NVIC #################################################*/ /* Configure NVIC to enable ADC1 interruptions */ NVIC_SetPriority(ADC1_IRQn, 0); NVIC_EnableIRQ(ADC1_IRQn); /*## Configuration of ADC ##################################################*/ /*## Configuration of ADC hierarchical scope: common to several ADC ########*/ /* Enable ADC clock (core clock) */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_ADC1); /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if(__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE() == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC measurement path to internal channels */ LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_PATH_INTERNAL_VREFINT); /*## Configuration of ADC hierarchical scope: multimode ####################*/ /* Set ADC multimode configuration */ // LL_ADC_SetMultimode(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_INDEPENDENT); /* Set ADC multimode DMA transfer */ // LL_ADC_SetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_REG_DMA_EACH_ADC); /* Set ADC multimode: delay between 2 sampling phases */ // LL_ADC_SetMultiTwoSamplingDelay(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_TWOSMP_DELAY_1CYCLE); } /*## Configuration of ADC hierarchical scope: ADC instance #################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC conversion data alignment */ // LL_ADC_SetResolution(ADC1, LL_ADC_DATA_ALIGN_RIGHT); /* Set Set ADC sequencers scan mode, for all ADC groups */ /* (group regular, group injected). */ // LL_ADC_SetSequencersScanMode(ADC1, LL_ADC_SEQ_SCAN_DISABLE); } /*## Configuration of ADC hierarchical scope: ADC group regular ############*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Set ADC group regular trigger source */ LL_ADC_REG_SetTriggerSource(ADC1, LL_ADC_REG_TRIG_EXT_TIM3_TRGO); /* Set ADC group regular trigger polarity */ // LL_ADC_REG_SetTriggerEdge(ADC1, LL_ADC_REG_TRIG_EXT_RISING); /* Set ADC group regular continuous mode */ LL_ADC_REG_SetContinuousMode(ADC1, LL_ADC_REG_CONV_SINGLE); /* Set ADC group regular conversion data transfer */ LL_ADC_REG_SetDMATransfer(ADC1, LL_ADC_REG_DMA_TRANSFER_UNLIMITED); /* Set ADC group regular sequencer */ /* Note: On this STM32 series, ADC group regular sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_REG_SetSequencerLength()". */ /* Set ADC group regular sequencer length and scan direction */ LL_ADC_REG_SetSequencerLength(ADC1, LL_ADC_REG_SEQ_SCAN_DISABLE); /* Set ADC group regular sequencer discontinuous mode */ // LL_ADC_REG_SetSequencerDiscont(ADC1, LL_ADC_REG_SEQ_DISCONT_DISABLE); /* Set ADC group regular sequence: channel on the selected sequence rank. */ LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_1, LL_ADC_CHANNEL_4); } /*## Configuration of ADC hierarchical scope: ADC group injected ###########*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC group injected trigger source */ LL_ADC_INJ_SetTriggerSource(ADC1, LL_ADC_INJ_TRIG_SOFTWARE); /* Set ADC group injected trigger polarity */ // LL_ADC_INJ_SetTriggerEdge(ADC1, LL_ADC_INJ_TRIG_EXT_RISING); /* Set ADC group injected conversion trigger */ // LL_ADC_INJ_SetTrigAuto(ADC1, LL_ADC_INJ_TRIG_INDEPENDENT); /* Set ADC group injected sequencer */ /* Note: On this STM32 series, ADC group injected sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_INJ_SetSequencerLength()". */ /* Set ADC group injected sequencer length and scan direction */ LL_ADC_INJ_SetSequencerLength(ADC1, LL_ADC_INJ_SEQ_SCAN_DISABLE); /* Set ADC group injected sequencer discontinuous mode */ // LL_ADC_INJ_SetSequencerDiscont(ADC1, LL_ADC_INJ_SEQ_DISCONT_DISABLE); /* Set ADC group injected sequence: channel on the selected sequence rank. */ LL_ADC_INJ_SetSequencerRanks(ADC1, LL_ADC_INJ_RANK_1, LL_ADC_CHANNEL_VREFINT); } /*## Configuration of ADC hierarchical scope: channels #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Set ADC channels sampling time */ /* Note: Considering interruption occurring after each number of */ /* "ADC_CONVERTED_DATA_BUFFER_SIZE" ADC conversions */ /* (IT from DMA transfer complete), */ /* select sampling time and ADC clock with sufficient */ /* duration to not create an overhead situation in IRQHandler. */ /* Note: Set long sampling time due to internal channels (VrefInt, */ /* temperature sensor) constraints. */ /* Refer to description of function */ /* "LL_ADC_SetChannelSamplingTime()". */ LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_4, LL_ADC_SAMPLINGTIME_41CYCLES_5); LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_VREFINT, LL_ADC_SAMPLINGTIME_239CYCLES_5); } /*## Configuration of ADC transversal scope: analog watchdog ###############*/ /* Note: On this STM32 series, there is only 1 analog watchdog available. */ /* Set ADC analog watchdog: channels to be monitored */ // LL_ADC_SetAnalogWDMonitChannels(ADC1, LL_ADC_AWD_DISABLE); /* Set ADC analog watchdog: thresholds */ // LL_ADC_SetAnalogWDThresholds(ADC1, LL_ADC_AWD_THRESHOLD_HIGH, __LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B)); // LL_ADC_SetAnalogWDThresholds(ADC1, LL_ADC_AWD_THRESHOLD_LOW, 0x000); /*## Configuration of ADC transversal scope: oversampling ##################*/ /* Note: Feature not available on this STM32 series */ /*## Configuration of ADC interruptions ####################################*/ /* Enable interruption ADC group injected end of sequence conversions */ /* Note: On this STM32 series, there is no flag of group injected */ /* end of unitary conversion. Therefore, flag of group injected */ /* end of sequence conversions is used (equivalent when there is */ /* only 1 rank in group injected sequencer). */ LL_ADC_EnableIT_JEOS(ADC1); /* Note: in this example, ADC group regular end of conversions */ /* (number of ADC conversions defined by DMA buffer size) */ /* are notified by DMA transfer interruptions). */ } /** * @brief Perform ADC activation procedure to make it ready to convert * (ADC instance: ADC1). * @note Operations: * - ADC instance * - Run ADC self calibration * - Enable ADC * - ADC group regular * none: ADC conversion start-stop to be performed * after this function * - ADC group injected * none: ADC conversion start-stop to be performed * after this function * @param None * @retval None */ void Activate_ADC(void) { __IO uint32_t wait_loop_index = 0; #if (USE_TIMEOUT == 1) uint32_t Timeout = 0; /* Variable used for timeout management */ #endif /* USE_TIMEOUT */ /*## Operation on ADC hierarchical scope: ADC instance #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Enable ADC */ LL_ADC_Enable(ADC1); /* Delay between ADC enable and ADC start of calibration. */ /* Note: Variable divided by 2 to compensate partially */ /* CPU processing cycles (depends on compilation optimization). */ wait_loop_index = (ADC_DELAY_ENABLE_CALIB_CPU_CYCLES >> 1); while(wait_loop_index != 0) { wait_loop_index--; } /* Run ADC self calibration */ LL_ADC_StartCalibration(ADC1); /* Poll for ADC effectively calibrated */ #if (USE_TIMEOUT == 1) Timeout = ADC_CALIBRATION_TIMEOUT_MS; #endif /* USE_TIMEOUT */ while (LL_ADC_IsCalibrationOnGoing(ADC1) != 0) { #if (USE_TIMEOUT == 1) /* Check Systick counter flag to decrement the time-out value */ if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { /* Time-out occurred. Set LED to blinking mode */ LED_Blinking(LED_BLINK_ERROR); } } #endif /* USE_TIMEOUT */ } } /*## Operation on ADC hierarchical scope: ADC group regular ################*/ /* Note: No operation on ADC group regular performed here. */ /* ADC group regular conversions to be performed after this function */ /* using function: */ /* "LL_ADC_REG_StartConversion();" */ /*## Operation on ADC hierarchical scope: ADC group injected ###############*/ /* Note: No operation on ADC group injected performed here. */ /* ADC group injected conversions to be performed after this function */ /* using function: */ /* "LL_ADC_INJ_StartConversion();" */ } /** * @brief Initialize LED2. * @param None * @retval None */ void LED_Init(void) { /* Enable the LED2 Clock */ LED2_GPIO_CLK_ENABLE(); /* Configure IO in output push-pull mode to drive external LED2 */ LL_GPIO_SetPinMode(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_MODE_OUTPUT); /* Reset value is LL_GPIO_OUTPUT_PUSHPULL */ //LL_GPIO_SetPinOutputType(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_OUTPUT_PUSHPULL); /* Reset value is LL_GPIO_SPEED_FREQ_LOW */ //LL_GPIO_SetPinSpeed(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_SPEED_FREQ_LOW); /* Reset value is LL_GPIO_PULL_DOWN */ //LL_GPIO_SetPinPull(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_PULL_DOWN); } /** * @brief Turn-on LED2. * @param None * @retval None */ void LED_On(void) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN); } /** * @brief Turn-off LED2. * @param None * @retval None */ void LED_Off(void) { /* Turn LED2 off */ LL_GPIO_ResetOutputPin(LED2_GPIO_PORT, LED2_PIN); } /** * @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter). * @param Period : Period of time (in ms) between each toggling of LED * This parameter can be user defined values. Pre-defined values used in that example are : * @arg LED_BLINK_FAST : Fast Blinking * @arg LED_BLINK_SLOW : Slow Blinking * @arg LED_BLINK_ERROR : Error specific Blinking * @retval None */ void LED_Blinking(uint32_t Period) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN); /* Toggle IO in an infinite loop */ while (1) { LL_GPIO_TogglePin(LED2_GPIO_PORT, LED2_PIN); LL_mDelay(Period); } } /** * @brief Configures User push-button in EXTI Line Mode. * @param None * @retval None */ void UserButton_Init(void) { /* Enable the BUTTON Clock */ USER_BUTTON_GPIO_CLK_ENABLE(); /* Configure GPIO for BUTTON */ LL_GPIO_SetPinMode(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_MODE_INPUT); /* if(Button_Mode == BUTTON_MODE_EXTI) */ { /* Connect External Line to the GPIO */ USER_BUTTON_SYSCFG_SET_EXTI(); /* Enable a rising trigger EXTI line 13 Interrupt */ USER_BUTTON_EXTI_LINE_ENABLE(); USER_BUTTON_EXTI_FALLING_TRIG_ENABLE(); /* Configure NVIC for USER_BUTTON_EXTI_IRQn */ NVIC_EnableIRQ(USER_BUTTON_EXTI_IRQn); NVIC_SetPriority(USER_BUTTON_EXTI_IRQn,0x03); } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 72000000 * HCLK(Hz) = 72000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSE Frequency(Hz) = 8000000 * PLLMUL = 9 * Flash Latency(WS) = 2 * @param None * @retval None */ void SystemClock_Config(void) { /* Set FLASH latency */ LL_FLASH_SetLatency(LL_FLASH_LATENCY_2); /* Enable HSE oscillator */ LL_RCC_HSE_EnableBypass(); LL_RCC_HSE_Enable(); while(LL_RCC_HSE_IsReady() != 1) { }; /* Main PLL configuration and activation */ LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE_DIV_1, LL_RCC_PLL_MUL_9); LL_RCC_PLL_Enable(); while(LL_RCC_PLL_IsReady() != 1) { }; /* Sysclk activation on the main PLL */ LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL); while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { }; /* Set APB1 & APB2 prescaler*/ LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_2); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1); /* Set systick to 1ms in using frequency set to 72MHz */ LL_Init1msTick(72000000); /* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */ LL_SetSystemCoreClock(72000000); } /******************************************************************************/ /* USER IRQ HANDLER TREATMENT */ /******************************************************************************/ /** * @brief Function to manage IRQ Handler * @param None * @retval None */ void UserButton_Callback(void) { /* Turn LED off before performing a new ADC conversion start */ LED_Off(); /* Reset status variable of ADC group injected unitary conversion before */ /* performinga new ADC group injected conversion start. */ /* Note: Optionally, for this example purpose, check ADC unitary */ /* conversion status before starting another ADC conversion. */ if (ubAdcGrpInjectedUnitaryConvStatus != 0) { ubAdcGrpInjectedUnitaryConvStatus = 0; } else { /* Error: Previous action (ADC conversion or DMA transfer) not yet */ /* completed. */ LED_Blinking(LED_BLINK_ERROR); } /* Init variable containing ADC conversion data */ uhADCxGrpInjectedConvertedData = VAR_CONVERTED_DATA_INIT_VALUE; /* Start ADC group injected conversion */ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 1) { LL_ADC_INJ_StartConversionSWStart(ADC1); } else { /* Error: ADC conversion start could not be performed */ LED_Blinking(LED_BLINK_ERROR); } } /** * @brief DMA transfer complete callback * @note This function is executed when the transfer complete interrupt * is generated * @retval None */ void AdcDmaTransferComplete_Callback() { /* Update status variable of DMA transfer */ ubDmaTransferStatus = 1; } /** * @brief DMA half transfer callback * @note This function is executed when the half transfer interrupt * is generated * @retval None */ void AdcDmaTransferHalf_Callback() { /* Update status variable of DMA transfer */ ubDmaTransferStatus = 0; } /** * @brief DMA transfer error callback * @note This function is executed when the transfer error interrupt * is generated during DMA transfer * @retval None */ void AdcDmaTransferError_Callback() { if(ubDmaTransferStatus == 1) { /* Update status variable of DMA transfer */ ubDmaTransferStatus = 0; } /* Error detected during DMA transfer */ LED_Blinking(LED_BLINK_ERROR); } /** * @brief ADC group injected end of unitary conversion interruption callback * @note This function is executed when the ADC group injected * sequencer has converted one ranks of the sequence. * @retval None */ void AdcGrpInjectedUnitaryConvComplete_Callback() { /* Retrieve ADC conversion data */ /* (data maximum amplitude corresponds to ADC resolution: 12 bits) */ uhADCxGrpInjectedConvertedData = LL_ADC_INJ_ReadConversionData12(ADC1, LL_ADC_INJ_RANK_1); /* Computation of ADC conversions raw data to physical values */ /* using LL ADC driver helper macro. */ uhADCxGrpInjectedConvertedData_Voltage_mVolt = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, uhADCxGrpInjectedConvertedData, LL_ADC_RESOLUTION_12B); /* Update status variable of ADC unitary conversion */ ubAdcGrpInjectedUnitaryConvStatus = 1; /* Set LED depending on ADC unitary conversion status */ /* - Turn-on if ADC group injected unitary conversion is completed */ /* - Turn-off if ADC group injected unitary conversion is not completed */ LED_On(); } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_GroupsRegularInjected
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_GroupsRegularInjected\Src\stm32f1xx_it.c
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_GroupsRegularInjected/Src/stm32f1xx_it.c * @author MCD Application Team * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_it.h" /** @addtogroup STM32F1xx_LL_Examples * @{ */ /** @addtogroup ADC_GroupsRegularInjected * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /******************************************************************************/ /* Cortex-M3 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /** * @brief This function handles PendSVC exception. * @param None * @retval None */ void PendSV_Handler(void) { } /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { } /******************************************************************************/ /* STM32F1xx Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f1xx.s). */ /******************************************************************************/ /** * @brief This function handles external lines 10 to 15 interrupt request. * @param None * @retval None */ void USER_BUTTON_IRQHANDLER(void) { /* Manage Flags */ if(LL_EXTI_IsActiveFlag_0_31(USER_BUTTON_EXTI_LINE) != RESET) { /* Call interruption treatment function */ UserButton_Callback(); /* Clear EXTI line flag */ /* Note: Clear flag after callback function to minimize user button */ /* switch debounce parasitics. */ LL_EXTI_ClearFlag_0_31(USER_BUTTON_EXTI_LINE); } } /** * @brief This function handles ADC1 interrupt request. * @param None * @retval None */ void ADC1_IRQHandler(void) { /* Check whether ADC group injected end of unitary conversion caused */ /* the ADC interruption. */ /* Note: On this STM32 series, there is no flag of group injected */ /* end of unitary conversion. Therefore, flag of group injected */ /* end of sequence conversions is used (equivalent when there is */ /* only 1 rank in group injected sequencer). */ if(LL_ADC_IsActiveFlag_JEOS(ADC1) != 0) { /* Clear flag ADC group injected end of sequence conversions */ LL_ADC_ClearFlag_JEOS(ADC1); /* Call interruption treatment function */ AdcGrpInjectedUnitaryConvComplete_Callback(); } } /** * @brief This function handles DMA1 interrupt request. * @param None * @retval None */ void DMA1_Channel1_IRQHandler(void) { /* Check whether DMA transfer complete caused the DMA interruption */ if(LL_DMA_IsActiveFlag_TC1(DMA1) == 1) { /* Clear flag DMA transfer complete */ LL_DMA_ClearFlag_TC1(DMA1); /* Call interruption treatment function */ AdcDmaTransferComplete_Callback(); } /* Check whether DMA half transfer caused the DMA interruption */ if(LL_DMA_IsActiveFlag_HT1(DMA1) == 1) { /* Clear flag DMA half transfer */ LL_DMA_ClearFlag_HT1(DMA1); /* Call interruption treatment function */ AdcDmaTransferHalf_Callback(); } /* Check whether DMA transfer error caused the DMA interruption */ if(LL_DMA_IsActiveFlag_TE1(DMA1) == 1) { /* Clear flag DMA transfer error */ LL_DMA_ClearFlag_TE1(DMA1); /* Call interruption treatment function */ AdcDmaTransferError_Callback(); } } /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_GroupsRegularInjected
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_GroupsRegularInjected\Src\system_stm32f1xx.c
/** ****************************************************************************** * @file system_stm32f1xx.c * @author MCD Application Team * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File. * * 1. This file provides two functions and one global variable to be called from * user application: * - SystemInit(): Setups the system clock (System clock source, PLL Multiplier * factors, AHB/APBx prescalers and Flash settings). * This function is called at startup just after reset and * before branch to main program. This call is made inside * the "startup_stm32f1xx_xx.s" file. * * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used * by the user application to setup the SysTick * timer or configure other parameters. * * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must * be called whenever the core clock is changed * during program execution. * * 2. After each device reset the HSI (8 MHz) is used as system clock source. * Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to * configure the system clock before to branch to main program. * * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on * the product used), refer to "HSE_VALUE". * When HSE is used as system clock source, directly or through PLL, and you * are using different crystal you have to adapt the HSE value to your own * configuration. * ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32f1xx_system * @{ */ /** @addtogroup STM32F1xx_System_Private_Includes * @{ */ #include "stm32f1xx.h" /** * @} */ /** @addtogroup STM32F1xx_System_Private_TypesDefinitions * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Defines * @{ */ #if !defined (HSE_VALUE) #define HSE_VALUE 8000000U /*!< Default value of the External oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSE_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE 8000000U /*!< Default value of the Internal oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSI_VALUE */ /*!< Uncomment the following line if you need to use external SRAM */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /* #define DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /*!< Uncomment the following line if you need to relocate your vector Table in Internal SRAM. */ /* #define VECT_TAB_SRAM */ #define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field. This value must be a multiple of 0x200. */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Macros * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Variables * @{ */ /* This variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetHCLKFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency Note: If you use this function to configure the system clock; then there is no need to call the 2 first functions listed above, since SystemCoreClock variable is updated automatically. */ uint32_t SystemCoreClock = 16000000; const uint8_t AHBPrescTable[16U] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}; const uint8_t APBPrescTable[8U] = {0, 0, 0, 0, 1, 2, 3, 4}; /** * @} */ /** @addtogroup STM32F1xx_System_Private_FunctionPrototypes * @{ */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM static void SystemInit_ExtMemCtl(void); #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Functions * @{ */ /** * @brief Setup the microcontroller system * Initialize the Embedded Flash Interface, the PLL and update the * SystemCoreClock variable. * @note This function should be used only after reset. * @param None * @retval None */ void SystemInit (void) { /* Reset the RCC clock configuration to the default reset state(for debug purpose) */ /* Set HSION bit */ RCC->CR |= 0x00000001U; /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */ #if !defined(STM32F105xC) && !defined(STM32F107xC) RCC->CFGR &= 0xF8FF0000U; #else RCC->CFGR &= 0xF0FF0000U; #endif /* STM32F105xC */ /* Reset HSEON, CSSON and PLLON bits */ RCC->CR &= 0xFEF6FFFFU; /* Reset HSEBYP bit */ RCC->CR &= 0xFFFBFFFFU; /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */ RCC->CFGR &= 0xFF80FFFFU; #if defined(STM32F105xC) || defined(STM32F107xC) /* Reset PLL2ON and PLL3ON bits */ RCC->CR &= 0xEBFFFFFFU; /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x00FF0000U; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000U; #elif defined(STM32F100xB) || defined(STM32F100xE) /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000U; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000U; #else /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000U; #endif /* STM32F105xC */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM SystemInit_ExtMemCtl(); #endif /* DATA_IN_ExtSRAM */ #endif #ifdef VECT_TAB_SRAM SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */ #else SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */ #endif } /** * @brief Update SystemCoreClock variable according to Clock Register Values. * The SystemCoreClock variable contains the core clock (HCLK), it can * be used by the user application to setup the SysTick timer or configure * other parameters. * * @note Each time the core clock (HCLK) changes, this function must be called * to update SystemCoreClock variable value. Otherwise, any configuration * based on this variable will be incorrect. * * @note - The system frequency computed by this function is not the real * frequency in the chip. It is calculated based on the predefined * constant and the selected clock source: * * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*) * * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**) * * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) * or HSI_VALUE(*) multiplied by the PLL factors. * * (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz) but the real value may vary depending on the variations * in voltage and temperature. * * (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz or 25 MHz, depending on the product used), user has to ensure * that HSE_VALUE is same as the real frequency of the crystal used. * Otherwise, this function may have wrong result. * * - The result of this function could be not correct when using fractional * value for HSE crystal. * @param None * @retval None */ void SystemCoreClockUpdate (void) { uint32_t tmp = 0U, pllmull = 0U, pllsource = 0U; #if defined(STM32F105xC) || defined(STM32F107xC) uint32_t prediv1source = 0U, prediv1factor = 0U, prediv2factor = 0U, pll2mull = 0U; #endif /* STM32F105xC */ #if defined(STM32F100xB) || defined(STM32F100xE) uint32_t prediv1factor = 0U; #endif /* STM32F100xB or STM32F100xE */ /* Get SYSCLK source -------------------------------------------------------*/ tmp = RCC->CFGR & RCC_CFGR_SWS; switch (tmp) { case 0x00U: /* HSI used as system clock */ SystemCoreClock = HSI_VALUE; break; case 0x04U: /* HSE used as system clock */ SystemCoreClock = HSE_VALUE; break; case 0x08U: /* PLL used as system clock */ /* Get PLL clock source and multiplication factor ----------------------*/ pllmull = RCC->CFGR & RCC_CFGR_PLLMULL; pllsource = RCC->CFGR & RCC_CFGR_PLLSRC; #if !defined(STM32F105xC) && !defined(STM32F107xC) pllmull = ( pllmull >> 18U) + 2U; if (pllsource == 0x00U) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1U) * pllmull; } else { #if defined(STM32F100xB) || defined(STM32F100xE) prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U; /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; #else /* HSE selected as PLL clock entry */ if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET) {/* HSE oscillator clock divided by 2 */ SystemCoreClock = (HSE_VALUE >> 1U) * pllmull; } else { SystemCoreClock = HSE_VALUE * pllmull; } #endif } #else pllmull = pllmull >> 18U; if (pllmull != 0x0DU) { pllmull += 2U; } else { /* PLL multiplication factor = PLL input clock * 6.5 */ pllmull = 13U / 2U; } if (pllsource == 0x00U) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1U) * pllmull; } else {/* PREDIV1 selected as PLL clock entry */ /* Get PREDIV1 clock source and division factor */ prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC; prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U; if (prediv1source == 0U) { /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; } else {/* PLL2 clock selected as PREDIV1 clock entry */ /* Get PREDIV2 division factor and PLL2 multiplication factor */ prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4U) + 1U; pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8U) + 2U; SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull; } } #endif /* STM32F105xC */ break; default: SystemCoreClock = HSI_VALUE; break; } /* Compute HCLK clock frequency ----------------*/ /* Get HCLK prescaler */ tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4U)]; /* HCLK clock frequency */ SystemCoreClock >>= tmp; } #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /** * @brief Setup the external memory controller. Called in startup_stm32f1xx.s * before jump to __main * @param None * @retval None */ #ifdef DATA_IN_ExtSRAM /** * @brief Setup the external memory controller. * Called in startup_stm32f1xx_xx.s/.c before jump to main. * This function configures the external SRAM mounted on STM3210E-EVAL * board (STM32 High density devices). This SRAM will be used as program * data memory (including heap and stack). * @param None * @retval None */ void SystemInit_ExtMemCtl(void) { __IO uint32_t tmpreg; /*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is required, then adjust the Register Addresses */ /* Enable FSMC clock */ RCC->AHBENR = 0x00000114U; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN); /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */ RCC->APB2ENR = 0x000001E0U; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN); (void)(tmpreg); /* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/ /*---------------- SRAM Address lines configuration -------------------------*/ /*---------------- NOE and NWE configuration --------------------------------*/ /*---------------- NE3 configuration ----------------------------------------*/ /*---------------- NBL0, NBL1 configuration ---------------------------------*/ GPIOD->CRL = 0x44BB44BBU; GPIOD->CRH = 0xBBBBBBBBU; GPIOE->CRL = 0xB44444BBU; GPIOE->CRH = 0xBBBBBBBBU; GPIOF->CRL = 0x44BBBBBBU; GPIOF->CRH = 0xBBBB4444U; GPIOG->CRL = 0x44BBBBBBU; GPIOG->CRH = 0x444B4B44U; /*---------------- FSMC Configuration ---------------------------------------*/ /*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/ FSMC_Bank1->BTCR[4U] = 0x00001091U; FSMC_Bank1->BTCR[5U] = 0x00110212U; } #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultiChannelSingleConversion
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultiChannelSingleConversion\Inc\main.h
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_MultiChannelSingleConversion/Inc/main.h * @author MCD Application Team * @brief Header for main.c module ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __MAIN_H #define __MAIN_H /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_ll_bus.h" #include "stm32f1xx_ll_rcc.h" #include "stm32f1xx_ll_system.h" #include "stm32f1xx_ll_utils.h" #include "stm32f1xx_ll_cortex.h" #include "stm32f1xx_ll_gpio.h" #include "stm32f1xx_ll_exti.h" #include "stm32f1xx_ll_adc.h" #include "stm32f1xx_ll_dma.h" #include "stm32f1xx_ll_pwr.h" #if defined(USE_FULL_ASSERT) #include "stm32_assert.h" #endif /* USE_FULL_ASSERT */ /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Define used to enable time-out management*/ #define USE_TIMEOUT 0 /** * @brief LED2 */ #define LED2_PIN LL_GPIO_PIN_5 #define LED2_GPIO_PORT GPIOA #define LED2_GPIO_CLK_ENABLE() LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOA) /** * @brief Toggle periods for various blinking modes */ #define LED_BLINK_FAST 200 #define LED_BLINK_SLOW 500 #define LED_BLINK_ERROR 1000 /** * @brief Key push-button */ #define USER_BUTTON_PIN LL_GPIO_PIN_13 #define USER_BUTTON_GPIO_PORT GPIOC #define USER_BUTTON_GPIO_CLK_ENABLE() LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOC) #define USER_BUTTON_EXTI_LINE LL_EXTI_LINE_13 #define USER_BUTTON_EXTI_IRQn EXTI15_10_IRQn #define USER_BUTTON_EXTI_LINE_ENABLE() LL_EXTI_EnableIT_0_31(USER_BUTTON_EXTI_LINE) #define USER_BUTTON_EXTI_FALLING_TRIG_ENABLE() LL_EXTI_EnableFallingTrig_0_31(USER_BUTTON_EXTI_LINE) #define USER_BUTTON_SYSCFG_SET_EXTI() do { \ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_AFIO); \ LL_GPIO_AF_SetEXTISource(LL_GPIO_AF_EXTI_PORTC, LL_GPIO_AF_EXTI_LINE13); \ } while(0) #define USER_BUTTON_IRQHANDLER EXTI15_10_IRQHandler #define INTERNAL_TEMPSENSOR_AVGSLOPE ((int32_t) 4300) /* Internal temperature sensor, parameter Avg_Slope (unit: uV/DegCelsius). Refer to device datasheet for min/typ/max values. */ #define INTERNAL_TEMPSENSOR_V25 ((int32_t) 1430) /* Internal temperature sensor, parameter V25 (unit: mV). Refer to device datasheet for min/typ/max values. */ #define INTERNAL_TEMPSENSOR_V25_TEMP ((int32_t) 25) #define INTERNAL_TEMPSENSOR_V25_VREF ((int32_t) 3300) /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ /* IRQ Handler treatment */ void UserButton_Callback(void); void AdcDmaTransferComplete_Callback(void); void AdcDmaTransferError_Callback(void); #endif /* __MAIN_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultiChannelSingleConversion
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultiChannelSingleConversion\Inc\stm32f1xx_it.h
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_MultiChannelSingleConversion/Inc/stm32f1xx_it.h * @author MCD Application Team * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_IT_H #define __STM32F1xx_IT_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); void USER_BUTTON_IRQHANDLER(void); void ADC1_IRQHandler(void); void DMA1_Channel1_IRQHandler(void); #ifdef __cplusplus } #endif #endif /* __STM32F1xx_IT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultiChannelSingleConversion
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultiChannelSingleConversion\Inc\stm32_assert.h
/** ****************************************************************************** * @file stm32_assert.h * @author MCD Application Team * @brief STM32 assert template file. * This file should be copied to the application folder and renamed * to stm32_assert.h. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32_ASSERT_H #define __STM32_ASSERT_H #ifdef __cplusplus extern "C" { #endif /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Includes ------------------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ #ifdef USE_FULL_ASSERT /** * @brief The assert_param macro is used for function's parameters check. * @param expr: If expr is false, it calls assert_failed function * which reports the name of the source file and the source * line number of the call that failed. * If expr is true, it returns no value. * @retval None */ #define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__)) /* Exported functions ------------------------------------------------------- */ void assert_failed(uint8_t* file, uint32_t line); #else #define assert_param(expr) ((void)0U) #endif /* USE_FULL_ASSERT */ #ifdef __cplusplus } #endif #endif /* __STM32_ASSERT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultiChannelSingleConversion
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultiChannelSingleConversion\Src\main.c
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_MultiChannelSingleConversion/Src/main.c * @author MCD Application Team * @brief This example describes how to use a ADC peripheral to convert * several channels, ADC conversions are performed successively * in a scan sequence. * This example is based on the STM32F1xx ADC LL API; * Peripheral initialization done using LL unitary services functions. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_LL_Examples * @{ */ /** @addtogroup ADC_MultiChannelSingleConversion * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Definitions of ADC hardware constraints delays */ /* Note: Only ADC IP HW delays are defined in ADC LL driver driver, */ /* not timeout values: */ /* Timeout values for ADC operations are dependent to device clock */ /* configuration (system clock versus ADC clock), */ /* and therefore must be defined in user application. */ /* Refer to @ref ADC_LL_EC_HW_DELAYS for description of ADC timeout */ /* values definition. */ /* Timeout values for ADC operations. */ /* (enable settling time, disable settling time, ...) */ /* Values defined to be higher than worst cases: low clock frequency, */ /* maximum prescalers. */ /* Example of profile very low frequency : ADC clock frequency 12MHz */ /* prescaler 6, sampling time 1.5 ADC clock cycles, resolution 12 bits. */ /* - ADC enable time: maximum delay is 1 us */ /* (refer to device datasheet, parameter "tSTAB") */ /* - ADC disable time: maximum delay should be a few ADC clock cycles */ /* - ADC stop conversion time: maximum delay should be a few ADC clock */ /* cycles */ /* - ADC conversion time: with this hypothesis of clock settings, maximum */ /* delay will be 7us. */ /* (refer to device reference manual, section "Timing") */ /* Unit: ms */ #define ADC_CALIBRATION_TIMEOUT_MS ((uint32_t) 1) #define ADC_ENABLE_TIMEOUT_MS ((uint32_t) 1) #define ADC_DISABLE_TIMEOUT_MS ((uint32_t) 1) #define ADC_STOP_CONVERSION_TIMEOUT_MS ((uint32_t) 1) #define ADC_CONVERSION_TIMEOUT_MS ((uint32_t) 2) /* Delay between ADC enable and ADC end of calibration. */ /* Delay estimation in CPU cycles: Case of ADC calibration done */ /* immediately after ADC enable, ADC clock setting slow */ /* (LL_ADC_CLOCK_ASYNC_DIV32). Use a higher delay if ratio */ /* (CPU clock / ADC clock) is above 32. */ #define ADC_DELAY_ENABLE_CALIB_CPU_CYCLES (LL_ADC_DELAY_ENABLE_CALIB_ADC_CYCLES * 32) /* Definitions of environment analog values */ /* Value of analog reference voltage (Vref+), connected to analog voltage */ /* supply Vdda (unit: mV). */ #define VDDA_APPLI ((uint32_t)3300) /* Definitions of data related to this example */ /* Definition of ADCx conversions data table size */ /* Size of array set to ADC sequencer number of ranks converted, */ /* to have a rank in each array address. */ #define ADC_CONVERTED_DATA_BUFFER_SIZE ((uint32_t) 3) /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Variables for ADC conversion data */ __IO uint16_t aADCxConvertedData[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* ADC group regular conversion data */ /* Variable to report status of DMA transfer of ADC group regular conversions */ /* 0: DMA transfer is not completed */ /* 1: DMA transfer is completed */ /* 2: DMA transfer has not been started yet (initial state) */ __IO uint8_t ubDmaTransferStatus = 2; /* Variable set into DMA interruption callback */ /* Variables for ADC conversion data computation to physical values */ __IO uint16_t uhADCxConvertedData_VoltageGPIO_mVolt = 0; /* Value of voltage on GPIO pin (on which is mapped ADC channel) calculated from ADC conversion data (unit: mV) */ __IO uint16_t uhADCxConvertedData_VrefInt_mVolt = 0; /* Value of internal voltage reference VrefInt calculated from ADC conversion data (unit: mV) */ __IO int16_t hADCxConvertedData_Temperature_DegreeCelsius = 0; /* Value of temperature calculated from ADC conversion data (unit: degree Celsius) */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void Configure_DMA(void); void Configure_ADC(void); void Activate_ADC(void); void LED_Init(void); void LED_On(void); void LED_Off(void); void LED_Blinking(uint32_t Period); void UserButton_Init(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { /* Configure the system clock to 72 MHz */ SystemClock_Config(); /* Initialize LED2 */ LED_Init(); /* Initialize button in EXTI mode */ UserButton_Init(); /* Configure DMA for data transfer from ADC */ Configure_DMA(); /* Configure ADC */ /* Note: This function configures the ADC but does not enable it. */ /* To enable it, use function "Activate_ADC()". */ /* This is intended to optimize power consumption: */ /* 1. ADC configuration can be done once at the beginning */ /* (ADC disabled, minimal power consumption) */ /* 2. ADC enable (higher power consumption) can be done just before */ /* ADC conversions needed. */ /* Then, possible to perform successive "Activate_ADC()", */ /* "Deactivate_ADC()", ..., without having to set again */ /* ADC configuration. */ Configure_ADC(); /* Activate ADC */ /* Perform ADC activation procedure to make it ready to convert. */ Activate_ADC(); /* Infinite loop */ while (1) { /* Note: ADC group regular conversion start is done into push button */ /* IRQ handler, refer to function "UserButton_Callback()". */ /* Note: LED state depending on DMA transfer status is set into DMA */ /* IRQ handler, refer to function "DmaTransferComplete()". */ /* Note: ADC conversions data are stored into array "aADCxConvertedData" */ /* (for debug: see variable content into watch window). */ /* Each rank of the sequence is at an address of the array: */ /* - aADCxConvertedData[0]: ADC channel set on rank1 */ /* (ADC1 channel 4) */ /* - aADCxConvertedData[1]: ADC channel set on rank2 */ /* (ADC1 internal channel VrefInt) */ /* - aADCxConvertedData[2]: ADC channel set on rank3 */ /* (ADC1 internal channel temperature sensor)*/ /* Wait for ADC conversion and DMA transfer completion to process data */ while(ubDmaTransferStatus != 1) { } /* Computation of ADC conversions raw data to physical values */ /* using LL ADC driver helper macro. */ uhADCxConvertedData_VoltageGPIO_mVolt = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, aADCxConvertedData[0], LL_ADC_RESOLUTION_12B); uhADCxConvertedData_VrefInt_mVolt = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, aADCxConvertedData[1], LL_ADC_RESOLUTION_12B); hADCxConvertedData_Temperature_DegreeCelsius = __LL_ADC_CALC_TEMPERATURE_TYP_PARAMS(INTERNAL_TEMPSENSOR_AVGSLOPE, INTERNAL_TEMPSENSOR_V25, INTERNAL_TEMPSENSOR_V25_TEMP, VDDA_APPLI, aADCxConvertedData[2], LL_ADC_RESOLUTION_12B); /* Wait for a new ADC conversion and DMA transfer */ while(ubDmaTransferStatus != 0) { } } } /** * @brief This function configures DMA for transfer of data from ADC * @param None * @retval None */ void Configure_DMA(void) { /*## Configuration of NVIC #################################################*/ /* Configure NVIC to enable DMA interruptions */ NVIC_SetPriority(DMA1_Channel1_IRQn, 1); /* DMA IRQ lower priority than ADC IRQ */ NVIC_EnableIRQ(DMA1_Channel1_IRQn); /*## Configuration of DMA ##################################################*/ /* Enable the peripheral clock of DMA */ LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_DMA1); /* Configure the DMA transfer */ /* - DMA transfer in circular mode to match with ADC configuration: */ /* DMA unlimited requests. */ /* - DMA transfer from ADC without address increment. */ /* - DMA transfer to memory with address increment. */ /* - DMA transfer from ADC by half-word to match with ADC configuration: */ /* ADC resolution 12 bits. */ /* - DMA transfer to memory by half-word to match with ADC conversion data */ /* buffer variable type: half-word. */ LL_DMA_ConfigTransfer(DMA1, LL_DMA_CHANNEL_1, LL_DMA_DIRECTION_PERIPH_TO_MEMORY | LL_DMA_MODE_CIRCULAR | LL_DMA_PERIPH_NOINCREMENT | LL_DMA_MEMORY_INCREMENT | LL_DMA_PDATAALIGN_HALFWORD | LL_DMA_MDATAALIGN_HALFWORD | LL_DMA_PRIORITY_HIGH ); /* Set DMA transfer addresses of source and destination */ LL_DMA_ConfigAddresses(DMA1, LL_DMA_CHANNEL_1, LL_ADC_DMA_GetRegAddr(ADC1, LL_ADC_DMA_REG_REGULAR_DATA), (uint32_t)&aADCxConvertedData, LL_DMA_DIRECTION_PERIPH_TO_MEMORY); /* Set DMA transfer size */ LL_DMA_SetDataLength(DMA1, LL_DMA_CHANNEL_1, ADC_CONVERTED_DATA_BUFFER_SIZE); /* Enable DMA transfer interruption: transfer complete */ LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_1); /* Enable DMA transfer interruption: transfer error */ LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_1); /*## Activation of DMA #####################################################*/ /* Enable the DMA transfer */ LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1); } /** * @brief Configure ADC (ADC instance: ADC1) and GPIO used by ADC channels. * @note In case re-use of this function outside of this example: * This function includes checks of ADC hardware constraints before * executing some configuration functions. * - In this example, all these checks are not necessary but are * implemented anyway to show the best practice usages * corresponding to reference manual procedure. * (On some STM32 series, setting of ADC features are not * conditioned to ADC state. However, in order to be compliant with * other STM32 series and to show the best practice usages, * ADC state is checked anyway with same constraints). * Software can be optimized by removing some of these checks, * if they are not relevant considering previous settings and actions * in user application. * - If ADC is not in the appropriate state to modify some parameters, * the setting of these parameters is bypassed without error * reporting: * it can be the expected behavior in case of recall of this * function to update only a few parameters (which update fulfills * the ADC state). * Otherwise, it is up to the user to set the appropriate error * reporting in user application. * @note Peripheral configuration is minimal configuration from reset values. * Thus, some useless LL unitary functions calls below are provided as * commented examples - setting is default configuration from reset. * @param None * @retval None */ void Configure_ADC(void) { __IO uint32_t wait_loop_index = 0; /*## Configuration of GPIO used by ADC channels ############################*/ /* Note: On this STM32 device, ADC1 channel 4 is mapped on GPIO pin PA.04 */ /* Enable GPIO Clock */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOA); /* Configure GPIO in analog mode to be used as ADC input */ LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_4, LL_GPIO_MODE_ANALOG); /*## Configuration of NVIC #################################################*/ /* Configure NVIC to enable ADC1 interruptions */ NVIC_SetPriority(ADC1_IRQn, 0); /* ADC IRQ greater priority than DMA IRQ */ NVIC_EnableIRQ(ADC1_IRQn); /*## Configuration of ADC ##################################################*/ /*## Configuration of ADC hierarchical scope: common to several ADC ########*/ /* Enable ADC clock (core clock) */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_ADC1); /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if(__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE() == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC measurement path to internal channels */ LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(ADC1), (LL_ADC_PATH_INTERNAL_VREFINT | LL_ADC_PATH_INTERNAL_TEMPSENSOR)); /* Delay for ADC temperature sensor stabilization time. */ /* Compute number of CPU cycles to wait for, from delay in us. */ /* Note: Variable divided by 2 to compensate partially */ /* CPU processing cycles (depends on compilation optimization). */ /* Note: If system core clock frequency is below 200kHz, wait time */ /* is only a few CPU processing cycles. */ /* Note: This delay is implemented here for the purpose in this example. */ /* It can be optimized if merged with other delays */ /* during ADC activation or if other actions are performed */ /* in the meantime. */ wait_loop_index = ((LL_ADC_DELAY_TEMPSENSOR_STAB_US * (SystemCoreClock / (100000 * 2))) / 10); while(wait_loop_index != 0) { wait_loop_index--; } /*## Configuration of ADC hierarchical scope: multimode ####################*/ /* Set ADC multimode configuration */ // LL_ADC_SetMultimode(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_INDEPENDENT); /* Set ADC multimode DMA transfer */ // LL_ADC_SetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_REG_DMA_EACH_ADC); /* Set ADC multimode: delay between 2 sampling phases */ // LL_ADC_SetMultiTwoSamplingDelay(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_TWOSMP_DELAY_1CYCLE); } /*## Configuration of ADC hierarchical scope: ADC instance #################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC conversion data alignment */ // LL_ADC_SetResolution(ADC1, LL_ADC_DATA_ALIGN_RIGHT); /* Set Set ADC sequencers scan mode, for all ADC groups */ /* (group regular, group injected). */ LL_ADC_SetSequencersScanMode(ADC1, LL_ADC_SEQ_SCAN_ENABLE); } /*## Configuration of ADC hierarchical scope: ADC group regular ############*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Set ADC group regular trigger source */ LL_ADC_REG_SetTriggerSource(ADC1, LL_ADC_REG_TRIG_SOFTWARE); /* Set ADC group regular trigger polarity */ // LL_ADC_REG_SetTriggerEdge(ADC1, LL_ADC_REG_TRIG_EXT_RISING); /* Set ADC group regular continuous mode */ LL_ADC_REG_SetContinuousMode(ADC1, LL_ADC_REG_CONV_SINGLE); /* Set ADC group regular conversion data transfer */ LL_ADC_REG_SetDMATransfer(ADC1, LL_ADC_REG_DMA_TRANSFER_UNLIMITED); /* Set ADC group regular sequencer */ /* Note: On this STM32 series, ADC group regular sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_REG_SetSequencerLength()". */ /* Set ADC group regular sequencer length and scan direction */ LL_ADC_REG_SetSequencerLength(ADC1, LL_ADC_REG_SEQ_SCAN_ENABLE_3RANKS); /* Set ADC group regular sequencer discontinuous mode */ // LL_ADC_REG_SetSequencerDiscont(ADC1, LL_ADC_REG_SEQ_DISCONT_DISABLE); /* Set ADC group regular sequence: channel on the selected sequence rank. */ LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_1, LL_ADC_CHANNEL_4); LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_2, LL_ADC_CHANNEL_VREFINT); LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_3, LL_ADC_CHANNEL_TEMPSENSOR); } /*## Configuration of ADC hierarchical scope: ADC group injected ###########*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC group injected trigger source */ // LL_ADC_INJ_SetTriggerSource(ADC1, LL_ADC_INJ_TRIG_SOFTWARE); /* Set ADC group injected trigger polarity */ // LL_ADC_INJ_SetTriggerEdge(ADC1, LL_ADC_INJ_TRIG_EXT_RISING); /* Set ADC group injected conversion trigger */ // LL_ADC_INJ_SetTrigAuto(ADC1, LL_ADC_INJ_TRIG_INDEPENDENT); /* Set ADC group injected sequencer */ /* Note: On this STM32 series, ADC group injected sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_INJ_SetSequencerLength()". */ /* Set ADC group injected sequencer length and scan direction */ // LL_ADC_INJ_SetSequencerLength(ADC1, LL_ADC_INJ_SEQ_SCAN_DISABLE); /* Set ADC group injected sequencer discontinuous mode */ // LL_ADC_INJ_SetSequencerDiscont(ADC1, LL_ADC_INJ_SEQ_DISCONT_DISABLE); /* Set ADC group injected sequence: channel on the selected sequence rank. */ // LL_ADC_INJ_SetSequencerRanks(ADC1, LL_ADC_INJ_RANK_1, LL_ADC_CHANNEL_4); } /*## Configuration of ADC hierarchical scope: channels #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Set ADC channels sampling time */ /* Note: Considering interruption occurring after each ADC group */ /* regular sequence conversions */ /* (IT from DMA transfer complete), */ /* select sampling time and ADC clock with sufficient */ /* duration to not create an overhead situation in IRQHandler. */ /* Note: Set long sampling time due to internal channels (VrefInt, */ /* temperature sensor) constraints. */ /* Refer to description of function */ /* "LL_ADC_SetChannelSamplingTime()". */ LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_4, LL_ADC_SAMPLINGTIME_41CYCLES_5); LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_VREFINT, LL_ADC_SAMPLINGTIME_239CYCLES_5); LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_TEMPSENSOR, LL_ADC_SAMPLINGTIME_239CYCLES_5); } /*## Configuration of ADC transversal scope: analog watchdog ###############*/ /* Note: On this STM32 series, there is only 1 analog watchdog available. */ /* Set ADC analog watchdog: channels to be monitored */ // LL_ADC_SetAnalogWDMonitChannels(ADC1, LL_ADC_AWD_DISABLE); /* Set ADC analog watchdog: thresholds */ // LL_ADC_SetAnalogWDThresholds(ADC1, LL_ADC_AWD_THRESHOLD_HIGH, __LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B)); // LL_ADC_SetAnalogWDThresholds(ADC1, LL_ADC_AWD_THRESHOLD_LOW, 0x000); /*## Configuration of ADC transversal scope: oversampling ##################*/ /* Note: Feature not available on this STM32 series */ /*## Configuration of ADC interruptions ####################################*/ /* Enable interruption ADC group regular end of sequence conversions */ LL_ADC_EnableIT_EOS(ADC1); /* Note: in this example, ADC group regular end of conversions */ /* (number of ADC conversions defined by DMA buffer size) */ /* are notified by DMA transfer interruptions). */ /* ADC interruptions of end of conversion are enabled optionally, */ /* as demonstration purpose in this example. */ } /** * @brief Perform ADC activation procedure to make it ready to convert * (ADC instance: ADC1). * @note Operations: * - ADC instance * - Run ADC self calibration * - Enable ADC * - ADC group regular * none: ADC conversion start-stop to be performed * after this function * - ADC group injected * none: ADC conversion start-stop to be performed * after this function * @param None * @retval None */ void Activate_ADC(void) { __IO uint32_t wait_loop_index = 0; #if (USE_TIMEOUT == 1) uint32_t Timeout = 0; /* Variable used for timeout management */ #endif /* USE_TIMEOUT */ /*## Operation on ADC hierarchical scope: ADC instance #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Enable ADC */ LL_ADC_Enable(ADC1); /* Delay between ADC enable and ADC start of calibration. */ /* Note: Variable divided by 2 to compensate partially */ /* CPU processing cycles (depends on compilation optimization). */ wait_loop_index = (ADC_DELAY_ENABLE_CALIB_CPU_CYCLES >> 1); while(wait_loop_index != 0) { wait_loop_index--; } /* Run ADC self calibration */ LL_ADC_StartCalibration(ADC1); /* Poll for ADC effectively calibrated */ #if (USE_TIMEOUT == 1) Timeout = ADC_CALIBRATION_TIMEOUT_MS; #endif /* USE_TIMEOUT */ while (LL_ADC_IsCalibrationOnGoing(ADC1) != 0) { #if (USE_TIMEOUT == 1) /* Check Systick counter flag to decrement the time-out value */ if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { /* Time-out occurred. Set LED to blinking mode */ LED_Blinking(LED_BLINK_ERROR); } } #endif /* USE_TIMEOUT */ } } /*## Operation on ADC hierarchical scope: ADC group regular ################*/ /* Note: No operation on ADC group regular performed here. */ /* ADC group regular conversions to be performed after this function */ /* using function: */ /* "LL_ADC_REG_StartConversion();" */ /*## Operation on ADC hierarchical scope: ADC group injected ###############*/ /* Note: No operation on ADC group injected performed here. */ /* ADC group injected conversions to be performed after this function */ /* using function: */ /* "LL_ADC_INJ_StartConversion();" */ } /** * @brief Initialize LED2. * @param None * @retval None */ void LED_Init(void) { /* Enable the LED2 Clock */ LED2_GPIO_CLK_ENABLE(); /* Configure IO in output push-pull mode to drive external LED2 */ LL_GPIO_SetPinMode(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_MODE_OUTPUT); /* Reset value is LL_GPIO_OUTPUT_PUSHPULL */ //LL_GPIO_SetPinOutputType(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_OUTPUT_PUSHPULL); /* Reset value is LL_GPIO_SPEED_FREQ_LOW */ //LL_GPIO_SetPinSpeed(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_SPEED_FREQ_LOW); /* Reset value is LL_GPIO_PULL_DOWN */ //LL_GPIO_SetPinPull(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_PULL_DOWN); } /** * @brief Turn-on LED2. * @param None * @retval None */ void LED_On(void) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN); } /** * @brief Turn-off LED2. * @param None * @retval None */ void LED_Off(void) { /* Turn LED2 off */ LL_GPIO_ResetOutputPin(LED2_GPIO_PORT, LED2_PIN); } /** * @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter). * @param Period : Period of time (in ms) between each toggling of LED * This parameter can be user defined values. Pre-defined values used in that example are : * @arg LED_BLINK_FAST : Fast Blinking * @arg LED_BLINK_SLOW : Slow Blinking * @arg LED_BLINK_ERROR : Error specific Blinking * @retval None */ void LED_Blinking(uint32_t Period) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN); /* Toggle IO in an infinite loop */ while (1) { LL_GPIO_TogglePin(LED2_GPIO_PORT, LED2_PIN); LL_mDelay(Period); } } /** * @brief Configures User push-button in EXTI Line Mode. * @param None * @retval None */ void UserButton_Init(void) { /* Enable the BUTTON Clock */ USER_BUTTON_GPIO_CLK_ENABLE(); /* Configure GPIO for BUTTON */ LL_GPIO_SetPinMode(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_MODE_INPUT); LL_GPIO_SetPinPull(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_PULL_DOWN); /* if(Button_Mode == BUTTON_MODE_EXTI) */ { /* Connect External Line to the GPIO */ USER_BUTTON_SYSCFG_SET_EXTI(); /* Enable a rising trigger EXTI line 13 Interrupt */ USER_BUTTON_EXTI_LINE_ENABLE(); USER_BUTTON_EXTI_FALLING_TRIG_ENABLE(); /* Configure NVIC for USER_BUTTON_EXTI_IRQn */ NVIC_EnableIRQ(USER_BUTTON_EXTI_IRQn); NVIC_SetPriority(USER_BUTTON_EXTI_IRQn,0x03); } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 72000000 * HCLK(Hz) = 72000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSE Frequency(Hz) = 8000000 * PLLMUL = 9 * Flash Latency(WS) = 2 * @param None * @retval None */ void SystemClock_Config(void) { /* Set FLASH latency */ LL_FLASH_SetLatency(LL_FLASH_LATENCY_2); /* Enable HSE oscillator */ LL_RCC_HSE_EnableBypass(); LL_RCC_HSE_Enable(); while(LL_RCC_HSE_IsReady() != 1) { }; /* Main PLL configuration and activation */ LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE_DIV_1, LL_RCC_PLL_MUL_9); LL_RCC_PLL_Enable(); while(LL_RCC_PLL_IsReady() != 1) { }; /* Sysclk activation on the main PLL */ LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL); while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { }; /* Set APB1 & APB2 prescaler*/ LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_2); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1); /* Set systick to 1ms in using frequency set to 72MHz */ LL_Init1msTick(72000000); /* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */ LL_SetSystemCoreClock(72000000); } /******************************************************************************/ /* USER IRQ HANDLER TREATMENT */ /******************************************************************************/ /** * @brief Function to manage IRQ Handler * @param None * @retval None */ void UserButton_Callback(void) { /* Turn LED off before performing a new ADC conversion start */ /* (conversion of ranks set in ADC group regular sequencer). */ LED_Off(); /* Reset status variable of DMA transfer before performing a new ADC */ /* conversion start of a sequence (in case of previous DMA transfer */ /* completed). */ /* Note: Optionally, for this example purpose, check DMA transfer */ /* status before starting another ADC conversion. */ if (ubDmaTransferStatus != 0) { ubDmaTransferStatus = 0; } else { /* Error: Previous action (ADC conversion or DMA transfer) not yet */ /* completed. */ LED_Blinking(LED_BLINK_ERROR); } /* Start ADC group regular conversion */ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 1) { LL_ADC_REG_StartConversionSWStart(ADC1); } else { /* Error: ADC conversion start could not be performed */ LED_Blinking(LED_BLINK_ERROR); } } /** * @brief DMA transfer complete callback * @note This function is executed when the transfer complete interrupt * is generated * @retval None */ void AdcDmaTransferComplete_Callback() { /* Update status variable of DMA transfer */ ubDmaTransferStatus = 1; /* Set LED depending on DMA transfer status */ /* - Turn-on if DMA transfer is completed */ /* - Turn-off if DMA transfer is not completed */ LED_On(); } /** * @brief DMA transfer error callback * @note This function is executed when the transfer error interrupt * is generated during DMA transfer * @retval None */ void AdcDmaTransferError_Callback() { /* Error detected during DMA transfer */ LED_Blinking(LED_BLINK_ERROR); } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultiChannelSingleConversion
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultiChannelSingleConversion\Src\stm32f1xx_it.c
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_MultiChannelSingleConversion/Src/stm32f1xx_it.c * @author MCD Application Team * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_it.h" /** @addtogroup STM32F1xx_LL_Examples * @{ */ /** @addtogroup ADC_MultiChannelSingleConversion * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /******************************************************************************/ /* Cortex-M3 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /** * @brief This function handles PendSVC exception. * @param None * @retval None */ void PendSV_Handler(void) { } /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { } /******************************************************************************/ /* STM32F1xx Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f1xx.s). */ /******************************************************************************/ /** * @brief This function handles external lines 10 to 15 interrupt request. * @param None * @retval None */ void USER_BUTTON_IRQHANDLER(void) { /* Manage Flags */ if(LL_EXTI_IsActiveFlag_0_31(USER_BUTTON_EXTI_LINE) != RESET) { /* Call interruption treatment function */ UserButton_Callback(); /* Clear EXTI line flag */ /* Note: Clear flag after callback function to minimize user button */ /* switch debounce parasitics. */ LL_EXTI_ClearFlag_0_31(USER_BUTTON_EXTI_LINE); } } /** * @brief This function handles ADC1 interrupt request. * @param None * @retval None */ void ADC1_IRQHandler(void) { } /** * @brief This function handles DMA1 interrupt request. * @param None * @retval None */ void DMA1_Channel1_IRQHandler(void) { /* Check whether DMA transfer complete caused the DMA interruption */ if(LL_DMA_IsActiveFlag_TC1(DMA1) == 1) { /* Clear flag DMA transfer complete interrupt */ LL_DMA_ClearFlag_TC1(DMA1); /* Call interruption treatment function */ AdcDmaTransferComplete_Callback(); } /* Check whether DMA transfer error caused the DMA interruption */ if(LL_DMA_IsActiveFlag_TE1(DMA1) == 1) { /* Clear flag DMA transfer error */ LL_DMA_ClearFlag_TE1(DMA1); /* Call interruption treatment function */ AdcDmaTransferError_Callback(); } } /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultiChannelSingleConversion
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultiChannelSingleConversion\Src\system_stm32f1xx.c
/** ****************************************************************************** * @file system_stm32f1xx.c * @author MCD Application Team * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File. * * 1. This file provides two functions and one global variable to be called from * user application: * - SystemInit(): Setups the system clock (System clock source, PLL Multiplier * factors, AHB/APBx prescalers and Flash settings). * This function is called at startup just after reset and * before branch to main program. This call is made inside * the "startup_stm32f1xx_xx.s" file. * * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used * by the user application to setup the SysTick * timer or configure other parameters. * * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must * be called whenever the core clock is changed * during program execution. * * 2. After each device reset the HSI (8 MHz) is used as system clock source. * Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to * configure the system clock before to branch to main program. * * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on * the product used), refer to "HSE_VALUE". * When HSE is used as system clock source, directly or through PLL, and you * are using different crystal you have to adapt the HSE value to your own * configuration. * ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32f1xx_system * @{ */ /** @addtogroup STM32F1xx_System_Private_Includes * @{ */ #include "stm32f1xx.h" /** * @} */ /** @addtogroup STM32F1xx_System_Private_TypesDefinitions * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Defines * @{ */ #if !defined (HSE_VALUE) #define HSE_VALUE 8000000U /*!< Default value of the External oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSE_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE 8000000U /*!< Default value of the Internal oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSI_VALUE */ /*!< Uncomment the following line if you need to use external SRAM */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /* #define DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /*!< Uncomment the following line if you need to relocate your vector Table in Internal SRAM. */ /* #define VECT_TAB_SRAM */ #define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field. This value must be a multiple of 0x200. */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Macros * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Variables * @{ */ /* This variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetHCLKFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency Note: If you use this function to configure the system clock; then there is no need to call the 2 first functions listed above, since SystemCoreClock variable is updated automatically. */ uint32_t SystemCoreClock = 16000000; const uint8_t AHBPrescTable[16U] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}; const uint8_t APBPrescTable[8U] = {0, 0, 0, 0, 1, 2, 3, 4}; /** * @} */ /** @addtogroup STM32F1xx_System_Private_FunctionPrototypes * @{ */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM static void SystemInit_ExtMemCtl(void); #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Functions * @{ */ /** * @brief Setup the microcontroller system * Initialize the Embedded Flash Interface, the PLL and update the * SystemCoreClock variable. * @note This function should be used only after reset. * @param None * @retval None */ void SystemInit (void) { /* Reset the RCC clock configuration to the default reset state(for debug purpose) */ /* Set HSION bit */ RCC->CR |= 0x00000001U; /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */ #if !defined(STM32F105xC) && !defined(STM32F107xC) RCC->CFGR &= 0xF8FF0000U; #else RCC->CFGR &= 0xF0FF0000U; #endif /* STM32F105xC */ /* Reset HSEON, CSSON and PLLON bits */ RCC->CR &= 0xFEF6FFFFU; /* Reset HSEBYP bit */ RCC->CR &= 0xFFFBFFFFU; /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */ RCC->CFGR &= 0xFF80FFFFU; #if defined(STM32F105xC) || defined(STM32F107xC) /* Reset PLL2ON and PLL3ON bits */ RCC->CR &= 0xEBFFFFFFU; /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x00FF0000U; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000U; #elif defined(STM32F100xB) || defined(STM32F100xE) /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000U; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000U; #else /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000U; #endif /* STM32F105xC */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM SystemInit_ExtMemCtl(); #endif /* DATA_IN_ExtSRAM */ #endif #ifdef VECT_TAB_SRAM SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */ #else SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */ #endif } /** * @brief Update SystemCoreClock variable according to Clock Register Values. * The SystemCoreClock variable contains the core clock (HCLK), it can * be used by the user application to setup the SysTick timer or configure * other parameters. * * @note Each time the core clock (HCLK) changes, this function must be called * to update SystemCoreClock variable value. Otherwise, any configuration * based on this variable will be incorrect. * * @note - The system frequency computed by this function is not the real * frequency in the chip. It is calculated based on the predefined * constant and the selected clock source: * * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*) * * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**) * * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) * or HSI_VALUE(*) multiplied by the PLL factors. * * (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz) but the real value may vary depending on the variations * in voltage and temperature. * * (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz or 25 MHz, depending on the product used), user has to ensure * that HSE_VALUE is same as the real frequency of the crystal used. * Otherwise, this function may have wrong result. * * - The result of this function could be not correct when using fractional * value for HSE crystal. * @param None * @retval None */ void SystemCoreClockUpdate (void) { uint32_t tmp = 0U, pllmull = 0U, pllsource = 0U; #if defined(STM32F105xC) || defined(STM32F107xC) uint32_t prediv1source = 0U, prediv1factor = 0U, prediv2factor = 0U, pll2mull = 0U; #endif /* STM32F105xC */ #if defined(STM32F100xB) || defined(STM32F100xE) uint32_t prediv1factor = 0U; #endif /* STM32F100xB or STM32F100xE */ /* Get SYSCLK source -------------------------------------------------------*/ tmp = RCC->CFGR & RCC_CFGR_SWS; switch (tmp) { case 0x00U: /* HSI used as system clock */ SystemCoreClock = HSI_VALUE; break; case 0x04U: /* HSE used as system clock */ SystemCoreClock = HSE_VALUE; break; case 0x08U: /* PLL used as system clock */ /* Get PLL clock source and multiplication factor ----------------------*/ pllmull = RCC->CFGR & RCC_CFGR_PLLMULL; pllsource = RCC->CFGR & RCC_CFGR_PLLSRC; #if !defined(STM32F105xC) && !defined(STM32F107xC) pllmull = ( pllmull >> 18U) + 2U; if (pllsource == 0x00U) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1U) * pllmull; } else { #if defined(STM32F100xB) || defined(STM32F100xE) prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U; /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; #else /* HSE selected as PLL clock entry */ if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET) {/* HSE oscillator clock divided by 2 */ SystemCoreClock = (HSE_VALUE >> 1U) * pllmull; } else { SystemCoreClock = HSE_VALUE * pllmull; } #endif } #else pllmull = pllmull >> 18U; if (pllmull != 0x0DU) { pllmull += 2U; } else { /* PLL multiplication factor = PLL input clock * 6.5 */ pllmull = 13U / 2U; } if (pllsource == 0x00U) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1U) * pllmull; } else {/* PREDIV1 selected as PLL clock entry */ /* Get PREDIV1 clock source and division factor */ prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC; prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U; if (prediv1source == 0U) { /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; } else {/* PLL2 clock selected as PREDIV1 clock entry */ /* Get PREDIV2 division factor and PLL2 multiplication factor */ prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4U) + 1U; pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8U) + 2U; SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull; } } #endif /* STM32F105xC */ break; default: SystemCoreClock = HSI_VALUE; break; } /* Compute HCLK clock frequency ----------------*/ /* Get HCLK prescaler */ tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4U)]; /* HCLK clock frequency */ SystemCoreClock >>= tmp; } #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /** * @brief Setup the external memory controller. Called in startup_stm32f1xx.s * before jump to __main * @param None * @retval None */ #ifdef DATA_IN_ExtSRAM /** * @brief Setup the external memory controller. * Called in startup_stm32f1xx_xx.s/.c before jump to main. * This function configures the external SRAM mounted on STM3210E-EVAL * board (STM32 High density devices). This SRAM will be used as program * data memory (including heap and stack). * @param None * @retval None */ void SystemInit_ExtMemCtl(void) { __IO uint32_t tmpreg; /*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is required, then adjust the Register Addresses */ /* Enable FSMC clock */ RCC->AHBENR = 0x00000114U; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN); /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */ RCC->APB2ENR = 0x000001E0U; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN); (void)(tmpreg); /* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/ /*---------------- SRAM Address lines configuration -------------------------*/ /*---------------- NOE and NWE configuration --------------------------------*/ /*---------------- NE3 configuration ----------------------------------------*/ /*---------------- NBL0, NBL1 configuration ---------------------------------*/ GPIOD->CRL = 0x44BB44BBU; GPIOD->CRH = 0xBBBBBBBBU; GPIOE->CRL = 0xB44444BBU; GPIOE->CRH = 0xBBBBBBBBU; GPIOF->CRL = 0x44BBBBBBU; GPIOF->CRH = 0xBBBB4444U; GPIOG->CRL = 0x44BBBBBBU; GPIOG->CRH = 0x444B4B44U; /*---------------- FSMC Configuration ---------------------------------------*/ /*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/ FSMC_Bank1->BTCR[4U] = 0x00001091U; FSMC_Bank1->BTCR[5U] = 0x00110212U; } #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultimodeDualInterleaved
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultimodeDualInterleaved\Inc\main.h
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_MultimodeDualInterleaved/Inc/main.h * @author MCD Application Team * @brief Header for main.c module ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __MAIN_H #define __MAIN_H /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_ll_bus.h" #include "stm32f1xx_ll_rcc.h" #include "stm32f1xx_ll_system.h" #include "stm32f1xx_ll_utils.h" #include "stm32f1xx_ll_cortex.h" #include "stm32f1xx_ll_gpio.h" #include "stm32f1xx_ll_exti.h" #include "stm32f1xx_ll_adc.h" #include "stm32f1xx_ll_dma.h" #include "stm32f1xx_ll_pwr.h" #if defined(USE_FULL_ASSERT) #include "stm32_assert.h" #endif /* USE_FULL_ASSERT */ /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Define used to enable time-out management*/ #define USE_TIMEOUT 0 /** * @brief LED2 */ #define LED2_PIN LL_GPIO_PIN_5 #define LED2_GPIO_PORT GPIOA #define LED2_GPIO_CLK_ENABLE() LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOA) /** * @brief Toggle periods for various blinking modes */ #define LED_BLINK_FAST 200 #define LED_BLINK_SLOW 500 #define LED_BLINK_ERROR 1000 /** * @brief Key push-button */ #define USER_BUTTON_PIN LL_GPIO_PIN_13 #define USER_BUTTON_GPIO_PORT GPIOC #define USER_BUTTON_GPIO_CLK_ENABLE() LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOC) #define USER_BUTTON_EXTI_LINE LL_EXTI_LINE_13 #define USER_BUTTON_EXTI_IRQn EXTI15_10_IRQn #define USER_BUTTON_EXTI_LINE_ENABLE() LL_EXTI_EnableIT_0_31(USER_BUTTON_EXTI_LINE) #define USER_BUTTON_EXTI_FALLING_TRIG_ENABLE() LL_EXTI_EnableFallingTrig_0_31(USER_BUTTON_EXTI_LINE) #define USER_BUTTON_SYSCFG_SET_EXTI() do { \ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_AFIO); \ LL_GPIO_AF_SetEXTISource(LL_GPIO_AF_EXTI_PORTC, LL_GPIO_AF_EXTI_LINE13); \ } while(0) #define USER_BUTTON_IRQHANDLER EXTI15_10_IRQHandler /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ /* IRQ Handler treatment */ void UserButton_Callback(void); void AdcDmaTransferComplete_Callback(void); void AdcDmaTransferHalf_Callback(void); void AdcDmaTransferError_Callback(void); #endif /* __MAIN_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultimodeDualInterleaved
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultimodeDualInterleaved\Inc\stm32f1xx_it.h
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_MultimodeDualInterleaved/Inc/stm32f1xx_it.h * @author MCD Application Team * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_IT_H #define __STM32F1xx_IT_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); void USER_BUTTON_IRQHANDLER(void); void DMA1_Channel1_IRQHandler(void); #ifdef __cplusplus } #endif #endif /* __STM32F1xx_IT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultimodeDualInterleaved
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultimodeDualInterleaved\Inc\stm32_assert.h
/** ****************************************************************************** * @file stm32_assert.h * @author MCD Application Team * @brief STM32 assert template file. * This file should be copied to the application folder and renamed * to stm32_assert.h. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32_ASSERT_H #define __STM32_ASSERT_H #ifdef __cplusplus extern "C" { #endif /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Includes ------------------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ #ifdef USE_FULL_ASSERT /** * @brief The assert_param macro is used for function's parameters check. * @param expr: If expr is false, it calls assert_failed function * which reports the name of the source file and the source * line number of the call that failed. * If expr is true, it returns no value. * @retval None */ #define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__)) /* Exported functions ------------------------------------------------------- */ void assert_failed(uint8_t* file, uint32_t line); #else #define assert_param(expr) ((void)0U) #endif /* USE_FULL_ASSERT */ #ifdef __cplusplus } #endif #endif /* __STM32_ASSERT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultimodeDualInterleaved
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultimodeDualInterleaved\Src\main.c
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_MultimodeDualInterleaved/Src/main.c * @author MCD Application Team * @brief This example describes how to use several ADC peripherals in * multimode, mode interleaved. * ADC master instance synchronizes and manages ADC slave instance. * Multimode interleaved combines ADC instances to convert * the same channel and increase the overall ADC conversion rate. * This example configures the ADC to perform conversions at the * maximum ADC conversion rate possible (with a sampling time * corresponding to ADC resolution 12 bits). * This example is based on the STM32F1xx ADC LL API; * Peripheral initialization done using LL unitary services functions. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_LL_Examples * @{ */ /** @addtogroup ADC_MultimodeDualInterleaved * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Definitions of ADC hardware constraints delays */ /* Note: Only ADC IP HW delays are defined in ADC LL driver driver, */ /* not timeout values: */ /* Timeout values for ADC operations are dependent to device clock */ /* configuration (system clock versus ADC clock), */ /* and therefore must be defined in user application. */ /* Refer to @ref ADC_LL_EC_HW_DELAYS for description of ADC timeout */ /* values definition. */ /* Timeout values for ADC operations. */ /* (enable settling time, disable settling time, ...) */ /* Values defined to be higher than worst cases: low clock frequency, */ /* maximum prescalers. */ /* Example of profile very low frequency : ADC clock frequency 12MHz */ /* prescaler 6, sampling time 1.5 ADC clock cycles, resolution 12 bits. */ /* - ADC enable time: maximum delay is 1 us */ /* (refer to device datasheet, parameter "tSTAB") */ /* - ADC disable time: maximum delay should be a few ADC clock cycles */ /* - ADC stop conversion time: maximum delay should be a few ADC clock */ /* cycles */ /* - ADC conversion time: with this hypothesis of clock settings, maximum */ /* delay will be 7us. */ /* (refer to device reference manual, section "Timing") */ /* Unit: ms */ #define ADC_CALIBRATION_TIMEOUT_MS ((uint32_t) 1) #define ADC_ENABLE_TIMEOUT_MS ((uint32_t) 1) #define ADC_DISABLE_TIMEOUT_MS ((uint32_t) 1) #define ADC_STOP_CONVERSION_TIMEOUT_MS ((uint32_t) 1) #define ADC_CONVERSION_TIMEOUT_MS ((uint32_t) 2) /* Delay between ADC enable and ADC end of calibration. */ /* Delay estimation in CPU cycles: Case of ADC calibration done */ /* immediately after ADC enable, ADC clock setting slow */ /* (LL_ADC_CLOCK_ASYNC_DIV32). Use a higher delay if ratio */ /* (CPU clock / ADC clock) is above 32. */ #define ADC_DELAY_ENABLE_CALIB_CPU_CYCLES (LL_ADC_DELAY_ENABLE_CALIB_ADC_CYCLES * 32) /* Definitions of environment analog values */ /* Value of analog reference voltage (Vref+), connected to analog voltage */ /* supply Vdda (unit: mV). */ #define VDDA_APPLI ((uint32_t)3300) /* Definitions of data related to this example */ /* Init variable out of expected ADC conversion data range */ #define VAR_CONVERTED_DATA_INIT_VALUE (__LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B) + 1) /* Definition of ADCx conversions data table size */ /* Note: Considering interruption occurring after each number of */ /* "ADC_CONVERTED_DATA_BUFFER_SIZE" ADC conversions */ /* (IT from DMA transfer complete), */ /* select sampling time and ADC clock with sufficient */ /* duration to not create an overhead situation in IRQHandler. */ #define ADC_CONVERTED_DATA_BUFFER_SIZE ((uint32_t) 256) /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Variables for ADC conversion data */ __IO uint32_t aADCxADCyMultimodeDualConvertedData[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* ADC multimode dual conversion data: ADC master and ADC slave conversion data are concatenated in a registers of 32 bits. */ static uint16_t aADCxMultimodeDualMasterConvertedData[ADC_CONVERTED_DATA_BUFFER_SIZE];/* For the purpose of this example, dispatch multimode dual conversion data into array corresponding to ADC master conversion data. */ static uint16_t aADCyMultimodeDualSlaveConvertedData[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* For the purpose of this example, dispatch multimode dual conversion data into array corresponding to ADC slave conversion data. */ /* Variable to report status of DMA transfer of ADC group regular conversions */ /* 0: DMA transfer is not completed */ /* 1: DMA transfer is completed */ /* 2: DMA transfer has not been started yet (initial state) */ __IO uint8_t ubDmaTransferStatus = 2; /* Variable set into DMA interruption callback */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void Configure_DMA(void); void Configure_ADC(void); void Configure_ADC_slave(void); void Activate_ADC(void); void Activate_ADC_slave(void); void LED_Init(void); void LED_On(void); void LED_Off(void); void LED_Blinking(uint32_t Period); void UserButton_Init(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { /* Configure the system clock to 72 MHz */ SystemClock_Config(); /* Initialize LED2 */ LED_Init(); /* Initialize button in EXTI mode */ UserButton_Init(); /* Configure DMA for data transfer from ADC */ Configure_DMA(); /* Configure ADC */ /* Note: This function configures the ADC but does not enable it. */ /* To enable it, use function "Activate_ADC()". */ /* This is intended to optimize power consumption: */ /* 1. ADC configuration can be done once at the beginning */ /* (ADC disabled, minimal power consumption) */ /* 2. ADC enable (higher power consumption) can be done just before */ /* ADC conversions needed. */ /* Then, possible to perform successive "Activate_ADC()", */ /* "Deactivate_ADC()", ..., without having to set again */ /* ADC configuration. */ Configure_ADC(); /* For multimode, configure ADC slave */ Configure_ADC_slave(); /* Activate ADC */ /* Perform ADC activation procedure to make it ready to convert. */ Activate_ADC(); Activate_ADC_slave(); /* Infinite loop */ while (1) { /* Note: ADC group regular conversion start is done into push button */ /* IRQ handler, refer to function "UserButton_Callback()". */ /* Note: LED state depending on DMA transfer status is set into DMA */ /* IRQ handler, refer to functions "DmaTransferComplete()" */ /* and "DmaTransferHalfComplete()". */ /* Note: ADC conversion data are stored into array */ /* "aADCxADCyMultimodeDualConvertedData". */ /* For this example purpose, ADC conversion data of ADC master and */ /* ADC slave are dispatched into arrays */ /* "aADCxMultimodeDualMasterConvertedData" */ /* and "aADCyMultimodeDualSlaveConvertedData", refer to comments */ /* into function "DmaTransferComplete()". */ /* (for debug: see variable content into watch window). */ /* Note: ADC conversion data can be computed to physical values */ /* using ADC LL driver helper macro: */ /* uhADCxConvertedData_Voltage_mVolt */ /* = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, */ /* uhADCxConvertedData), */ /* LL_ADC_RESOLUTION_12B) */ } } /** * @brief This function configures DMA for transfer of data from ADC * @param None * @retval None */ void Configure_DMA(void) { /*## Configuration of NVIC #################################################*/ /* Configure NVIC to enable DMA interruptions */ NVIC_SetPriority(DMA1_Channel1_IRQn, 1); /* DMA IRQ lower priority than ADC IRQ */ NVIC_EnableIRQ(DMA1_Channel1_IRQn); /*## Configuration of DMA ##################################################*/ /* Enable the peripheral clock of DMA */ LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_DMA1); /* Configure the DMA transfer */ /* - DMA transfer in circular mode to match with ADC configuration: */ /* DMA unlimited requests. */ /* - DMA transfer from ADC without address increment. */ /* - DMA transfer to memory with address increment. */ /* - DMA transfer from ADC by word to match with ADC configuration: */ /* ADC resolution 12 bits and and multimode enabled, */ /* ADC master and ADC slave conversion data are concatenated in */ /* a register of 32 bits. */ /* - DMA transfer to memory by word to match with ADC conversion data */ /* buffer variable type: word. */ LL_DMA_ConfigTransfer(DMA1, LL_DMA_CHANNEL_1, LL_DMA_DIRECTION_PERIPH_TO_MEMORY | LL_DMA_MODE_CIRCULAR | LL_DMA_PERIPH_NOINCREMENT | LL_DMA_MEMORY_INCREMENT | LL_DMA_PDATAALIGN_WORD | LL_DMA_MDATAALIGN_WORD | LL_DMA_PRIORITY_HIGH ); /* Set DMA transfer addresses of source and destination */ /* Note: On this STM32 device, in multimode, ADC conversion data with */ /* ADC master and ADC slave conversion data concatenated are located */ /* in data register of ADC master. */ LL_DMA_ConfigAddresses(DMA1, LL_DMA_CHANNEL_1, LL_ADC_DMA_GetRegAddr(ADC1, LL_ADC_DMA_REG_REGULAR_DATA), (uint32_t)&aADCxADCyMultimodeDualConvertedData, LL_DMA_DIRECTION_PERIPH_TO_MEMORY); /* Set DMA transfer size */ LL_DMA_SetDataLength(DMA1, LL_DMA_CHANNEL_1, ADC_CONVERTED_DATA_BUFFER_SIZE); /* Enable DMA transfer interruption: transfer complete */ LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_1); /* Enable DMA transfer interruption: half transfer */ LL_DMA_EnableIT_HT(DMA1, LL_DMA_CHANNEL_1); /* Enable DMA transfer interruption: transfer error */ LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_1); /*## Activation of DMA #####################################################*/ /* Enable the DMA transfer */ LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1); } /** * @brief Configure ADC (ADC instance: ADC1) and GPIO used by ADC channels. * @note In case re-use of this function outside of this example: * This function includes checks of ADC hardware constraints before * executing some configuration functions. * - In this example, all these checks are not necessary but are * implemented anyway to show the best practice usages * corresponding to reference manual procedure. * (On some STM32 series, setting of ADC features are not * conditioned to ADC state. However, in order to be compliant with * other STM32 series and to show the best practice usages, * ADC state is checked anyway with same constraints). * Software can be optimized by removing some of these checks, * if they are not relevant considering previous settings and actions * in user application. * - If ADC is not in the appropriate state to modify some parameters, * the setting of these parameters is bypassed without error * reporting: * it can be the expected behavior in case of recall of this * function to update only a few parameters (which update fulfills * the ADC state). * Otherwise, it is up to the user to set the appropriate error * reporting in user application. * @note Peripheral configuration is minimal configuration from reset values. * Thus, some useless LL unitary functions calls below are provided as * commented examples - setting is default configuration from reset. * @param None * @retval None */ void Configure_ADC(void) { /*## Configuration of GPIO used by ADC channels ############################*/ /* Note: On this STM32 device, ADC1 channel 4 is mapped on GPIO pin PA.04 */ /* Enable GPIO Clock */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOA); /* Configure GPIO in analog mode to be used as ADC input */ LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_4, LL_GPIO_MODE_ANALOG); /*## Configuration of NVIC #################################################*/ /* Configure NVIC to enable ADC1 interruptions */ NVIC_SetPriority(ADC1_2_IRQn, 0); /* ADC IRQ greater priority than DMA IRQ */ NVIC_EnableIRQ(ADC1_2_IRQn); /*## Configuration of ADC ##################################################*/ /*## Configuration of ADC hierarchical scope: common to several ADC ########*/ /* Enable ADC clock (core clock) */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_ADC1); /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if(__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE() == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC measurement path to internal channels */ // LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_PATH_INTERNAL_NONE); /*## Configuration of ADC hierarchical scope: multimode ####################*/ /* Set ADC multimode configuration */ LL_ADC_SetMultimode(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_DUAL_REG_INTERL_FAST); } /*## Configuration of ADC hierarchical scope: ADC instance #################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC conversion data alignment */ // LL_ADC_SetResolution(ADC1, LL_ADC_DATA_ALIGN_RIGHT); /* Set Set ADC sequencers scan mode, for all ADC groups */ /* (group regular, group injected). */ // LL_ADC_SetSequencersScanMode(ADC1, LL_ADC_SEQ_SCAN_DISABLE); } /*## Configuration of ADC hierarchical scope: ADC group regular ############*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Set ADC group regular trigger source */ LL_ADC_REG_SetTriggerSource(ADC1, LL_ADC_REG_TRIG_SOFTWARE); /* Set ADC group regular trigger polarity */ // LL_ADC_REG_SetTriggerEdge(ADC1, LL_ADC_REG_TRIG_EXT_RISING); /* Set ADC group regular continuous mode */ LL_ADC_REG_SetContinuousMode(ADC1, LL_ADC_REG_CONV_CONTINUOUS); /* Set ADC group regular conversion data transfer */ /* Note: Both ADC master and ADC slave have multimode setting */ /* to use 1 DMA channel for all ADC instances. */ /* In this case, each ADC Slave instance must have setting of */ /* ADC DMA request set to default value (no DMA transfer). */ /* and ADC DMA transfer is managed by ADC1 instance. */ LL_ADC_REG_SetDMATransfer(ADC1, LL_ADC_REG_DMA_TRANSFER_UNLIMITED); /* Set ADC group regular sequencer */ /* Note: On this STM32 series, ADC group regular sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_REG_SetSequencerLength()". */ /* Set ADC group regular sequencer length and scan direction */ LL_ADC_REG_SetSequencerLength(ADC1, LL_ADC_REG_SEQ_SCAN_DISABLE); /* Set ADC group regular sequencer discontinuous mode */ // LL_ADC_REG_SetSequencerDiscont(ADC1, LL_ADC_REG_SEQ_DISCONT_DISABLE); /* Set ADC group regular sequence: channel on the selected sequence rank. */ LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_1, LL_ADC_CHANNEL_4); } /*## Configuration of ADC hierarchical scope: ADC group injected ###########*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC group injected trigger source */ // LL_ADC_INJ_SetTriggerSource(ADC1, LL_ADC_INJ_TRIG_SOFTWARE); /* Set ADC group injected trigger polarity */ // LL_ADC_INJ_SetTriggerEdge(ADC1, LL_ADC_INJ_TRIG_EXT_RISING); /* Set ADC group injected conversion trigger */ // LL_ADC_INJ_SetTrigAuto(ADC1, LL_ADC_INJ_TRIG_INDEPENDENT); /* Set ADC group injected sequencer */ /* Note: On this STM32 series, ADC group injected sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_INJ_SetSequencerLength()". */ /* Set ADC group injected sequencer length and scan direction */ // LL_ADC_INJ_SetSequencerLength(ADC1, LL_ADC_INJ_SEQ_SCAN_DISABLE); /* Set ADC group injected sequencer discontinuous mode */ // LL_ADC_INJ_SetSequencerDiscont(ADC1, LL_ADC_INJ_SEQ_DISCONT_DISABLE); /* Set ADC group injected sequence: channel on the selected sequence rank. */ // LL_ADC_INJ_SetSequencerRanks(ADC1, LL_ADC_INJ_RANK_1, LL_ADC_CHANNEL_4); } /*## Configuration of ADC hierarchical scope: channels #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Set ADC channels sampling time */ /* Note: Considering interruption occurring after each number of */ /* "ADC_CONVERTED_DATA_BUFFER_SIZE" ADC conversions */ /* (IT from DMA transfer complete), */ /* select sampling time and ADC clock with sufficient */ /* duration to not create an overhead situation in IRQHandler. */ LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_4, LL_ADC_SAMPLINGTIME_1CYCLE_5); } /*## Configuration of ADC transversal scope: analog watchdog ###############*/ /* Note: On this STM32 series, there is only 1 analog watchdog available. */ /* Set ADC analog watchdog: channels to be monitored */ // LL_ADC_SetAnalogWDMonitChannels(ADC1, LL_ADC_AWD_DISABLE); /* Set ADC analog watchdog: thresholds */ // LL_ADC_SetAnalogWDThresholds(ADC1, LL_ADC_AWD_THRESHOLD_HIGH, __LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B)); // LL_ADC_SetAnalogWDThresholds(ADC1, LL_ADC_AWD_THRESHOLD_LOW, 0x000); /*## Configuration of ADC transversal scope: oversampling ##################*/ /* Note: Feature not available on this STM32 series */ /*## Configuration of ADC interruptions ####################################*/ /* Note: In this example, no ADC interruption enabled */ /* Note: in this example, ADC group regular end of conversions */ /* (number of ADC conversions defined by DMA buffer size) */ /* are notified by DMA transfer interruptions). */ } /** * @brief For multimode, configure ADC slave (ADC instance: ADC2) * and GPIO used by ADC channels. * @note Configuration of GPIO: * Not configured: same as ADC master (ADC slave shares the common configuration of ADC master) * Configuration of ADC: * - Common to several ADC: * Not configured: same as ADC master (ADC slave shares the common configuration of ADC master) * - Multimode * Not configured: same as ADC master (ADC slave shares the common configuration of ADC master) * @note In case re-use of this function outside of this example: * This function includes checks of ADC hardware constraints before * executing some configuration functions. * - In this example, all these checks are not necessary but are * implemented anyway to show the best practice usages * corresponding to reference manual procedure. * (On some STM32 series, setting of ADC features are not * conditioned to ADC state. However, in order to be compliant with * other STM32 series and to show the best practice usages, * ADC state is checked anyway with same constraints). * Software can be optimized by removing some of these checks, * if they are not relevant considering previous settings and actions * in user application. * - If ADC is not in the appropriate state to modify some parameters, * the setting of these parameters is bypassed without error * reporting: * it can be the expected behavior in case of recall of this * function to update only a few parameters (which update fulfills * the ADC state). * Otherwise, it is up to the user to set the appropriate error * reporting in user application. * @note Peripheral configuration is minimal configuration from reset values. * Thus, some useless LL unitary functions calls below are provided as * commented examples - setting is default configuration from reset. * @param None * @retval None */ void Configure_ADC_slave(void) { /*## Configuration of GPIO used by ADC channels ############################*/ /* Note: not configured: In this example, ADC slave group regular converts */ /* the same channel as ADC master group regular. */ /* Channel configuration same as ADC master. */ /*## Configuration of NVIC #################################################*/ /* Configure NVIC to enable ADC2 interruptions */ NVIC_SetPriority(ADC1_2_IRQn, 0); /* ADC IRQ greater priority than DMA IRQ */ NVIC_EnableIRQ(ADC1_2_IRQn); /*## Configuration of ADC ##################################################*/ /* Enable ADC clock (core clock) */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_ADC2); /*## Configuration of ADC hierarchical scope: common to several ADC ########*/ /* Note: ADC clock (core clock) not configured: same as ADC master */ /* (ADC slave shares the common clock of ADC master). */ /* Note: not configured: same as ADC master (ADC slave shares the common */ /* configuration of ADC master). */ /*## Configuration of ADC hierarchical scope: multimode ####################*/ /* Note: not configured: same as ADC master (ADC slave shares the common */ /* configuration of ADC master). */ /*## Configuration of ADC hierarchical scope: ADC instance #################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC2) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC conversion data alignment */ // LL_ADC_SetResolution(ADC2, LL_ADC_DATA_ALIGN_RIGHT); /* Set Set ADC sequencers scan mode, for all ADC groups */ /* (group regular, group injected). */ LL_ADC_SetSequencersScanMode(ADC2, LL_ADC_SEQ_SCAN_ENABLE); } /*## Configuration of ADC hierarchical scope: ADC group regular ############*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC2) == 0) { /* Set ADC group regular trigger source */ /* Note: On this STM32 device, in multimode, ADC slave trigger source */ /* setting is mandatory: SW start. */ LL_ADC_REG_SetTriggerSource(ADC2, LL_ADC_REG_TRIG_SOFTWARE); /* Set ADC group regular continuous mode */ /* Note: On this STM32 device, in multimode, ADC slave continuous */ /* conversions mode must be the same as ADC master. */ LL_ADC_REG_SetContinuousMode(ADC2, LL_ADC_REG_CONV_CONTINUOUS); /* Set ADC group regular conversion data transfer */ /* Note: Both ADC master and ADC slave have multimode setting */ /* to use 1 DMA channel for all ADC instances. */ /* In this case, each ADC Slave instance must have setting of */ /* ADC DMA request set to default value (no DMA transfer). */ /* and ADC DMA transfer is managed by ADC1 instance. */ LL_ADC_REG_SetDMATransfer(ADC2, LL_ADC_REG_DMA_TRANSFER_NONE); /* Set ADC group regular sequencer */ /* Note: On this STM32 series, ADC group regular sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_REG_SetSequencerLength()". */ /* Set ADC group regular sequencer length and scan direction */ LL_ADC_REG_SetSequencerLength(ADC2, LL_ADC_REG_SEQ_SCAN_DISABLE); /* Set ADC group regular sequencer discontinuous mode */ // LL_ADC_REG_SetSequencerDiscont(ADC2, LL_ADC_REG_SEQ_DISCONT_DISABLE); /* Set ADC group regular sequence: channel on the selected sequence rank. */ LL_ADC_REG_SetSequencerRanks(ADC2, LL_ADC_REG_RANK_1, LL_ADC_CHANNEL_4); } /*## Configuration of ADC hierarchical scope: ADC group injected ###########*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC2) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC group injected trigger source */ // LL_ADC_INJ_SetTriggerSource(ADC2, LL_ADC_INJ_TRIG_SOFTWARE); /* Set ADC group injected trigger polarity */ // LL_ADC_INJ_SetTriggerEdge(ADC2, LL_ADC_INJ_TRIG_EXT_RISING); /* Set ADC group injected conversion trigger */ // LL_ADC_INJ_SetTrigAuto(ADC2, LL_ADC_INJ_TRIG_INDEPENDENT); /* Set ADC group injected sequencer */ /* Note: On this STM32 series, ADC group injected sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_INJ_SetSequencerLength()". */ /* Set ADC group injected sequencer length and scan direction */ // LL_ADC_INJ_SetSequencerLength(ADC2, LL_ADC_INJ_SEQ_SCAN_DISABLE); /* Set ADC group injected sequencer discontinuous mode */ // LL_ADC_INJ_SetSequencerDiscont(ADC2, LL_ADC_INJ_SEQ_DISCONT_DISABLE); /* Set ADC group injected sequence: channel on the selected sequence rank. */ // LL_ADC_INJ_SetSequencerRanks(ADC2, LL_ADC_INJ_RANK_1, LL_ADC_CHANNEL_4); } /*## Configuration of ADC hierarchical scope: channels #####################*/ /* Note: not configured: In this example, ADC slave group regular converts */ /* the same channel as ADC master group regular. */ /* Channel configuration same as ADC master. */ /*## Configuration of ADC transversal scope: analog watchdog ###############*/ /* Note: On this STM32 series, there is only 1 analog watchdog available. */ /* Set ADC analog watchdog: channels to be monitored */ // LL_ADC_SetAnalogWDMonitChannels(ADC2, LL_ADC_AWD_DISABLE); /* Set ADC analog watchdog: thresholds */ // LL_ADC_SetAnalogWDThresholds(ADC2, LL_ADC_AWD_THRESHOLD_HIGH, __LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B)); // LL_ADC_SetAnalogWDThresholds(ADC2, LL_ADC_AWD_THRESHOLD_LOW, 0x000); /*## Configuration of ADC transversal scope: oversampling ##################*/ /* Note: Feature not available on this STM32 series */ /*## Configuration of ADC interruptions ####################################*/ /* Note: In this example, no ADC interruption enabled */ /* Note: in this example, ADC group regular end of conversions */ /* (number of ADC conversions defined by DMA buffer size) */ /* are notified by DMA transfer interruptions). */ } /** * @brief Perform ADC activation procedure to make it ready to convert * (ADC instance: ADC1). * @note Operations: * - ADC instance * - Run ADC self calibration * - Enable ADC * - ADC group regular * none: ADC conversion start-stop to be performed * after this function * - ADC group injected * none: ADC conversion start-stop to be performed * after this function * @param None * @retval None */ void Activate_ADC(void) { __IO uint32_t wait_loop_index = 0; #if (USE_TIMEOUT == 1) uint32_t Timeout = 0; /* Variable used for timeout management */ #endif /* USE_TIMEOUT */ /*## Operation on ADC hierarchical scope: ADC instance #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Enable ADC */ LL_ADC_Enable(ADC1); /* Delay between ADC enable and ADC start of calibration. */ /* Note: Variable divided by 2 to compensate partially */ /* CPU processing cycles (depends on compilation optimization). */ wait_loop_index = (ADC_DELAY_ENABLE_CALIB_CPU_CYCLES >> 1); while(wait_loop_index != 0) { wait_loop_index--; } /* Run ADC self calibration */ LL_ADC_StartCalibration(ADC1); /* Poll for ADC effectively calibrated */ #if (USE_TIMEOUT == 1) Timeout = ADC_CALIBRATION_TIMEOUT_MS; #endif /* USE_TIMEOUT */ while (LL_ADC_IsCalibrationOnGoing(ADC1) != 0) { #if (USE_TIMEOUT == 1) /* Check Systick counter flag to decrement the time-out value */ if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { /* Time-out occurred. Set LED to blinking mode */ LED_Blinking(LED_BLINK_ERROR); } } #endif /* USE_TIMEOUT */ } } /*## Operation on ADC hierarchical scope: ADC group regular ################*/ /* Note: No operation on ADC group regular performed here. */ /* ADC group regular conversions to be performed after this function */ /* using function: */ /* "LL_ADC_REG_StartConversion();" */ /*## Operation on ADC hierarchical scope: ADC group injected ###############*/ /* Note: No operation on ADC group injected performed here. */ /* ADC group injected conversions to be performed after this function */ /* using function: */ /* "LL_ADC_INJ_StartConversion();" */ } /** * @brief Perform ADC activation procedure to make it ready to convert * (ADC instance: ADC2, used as ADC slave in multimode configuration). * @note Operations: * - ADC instance * - Run ADC self calibration * - Enable ADC * - ADC group regular * none: ADC conversion start-stop to be performed * after this function * - ADC group injected * none: ADC conversion start-stop to be performed * after this function * @param None * @retval None */ void Activate_ADC_slave(void) { __IO uint32_t wait_loop_index = 0; #if (USE_TIMEOUT == 1) uint32_t Timeout = 0; /* Variable used for timeout management */ #endif /* USE_TIMEOUT */ /*## Operation on ADC hierarchical scope: ADC instance #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC2) == 0) { /* Enable ADC */ LL_ADC_Enable(ADC2); /* Delay between ADC enable and ADC start of calibration. */ /* Note: Variable divided by 2 to compensate partially */ /* CPU processing cycles (depends on compilation optimization). */ wait_loop_index = (ADC_DELAY_ENABLE_CALIB_CPU_CYCLES >> 1); while(wait_loop_index != 0) { wait_loop_index--; } /* Run ADC self calibration */ LL_ADC_StartCalibration(ADC2); /* Poll for ADC effectively calibrated */ #if (USE_TIMEOUT == 1) Timeout = ADC_CALIBRATION_TIMEOUT_MS; #endif /* USE_TIMEOUT */ while (LL_ADC_IsCalibrationOnGoing(ADC2) != 0) { #if (USE_TIMEOUT == 1) /* Check Systick counter flag to decrement the time-out value */ if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { /* Time-out occurred. Set LED to blinking mode */ LED_Blinking(LED_BLINK_ERROR); } } #endif /* USE_TIMEOUT */ } } /*## Operation on ADC hierarchical scope: ADC group regular ################*/ /* Note: No operation on ADC group regular performed here. */ /* In ADC multimode group regular interleaved, ADC slave conversions */ /* start and stop are controlled by ADC master. */ /*## Operation on ADC hierarchical scope: ADC group injected ###############*/ /* Note: No operation on ADC group injected performed here. */ /* ADC group injected conversions to be performed after this function */ /* using function: */ /* "LL_ADC_INJ_StartConversion();" */ } /** * @brief Initialize LED2. * @param None * @retval None */ void LED_Init(void) { /* Enable the LED2 Clock */ LED2_GPIO_CLK_ENABLE(); /* Configure IO in output push-pull mode to drive external LED2 */ LL_GPIO_SetPinMode(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_MODE_OUTPUT); /* Reset value is LL_GPIO_OUTPUT_PUSHPULL */ //LL_GPIO_SetPinOutputType(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_OUTPUT_PUSHPULL); /* Reset value is LL_GPIO_SPEED_FREQ_LOW */ //LL_GPIO_SetPinSpeed(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_SPEED_FREQ_LOW); /* Reset value is LL_GPIO_PULL_DOWN */ //LL_GPIO_SetPinPull(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_PULL_DOWN); } /** * @brief Turn-on LED2. * @param None * @retval None */ void LED_On(void) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN); } /** * @brief Turn-off LED2. * @param None * @retval None */ void LED_Off(void) { /* Turn LED2 off */ LL_GPIO_ResetOutputPin(LED2_GPIO_PORT, LED2_PIN); } /** * @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter). * @param Period : Period of time (in ms) between each toggling of LED * This parameter can be user defined values. Pre-defined values used in that example are : * @arg LED_BLINK_FAST : Fast Blinking * @arg LED_BLINK_SLOW : Slow Blinking * @arg LED_BLINK_ERROR : Error specific Blinking * @retval None */ void LED_Blinking(uint32_t Period) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN); /* Toggle IO in an infinite loop */ while (1) { LL_GPIO_TogglePin(LED2_GPIO_PORT, LED2_PIN); LL_mDelay(Period); } } /** * @brief Configures User push-button in EXTI Line Mode. * @param None * @retval None */ void UserButton_Init(void) { /* Enable the BUTTON Clock */ USER_BUTTON_GPIO_CLK_ENABLE(); /* Configure GPIO for BUTTON */ LL_GPIO_SetPinMode(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_MODE_INPUT); LL_GPIO_SetPinPull(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_PULL_DOWN); /* if(Button_Mode == BUTTON_MODE_EXTI) */ { /* Connect External Line to the GPIO */ USER_BUTTON_SYSCFG_SET_EXTI(); /* Enable a rising trigger EXTI line 13 Interrupt */ USER_BUTTON_EXTI_LINE_ENABLE(); USER_BUTTON_EXTI_FALLING_TRIG_ENABLE(); /* Configure NVIC for USER_BUTTON_EXTI_IRQn */ NVIC_EnableIRQ(USER_BUTTON_EXTI_IRQn); NVIC_SetPriority(USER_BUTTON_EXTI_IRQn,0x03); } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 72000000 * HCLK(Hz) = 72000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSE Frequency(Hz) = 8000000 * PLLMUL = 9 * Flash Latency(WS) = 2 * @param None * @retval None */ void SystemClock_Config(void) { /* Set FLASH latency */ LL_FLASH_SetLatency(LL_FLASH_LATENCY_2); /* Enable HSE oscillator */ LL_RCC_HSE_EnableBypass(); LL_RCC_HSE_Enable(); while(LL_RCC_HSE_IsReady() != 1) { }; /* Main PLL configuration and activation */ LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE_DIV_1, LL_RCC_PLL_MUL_9); LL_RCC_PLL_Enable(); while(LL_RCC_PLL_IsReady() != 1) { }; /* Sysclk activation on the main PLL */ LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL); while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { }; /* Set APB1 & APB2 prescaler*/ LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_2); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1); /* Set systick to 1ms in using frequency set to 72MHz */ LL_Init1msTick(72000000); /* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */ LL_SetSystemCoreClock(72000000); } /******************************************************************************/ /* USER IRQ HANDLER TREATMENT */ /******************************************************************************/ /** * @brief Function to manage IRQ Handler * @param None * @retval None */ void UserButton_Callback(void) { /* Start ADC conversion only on the first press on push button */ if (ubDmaTransferStatus == 2) { /* Update status variable of DMA transfer */ ubDmaTransferStatus = 0; /* Start ADC group regular conversion */ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 1) { LL_ADC_REG_StartConversionExtTrig(ADC2, LL_ADC_REG_TRIG_EXT_RISING); LL_ADC_REG_StartConversionSWStart(ADC1); } else { /* Error: ADC conversion start could not be performed */ LED_Blinking(LED_BLINK_ERROR); } } } /** * @brief DMA transfer complete callback * @note This function is executed when the transfer complete interrupt * is generated * @retval None */ void AdcDmaTransferComplete_Callback() { uint32_t tmp_index = 0; /* For the purpose of this example, dispatch multimode dual conversion data */ /* into arrays corresponding to ADC master and ADC slave conversion data. */ /* Note: On this STM32 device, in multimode, ADC conversion data are */ /* ADC master and ADC slave conversion data concatenated in the */ /* same register. There is no other alternative have conversion data */ /* of ADC master and ADC slave dispatched directly. */ /* Management of the 2nd half of the buffer */ for (tmp_index = (ADC_CONVERTED_DATA_BUFFER_SIZE/2); tmp_index < ADC_CONVERTED_DATA_BUFFER_SIZE; tmp_index++) { aADCxMultimodeDualMasterConvertedData[tmp_index] = (uint16_t) __LL_ADC_MULTI_CONV_DATA_MASTER_SLAVE(LL_ADC_MULTI_MASTER, aADCxADCyMultimodeDualConvertedData[tmp_index]); aADCyMultimodeDualSlaveConvertedData[tmp_index] = (uint16_t) __LL_ADC_MULTI_CONV_DATA_MASTER_SLAVE(LL_ADC_MULTI_SLAVE, aADCxADCyMultimodeDualConvertedData[tmp_index]); } /* Update status variable of DMA transfer */ ubDmaTransferStatus = 1; /* Set LED depending on DMA transfer status */ /* - Turn-on if DMA transfer is completed */ /* - Turn-off if DMA transfer is not completed */ LED_On(); } /** * @brief DMA half transfer callback * @note This function is executed when the half transfer interrupt * is generated * @retval None */ void AdcDmaTransferHalf_Callback() { uint32_t tmp_index = 0; /* For the purpose of this example, dispatch multimode dual conversion data */ /* into arrays corresponding to ADC master and ADC slave conversion data. */ /* Note: On this STM32 device, in multimode, ADC conversion data are */ /* ADC master and ADC slave conversion data concatenated in the */ /* same register. There is no other alternative have conversion data */ /* of ADC master and ADC slave dispatched directly. */ /* Management of the 1st half of the buffer */ for (tmp_index = 0; tmp_index < (ADC_CONVERTED_DATA_BUFFER_SIZE/2); tmp_index++) { aADCxMultimodeDualMasterConvertedData[tmp_index] = (uint16_t) __LL_ADC_MULTI_CONV_DATA_MASTER_SLAVE(LL_ADC_MULTI_MASTER, aADCxADCyMultimodeDualConvertedData[tmp_index]); aADCyMultimodeDualSlaveConvertedData[tmp_index] = (uint16_t) __LL_ADC_MULTI_CONV_DATA_MASTER_SLAVE(LL_ADC_MULTI_SLAVE, aADCxADCyMultimodeDualConvertedData[tmp_index]); } /* Update status variable of DMA transfer */ ubDmaTransferStatus = 0; /* Set LED depending on DMA transfer status */ /* - Turn-on if DMA transfer is completed */ /* - Turn-off if DMA transfer is not completed */ LED_Off(); } /** * @brief DMA transfer error callback * @note This function is executed when the transfer error interrupt * is generated during DMA transfer * @retval None */ void AdcDmaTransferError_Callback() { if(ubDmaTransferStatus == 1) { /* Update status variable of DMA transfer */ ubDmaTransferStatus = 0; } /* Dummy check to avoid warning of variables unused */ if((aADCxMultimodeDualMasterConvertedData[0] != 0) || (aADCyMultimodeDualSlaveConvertedData[0] != 0) ) { aADCxMultimodeDualMasterConvertedData[0] = 0; aADCyMultimodeDualSlaveConvertedData[0] = 0; } /* Error detected during DMA transfer */ LED_Blinking(LED_BLINK_ERROR); } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultimodeDualInterleaved
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultimodeDualInterleaved\Src\stm32f1xx_it.c
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_MultimodeDualInterleaved/Src/stm32f1xx_it.c * @author MCD Application Team * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_it.h" /** @addtogroup STM32F1xx_LL_Examples * @{ */ /** @addtogroup ADC_MultimodeDualInterleaved * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /******************************************************************************/ /* Cortex-M3 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /** * @brief This function handles PendSVC exception. * @param None * @retval None */ void PendSV_Handler(void) { } /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { } /******************************************************************************/ /* STM32F1xx Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f1xx.s). */ /******************************************************************************/ /** * @brief This function handles external lines 10 to 15 interrupt request. * @param None * @retval None */ void USER_BUTTON_IRQHANDLER(void) { /* Manage Flags */ if(LL_EXTI_IsActiveFlag_0_31(USER_BUTTON_EXTI_LINE) != RESET) { /* Call interruption treatment function */ UserButton_Callback(); /* Clear EXTI line flag */ /* Note: Clear flag after callback function to minimize user button */ /* switch debounce parasitics. */ LL_EXTI_ClearFlag_0_31(USER_BUTTON_EXTI_LINE); } } /** * @brief This function handles DMA1 interrupt request. * @param None * @retval None */ void DMA1_Channel1_IRQHandler(void) { /* Check whether DMA transfer complete caused the DMA interruption */ if(LL_DMA_IsActiveFlag_TC1(DMA1) == 1) { /* Clear flag DMA transfer complete */ LL_DMA_ClearFlag_TC1(DMA1); /* Call interruption treatment function */ AdcDmaTransferComplete_Callback(); } /* Check whether DMA half transfer caused the DMA interruption */ if(LL_DMA_IsActiveFlag_HT1(DMA1) == 1) { /* Clear flag DMA half transfer */ LL_DMA_ClearFlag_HT1(DMA1); /* Call interruption treatment function */ AdcDmaTransferHalf_Callback(); } /* Check whether DMA transfer error caused the DMA interruption */ if(LL_DMA_IsActiveFlag_TE1(DMA1) == 1) { /* Clear flag DMA transfer error */ LL_DMA_ClearFlag_TE1(DMA1); /* Call interruption treatment function */ AdcDmaTransferError_Callback(); } } /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultimodeDualInterleaved
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_MultimodeDualInterleaved\Src\system_stm32f1xx.c
/** ****************************************************************************** * @file system_stm32f1xx.c * @author MCD Application Team * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File. * * 1. This file provides two functions and one global variable to be called from * user application: * - SystemInit(): Setups the system clock (System clock source, PLL Multiplier * factors, AHB/APBx prescalers and Flash settings). * This function is called at startup just after reset and * before branch to main program. This call is made inside * the "startup_stm32f1xx_xx.s" file. * * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used * by the user application to setup the SysTick * timer or configure other parameters. * * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must * be called whenever the core clock is changed * during program execution. * * 2. After each device reset the HSI (8 MHz) is used as system clock source. * Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to * configure the system clock before to branch to main program. * * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on * the product used), refer to "HSE_VALUE". * When HSE is used as system clock source, directly or through PLL, and you * are using different crystal you have to adapt the HSE value to your own * configuration. * ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32f1xx_system * @{ */ /** @addtogroup STM32F1xx_System_Private_Includes * @{ */ #include "stm32f1xx.h" /** * @} */ /** @addtogroup STM32F1xx_System_Private_TypesDefinitions * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Defines * @{ */ #if !defined (HSE_VALUE) #define HSE_VALUE 8000000U /*!< Default value of the External oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSE_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE 8000000U /*!< Default value of the Internal oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSI_VALUE */ /*!< Uncomment the following line if you need to use external SRAM */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /* #define DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /*!< Uncomment the following line if you need to relocate your vector Table in Internal SRAM. */ /* #define VECT_TAB_SRAM */ #define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field. This value must be a multiple of 0x200. */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Macros * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Variables * @{ */ /* This variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetHCLKFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency Note: If you use this function to configure the system clock; then there is no need to call the 2 first functions listed above, since SystemCoreClock variable is updated automatically. */ uint32_t SystemCoreClock = 16000000; const uint8_t AHBPrescTable[16U] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}; const uint8_t APBPrescTable[8U] = {0, 0, 0, 0, 1, 2, 3, 4}; /** * @} */ /** @addtogroup STM32F1xx_System_Private_FunctionPrototypes * @{ */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM static void SystemInit_ExtMemCtl(void); #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Functions * @{ */ /** * @brief Setup the microcontroller system * Initialize the Embedded Flash Interface, the PLL and update the * SystemCoreClock variable. * @note This function should be used only after reset. * @param None * @retval None */ void SystemInit (void) { /* Reset the RCC clock configuration to the default reset state(for debug purpose) */ /* Set HSION bit */ RCC->CR |= 0x00000001U; /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */ #if !defined(STM32F105xC) && !defined(STM32F107xC) RCC->CFGR &= 0xF8FF0000U; #else RCC->CFGR &= 0xF0FF0000U; #endif /* STM32F105xC */ /* Reset HSEON, CSSON and PLLON bits */ RCC->CR &= 0xFEF6FFFFU; /* Reset HSEBYP bit */ RCC->CR &= 0xFFFBFFFFU; /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */ RCC->CFGR &= 0xFF80FFFFU; #if defined(STM32F105xC) || defined(STM32F107xC) /* Reset PLL2ON and PLL3ON bits */ RCC->CR &= 0xEBFFFFFFU; /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x00FF0000U; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000U; #elif defined(STM32F100xB) || defined(STM32F100xE) /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000U; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000U; #else /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000U; #endif /* STM32F105xC */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM SystemInit_ExtMemCtl(); #endif /* DATA_IN_ExtSRAM */ #endif #ifdef VECT_TAB_SRAM SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */ #else SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */ #endif } /** * @brief Update SystemCoreClock variable according to Clock Register Values. * The SystemCoreClock variable contains the core clock (HCLK), it can * be used by the user application to setup the SysTick timer or configure * other parameters. * * @note Each time the core clock (HCLK) changes, this function must be called * to update SystemCoreClock variable value. Otherwise, any configuration * based on this variable will be incorrect. * * @note - The system frequency computed by this function is not the real * frequency in the chip. It is calculated based on the predefined * constant and the selected clock source: * * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*) * * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**) * * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) * or HSI_VALUE(*) multiplied by the PLL factors. * * (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz) but the real value may vary depending on the variations * in voltage and temperature. * * (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz or 25 MHz, depending on the product used), user has to ensure * that HSE_VALUE is same as the real frequency of the crystal used. * Otherwise, this function may have wrong result. * * - The result of this function could be not correct when using fractional * value for HSE crystal. * @param None * @retval None */ void SystemCoreClockUpdate (void) { uint32_t tmp = 0U, pllmull = 0U, pllsource = 0U; #if defined(STM32F105xC) || defined(STM32F107xC) uint32_t prediv1source = 0U, prediv1factor = 0U, prediv2factor = 0U, pll2mull = 0U; #endif /* STM32F105xC */ #if defined(STM32F100xB) || defined(STM32F100xE) uint32_t prediv1factor = 0U; #endif /* STM32F100xB or STM32F100xE */ /* Get SYSCLK source -------------------------------------------------------*/ tmp = RCC->CFGR & RCC_CFGR_SWS; switch (tmp) { case 0x00U: /* HSI used as system clock */ SystemCoreClock = HSI_VALUE; break; case 0x04U: /* HSE used as system clock */ SystemCoreClock = HSE_VALUE; break; case 0x08U: /* PLL used as system clock */ /* Get PLL clock source and multiplication factor ----------------------*/ pllmull = RCC->CFGR & RCC_CFGR_PLLMULL; pllsource = RCC->CFGR & RCC_CFGR_PLLSRC; #if !defined(STM32F105xC) && !defined(STM32F107xC) pllmull = ( pllmull >> 18U) + 2U; if (pllsource == 0x00U) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1U) * pllmull; } else { #if defined(STM32F100xB) || defined(STM32F100xE) prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U; /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; #else /* HSE selected as PLL clock entry */ if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET) {/* HSE oscillator clock divided by 2 */ SystemCoreClock = (HSE_VALUE >> 1U) * pllmull; } else { SystemCoreClock = HSE_VALUE * pllmull; } #endif } #else pllmull = pllmull >> 18U; if (pllmull != 0x0DU) { pllmull += 2U; } else { /* PLL multiplication factor = PLL input clock * 6.5 */ pllmull = 13U / 2U; } if (pllsource == 0x00U) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1U) * pllmull; } else {/* PREDIV1 selected as PLL clock entry */ /* Get PREDIV1 clock source and division factor */ prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC; prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U; if (prediv1source == 0U) { /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; } else {/* PLL2 clock selected as PREDIV1 clock entry */ /* Get PREDIV2 division factor and PLL2 multiplication factor */ prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4U) + 1U; pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8U) + 2U; SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull; } } #endif /* STM32F105xC */ break; default: SystemCoreClock = HSI_VALUE; break; } /* Compute HCLK clock frequency ----------------*/ /* Get HCLK prescaler */ tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4U)]; /* HCLK clock frequency */ SystemCoreClock >>= tmp; } #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /** * @brief Setup the external memory controller. Called in startup_stm32f1xx.s * before jump to __main * @param None * @retval None */ #ifdef DATA_IN_ExtSRAM /** * @brief Setup the external memory controller. * Called in startup_stm32f1xx_xx.s/.c before jump to main. * This function configures the external SRAM mounted on STM3210E-EVAL * board (STM32 High density devices). This SRAM will be used as program * data memory (including heap and stack). * @param None * @retval None */ void SystemInit_ExtMemCtl(void) { __IO uint32_t tmpreg; /*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is required, then adjust the Register Addresses */ /* Enable FSMC clock */ RCC->AHBENR = 0x00000114U; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN); /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */ RCC->APB2ENR = 0x000001E0U; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN); (void)(tmpreg); /* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/ /*---------------- SRAM Address lines configuration -------------------------*/ /*---------------- NOE and NWE configuration --------------------------------*/ /*---------------- NE3 configuration ----------------------------------------*/ /*---------------- NBL0, NBL1 configuration ---------------------------------*/ GPIOD->CRL = 0x44BB44BBU; GPIOD->CRH = 0xBBBBBBBBU; GPIOE->CRL = 0xB44444BBU; GPIOE->CRH = 0xBBBBBBBBU; GPIOF->CRL = 0x44BBBBBBU; GPIOF->CRH = 0xBBBB4444U; GPIOG->CRL = 0x44BBBBBBU; GPIOG->CRH = 0x444B4B44U; /*---------------- FSMC Configuration ---------------------------------------*/ /*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/ FSMC_Bank1->BTCR[4U] = 0x00001091U; FSMC_Bank1->BTCR[5U] = 0x00110212U; } #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW\Inc\main.h
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_SingleConversion_TriggerSW/Inc/main.h * @author MCD Application Team * @brief Header for main.c module ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __MAIN_H #define __MAIN_H /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_ll_bus.h" #include "stm32f1xx_ll_rcc.h" #include "stm32f1xx_ll_system.h" #include "stm32f1xx_ll_utils.h" #include "stm32f1xx_ll_cortex.h" #include "stm32f1xx_ll_gpio.h" #include "stm32f1xx_ll_exti.h" #include "stm32f1xx_ll_adc.h" #include "stm32f1xx_ll_pwr.h" #if defined(USE_FULL_ASSERT) #include "stm32_assert.h" #endif /* USE_FULL_ASSERT */ /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Define used to enable time-out management*/ #define USE_TIMEOUT 0 /** * @brief LED2 */ #define LED2_PIN LL_GPIO_PIN_5 #define LED2_GPIO_PORT GPIOA #define LED2_GPIO_CLK_ENABLE() LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOA) /** * @brief Toggle periods for various blinking modes */ #define LED_BLINK_FAST 200 #define LED_BLINK_SLOW 500 #define LED_BLINK_ERROR 1000 /** * @brief Key push-button */ #define USER_BUTTON_PIN LL_GPIO_PIN_13 #define USER_BUTTON_GPIO_PORT GPIOC #define USER_BUTTON_GPIO_CLK_ENABLE() LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOC) #define USER_BUTTON_EXTI_LINE LL_EXTI_LINE_13 #define USER_BUTTON_EXTI_IRQn EXTI15_10_IRQn #define USER_BUTTON_EXTI_LINE_ENABLE() LL_EXTI_EnableIT_0_31(USER_BUTTON_EXTI_LINE) #define USER_BUTTON_EXTI_FALLING_TRIG_ENABLE() LL_EXTI_EnableFallingTrig_0_31(USER_BUTTON_EXTI_LINE) #define USER_BUTTON_SYSCFG_SET_EXTI() do { \ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_AFIO); \ LL_GPIO_AF_SetEXTISource(LL_GPIO_AF_EXTI_PORTC, LL_GPIO_AF_EXTI_LINE13); \ } while(0) #define USER_BUTTON_IRQHANDLER EXTI15_10_IRQHandler /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ /* IRQ Handler treatment */ void UserButton_Callback(void); #endif /* __MAIN_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW\Inc\stm32f1xx_it.h
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_SingleConversion_TriggerSW/Inc/stm32f1xx_it.h * @author MCD Application Team * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_IT_H #define __STM32F1xx_IT_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); void USER_BUTTON_IRQHANDLER(void); #ifdef __cplusplus } #endif #endif /* __STM32F1xx_IT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW\Inc\stm32_assert.h
/** ****************************************************************************** * @file stm32_assert.h * @author MCD Application Team * @brief STM32 assert template file. * This file should be copied to the application folder and renamed * to stm32_assert.h. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32_ASSERT_H #define __STM32_ASSERT_H #ifdef __cplusplus extern "C" { #endif /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Includes ------------------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ #ifdef USE_FULL_ASSERT /** * @brief The assert_param macro is used for function's parameters check. * @param expr: If expr is false, it calls assert_failed function * which reports the name of the source file and the source * line number of the call that failed. * If expr is true, it returns no value. * @retval None */ #define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__)) /* Exported functions ------------------------------------------------------- */ void assert_failed(uint8_t* file, uint32_t line); #else #define assert_param(expr) ((void)0U) #endif /* USE_FULL_ASSERT */ #ifdef __cplusplus } #endif #endif /* __STM32_ASSERT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW\Src\main.c
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_SingleConversion_TriggerSW/Src/main.c * @author MCD Application Team * @brief This example describes how to use a ADC peripheral to perform * a single ADC conversion of a channel, at each software start. * Example using programming model: polling * (for programming models interrupt or DMA transfer, refer to * other examples). * This example is based on the STM32F1xx ADC LL API; * Peripheral initialization done using LL unitary services functions. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_LL_Examples * @{ */ /** @addtogroup ADC_SingleConversion_TriggerSW * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Definitions of ADC hardware constraints delays */ /* Note: Only ADC IP HW delays are defined in ADC LL driver driver, */ /* not timeout values: */ /* Timeout values for ADC operations are dependent to device clock */ /* configuration (system clock versus ADC clock), */ /* and therefore must be defined in user application. */ /* Refer to @ref ADC_LL_EC_HW_DELAYS for description of ADC timeout */ /* values definition. */ /* Timeout values for ADC operations. */ /* (enable settling time, disable settling time, ...) */ /* Values defined to be higher than worst cases: low clock frequency, */ /* maximum prescalers. */ /* Example of profile very low frequency : ADC clock frequency 12MHz */ /* prescaler 6, sampling time 1.5 ADC clock cycles, resolution 12 bits. */ /* - ADC enable time: maximum delay is 1 us */ /* (refer to device datasheet, parameter "tSTAB") */ /* - ADC disable time: maximum delay should be a few ADC clock cycles */ /* - ADC stop conversion time: maximum delay should be a few ADC clock */ /* cycles */ /* - ADC conversion time: with this hypothesis of clock settings, maximum */ /* delay will be 7us. */ /* (refer to device reference manual, section "Timing") */ /* Unit: ms */ #define ADC_CALIBRATION_TIMEOUT_MS ((uint32_t) 1) #define ADC_ENABLE_TIMEOUT_MS ((uint32_t) 1) #define ADC_DISABLE_TIMEOUT_MS ((uint32_t) 1) #define ADC_STOP_CONVERSION_TIMEOUT_MS ((uint32_t) 1) #define ADC_CONVERSION_TIMEOUT_MS ((uint32_t) 2) /* Delay between ADC enable and ADC end of calibration. */ /* Delay estimation in CPU cycles: Case of ADC calibration done */ /* immediately after ADC enable, ADC clock setting slow */ /* (LL_ADC_CLOCK_ASYNC_DIV32). Use a higher delay if ratio */ /* (CPU clock / ADC clock) is above 32. */ #define ADC_DELAY_ENABLE_CALIB_CPU_CYCLES (LL_ADC_DELAY_ENABLE_CALIB_ADC_CYCLES * 32) /* Definitions of environment analog values */ /* Value of analog reference voltage (Vref+), connected to analog voltage */ /* supply Vdda (unit: mV). */ #define VDDA_APPLI ((uint32_t)3300) /* Definitions of data related to this example */ /* ADC unitary conversion timeout */ /* Considering ADC settings, duration of 1 ADC conversion should always */ /* be lower than 1ms. */ #define ADC_UNITARY_CONVERSION_TIMEOUT_MS ((uint32_t) 1) /* Init variable out of expected ADC conversion data range */ #define VAR_CONVERTED_DATA_INIT_VALUE (__LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B) + 1) /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ __IO uint32_t ubUserButtonPressed = 0; /* Variables for ADC conversion data */ __IO uint16_t uhADCxConvertedData = VAR_CONVERTED_DATA_INIT_VALUE; /* ADC group regular conversion data */ /* Variables for ADC conversion data computation to physical values */ __IO uint16_t uhADCxConvertedData_Voltage_mVolt = 0; /* Value of voltage calculated from ADC conversion data (unit: mV) */ /* Variable to report status of ADC group regular unitary conversion */ /* 0: ADC group regular unitary conversion is not completed */ /* 1: ADC group regular unitary conversion is completed */ /* 2: ADC group regular unitary conversion has not been started yet */ /* (initial state) */ __IO uint8_t ubAdcGrpRegularUnitaryConvStatus = 2; /* Variable set into ADC interruption callback */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void Configure_ADC(void); void Activate_ADC(void); void ConversionStartPoll_ADC_GrpRegular(void); void LED_Init(void); void LED_On(void); void LED_Off(void); void LED_Blinking(uint32_t Period); void UserButton_Init(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { /* Configure the system clock to 72 MHz */ SystemClock_Config(); /* Initialize LED2 */ LED_Init(); /* Initialize button in EXTI mode */ UserButton_Init(); /* Configure ADC */ /* Note: This function configures the ADC but does not enable it. */ /* To enable it, use function "Activate_ADC()". */ /* This is intended to optimize power consumption: */ /* 1. ADC configuration can be done once at the beginning */ /* (ADC disabled, minimal power consumption) */ /* 2. ADC enable (higher power consumption) can be done just before */ /* ADC conversions needed. */ /* Then, possible to perform successive "Activate_ADC()", */ /* "Deactivate_ADC()", ..., without having to set again */ /* ADC configuration. */ Configure_ADC(); /* Activate ADC */ /* Perform ADC activation procedure to make it ready to convert. */ Activate_ADC(); /* Infinite loop */ while (1) { /* Wait for user press on push button */ while (ubUserButtonPressed != 1) { } ubUserButtonPressed = 0; /* Turn LED off before performing a new ADC conversion start */ LED_Off(); /* Reset status variable of ADC unitary conversion before performing */ /* a new ADC conversion start. */ /* Note: Optionally, for this example purpose, check ADC unitary */ /* conversion status before starting another ADC conversion. */ if (ubAdcGrpRegularUnitaryConvStatus != 0) { ubAdcGrpRegularUnitaryConvStatus = 0; } else { /* Error: Previous action (ADC conversion not yet completed). */ LED_Blinking(LED_BLINK_ERROR); } /* Init variable containing ADC conversion data */ uhADCxConvertedData = VAR_CONVERTED_DATA_INIT_VALUE; /* Perform ADC group regular conversion start, poll for conversion */ /* completion. */ ConversionStartPoll_ADC_GrpRegular(); /* Retrieve ADC conversion data */ /* (data scale corresponds to ADC resolution: 12 bits) */ uhADCxConvertedData = LL_ADC_REG_ReadConversionData12(ADC1); /* Update status variable of ADC unitary conversion */ ubAdcGrpRegularUnitaryConvStatus = 1; /* Set LED depending on ADC unitary conversion status */ /* - Turn-on if ADC unitary conversion is completed */ /* - Turn-off if ADC unitary conversion is not completed */ LED_On(); /* Computation of ADC conversions raw data to physical values */ /* using LL ADC driver helper macro. */ uhADCxConvertedData_Voltage_mVolt = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, uhADCxConvertedData, LL_ADC_RESOLUTION_12B); /* Note: ADC conversion data is stored into variable */ /* "uhADCxConvertedData". */ /* (for debug: see variable content into watch window). */ } } /** * @brief Configure ADC (ADC instance: ADC1) and GPIO used by ADC channels. * @note In case re-use of this function outside of this example: * This function includes checks of ADC hardware constraints before * executing some configuration functions. * - In this example, all these checks are not necessary but are * implemented anyway to show the best practice usages * corresponding to reference manual procedure. * (On some STM32 series, setting of ADC features are not * conditioned to ADC state. However, in order to be compliant with * other STM32 series and to show the best practice usages, * ADC state is checked anyway with same constraints). * Software can be optimized by removing some of these checks, * if they are not relevant considering previous settings and actions * in user application. * - If ADC is not in the appropriate state to modify some parameters, * the setting of these parameters is bypassed without error * reporting: * it can be the expected behavior in case of recall of this * function to update only a few parameters (which update fulfills * the ADC state). * Otherwise, it is up to the user to set the appropriate error * reporting in user application. * @note Peripheral configuration is minimal configuration from reset values. * Thus, some useless LL unitary functions calls below are provided as * commented examples - setting is default configuration from reset. * @param None * @retval None */ void Configure_ADC(void) { /*## Configuration of GPIO used by ADC channels ############################*/ /* Note: On this STM32 device, ADC1 channel 4 is mapped on GPIO pin PA.04 */ /* Enable GPIO Clock */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOA); /* Configure GPIO in analog mode to be used as ADC input */ LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_4, LL_GPIO_MODE_ANALOG); /*## Configuration of NVIC #################################################*/ /* Configure NVIC to enable ADC1 interruptions */ NVIC_SetPriority(ADC1_IRQn, 0); NVIC_EnableIRQ(ADC1_IRQn); /*## Configuration of ADC ##################################################*/ /*## Configuration of ADC hierarchical scope: common to several ADC ########*/ /* Enable ADC clock (core clock) */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_ADC1); /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if(__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE() == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC measurement path to internal channels */ // LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_PATH_INTERNAL_NONE); /*## Configuration of ADC hierarchical scope: multimode ####################*/ /* Set ADC multimode configuration */ // LL_ADC_SetMultimode(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_INDEPENDENT); /* Set ADC multimode DMA transfer */ // LL_ADC_SetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_REG_DMA_EACH_ADC); /* Set ADC multimode: delay between 2 sampling phases */ // LL_ADC_SetMultiTwoSamplingDelay(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_TWOSMP_DELAY_1CYCLE); } /*## Configuration of ADC hierarchical scope: ADC instance #################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC conversion data alignment */ // LL_ADC_SetResolution(ADC1, LL_ADC_DATA_ALIGN_RIGHT); /* Set Set ADC sequencers scan mode, for all ADC groups */ /* (group regular, group injected). */ // LL_ADC_SetSequencersScanMode(ADC1, LL_ADC_SEQ_SCAN_DISABLE); } /*## Configuration of ADC hierarchical scope: ADC group regular ############*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Set ADC group regular trigger source */ LL_ADC_REG_SetTriggerSource(ADC1, LL_ADC_REG_TRIG_SOFTWARE); /* Set ADC group regular trigger polarity */ // LL_ADC_REG_SetTriggerEdge(ADC1, LL_ADC_REG_TRIG_EXT_RISING); /* Set ADC group regular continuous mode */ LL_ADC_REG_SetContinuousMode(ADC1, LL_ADC_REG_CONV_SINGLE); /* Set ADC group regular conversion data transfer */ // LL_ADC_REG_SetDMATransfer(ADC1, LL_ADC_REG_DMA_TRANSFER_NONE); /* Set ADC group regular sequencer */ /* Note: On this STM32 series, ADC group regular sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_REG_SetSequencerLength()". */ /* Set ADC group regular sequencer length and scan direction */ LL_ADC_REG_SetSequencerLength(ADC1, LL_ADC_REG_SEQ_SCAN_DISABLE); /* Set ADC group regular sequencer discontinuous mode */ // LL_ADC_REG_SetSequencerDiscont(ADC1, LL_ADC_REG_SEQ_DISCONT_DISABLE); /* Set ADC group regular sequence: channel on the selected sequence rank. */ LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_1, LL_ADC_CHANNEL_4); } /*## Configuration of ADC hierarchical scope: ADC group injected ###########*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC group injected trigger source */ // LL_ADC_INJ_SetTriggerSource(ADC1, LL_ADC_INJ_TRIG_SOFTWARE); /* Set ADC group injected trigger polarity */ // LL_ADC_INJ_SetTriggerEdge(ADC1, LL_ADC_INJ_TRIG_EXT_RISING); /* Set ADC group injected conversion trigger */ // LL_ADC_INJ_SetTrigAuto(ADC1, LL_ADC_INJ_TRIG_INDEPENDENT); /* Set ADC group injected sequencer */ /* Note: On this STM32 series, ADC group injected sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_INJ_SetSequencerLength()". */ /* Set ADC group injected sequencer length and scan direction */ // LL_ADC_INJ_SetSequencerLength(ADC1, LL_ADC_INJ_SEQ_SCAN_DISABLE); /* Set ADC group injected sequencer discontinuous mode */ // LL_ADC_INJ_SetSequencerDiscont(ADC1, LL_ADC_INJ_SEQ_DISCONT_DISABLE); /* Set ADC group injected sequence: channel on the selected sequence rank. */ // LL_ADC_INJ_SetSequencerRanks(ADC1, LL_ADC_INJ_RANK_1, LL_ADC_CHANNEL_4); } /*## Configuration of ADC hierarchical scope: channels #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Set ADC channels sampling time */ LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_4, LL_ADC_SAMPLINGTIME_41CYCLES_5); } /*## Configuration of ADC transversal scope: analog watchdog ###############*/ /* Note: On this STM32 series, there is only 1 analog watchdog available. */ /* Set ADC analog watchdog: channels to be monitored */ // LL_ADC_SetAnalogWDMonitChannels(ADC1, LL_ADC_AWD_DISABLE); /* Set ADC analog watchdog: thresholds */ // LL_ADC_SetAnalogWDThresholds(ADC1, LL_ADC_AWD_THRESHOLD_HIGH, __LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B)); // LL_ADC_SetAnalogWDThresholds(ADC1, LL_ADC_AWD_THRESHOLD_LOW, 0x000); /*## Configuration of ADC transversal scope: oversampling ##################*/ /* Note: Feature not available on this STM32 series */ /*## Configuration of ADC interruptions ####################################*/ /* Note: In this example, no ADC interruption enabled */ /* Note: In this example, end of ADC conversions are awaited by polling */ /* (not by interruption). */ } /** * @brief Perform ADC activation procedure to make it ready to convert * (ADC instance: ADC1). * @note Operations: * - ADC instance * - Run ADC self calibration * - Enable ADC * - ADC group regular * none: ADC conversion start-stop to be performed * after this function * - ADC group injected * none: ADC conversion start-stop to be performed * after this function * @param None * @retval None */ void Activate_ADC(void) { __IO uint32_t wait_loop_index = 0; #if (USE_TIMEOUT == 1) uint32_t Timeout = 0; /* Variable used for timeout management */ #endif /* USE_TIMEOUT */ /*## Operation on ADC hierarchical scope: ADC instance #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Enable ADC */ LL_ADC_Enable(ADC1); /* Delay between ADC enable and ADC start of calibration. */ /* Note: Variable divided by 2 to compensate partially */ /* CPU processing cycles (depends on compilation optimization). */ wait_loop_index = (ADC_DELAY_ENABLE_CALIB_CPU_CYCLES >> 1); while(wait_loop_index != 0) { wait_loop_index--; } /* Run ADC self calibration */ LL_ADC_StartCalibration(ADC1); /* Poll for ADC effectively calibrated */ #if (USE_TIMEOUT == 1) Timeout = ADC_CALIBRATION_TIMEOUT_MS; #endif /* USE_TIMEOUT */ while (LL_ADC_IsCalibrationOnGoing(ADC1) != 0) { #if (USE_TIMEOUT == 1) /* Check Systick counter flag to decrement the time-out value */ if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { /* Time-out occurred. Set LED to blinking mode */ LED_Blinking(LED_BLINK_ERROR); } } #endif /* USE_TIMEOUT */ } } /*## Operation on ADC hierarchical scope: ADC group regular ################*/ /* Note: No operation on ADC group regular performed here. */ /* ADC group regular conversions to be performed after this function */ /* using function: */ /* "LL_ADC_REG_StartConversion();" */ /*## Operation on ADC hierarchical scope: ADC group injected ###############*/ /* Note: No operation on ADC group injected performed here. */ /* ADC group injected conversions to be performed after this function */ /* using function: */ /* "LL_ADC_INJ_StartConversion();" */ } /** * @brief Perform ADC group regular conversion start, poll for conversion * completion. * (ADC instance: ADC1). * @note This function does not perform ADC group regular conversion stop: * intended to be used with ADC in single mode, trigger SW start * (only 1 ADC conversion done at each trigger, no conversion stop * needed). * In case of continuous mode or conversion trigger set to * external trigger, ADC group regular conversion stop must be added. * @param None * @retval None */ void ConversionStartPoll_ADC_GrpRegular(void) { #if (USE_TIMEOUT == 1) uint32_t Timeout = 0; /* Variable used for timeout management */ #endif /* USE_TIMEOUT */ /* Start ADC group regular conversion */ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 1) { LL_ADC_REG_StartConversionSWStart(ADC1); } else { /* Error: ADC conversion start could not be performed */ LED_Blinking(LED_BLINK_ERROR); } #if (USE_TIMEOUT == 1) Timeout = ADC_UNITARY_CONVERSION_TIMEOUT_MS; #endif /* USE_TIMEOUT */ while (LL_ADC_IsActiveFlag_EOS(ADC1) == 0) { #if (USE_TIMEOUT == 1) /* Check Systick counter flag to decrement the time-out value */ if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { /* Time-out occurred. Set LED to blinking mode */ LED_Blinking(LED_BLINK_SLOW); } } #endif /* USE_TIMEOUT */ } /* Clear flag ADC group regular end of unitary conversion */ /* Note: This action is not needed here, because flag ADC group regular */ /* end of unitary conversion is cleared automatically when */ /* software reads conversion data from ADC data register. */ /* Nevertheless, this action is done anyway to show how to clear */ /* this flag, needed if conversion data is not always read */ /* or if group injected end of unitary conversion is used (for */ /* devices with group injected available). */ LL_ADC_ClearFlag_EOS(ADC1); } /** * @brief Initialize LED2. * @param None * @retval None */ void LED_Init(void) { /* Enable the LED2 Clock */ LED2_GPIO_CLK_ENABLE(); /* Configure IO in output push-pull mode to drive external LED2 */ LL_GPIO_SetPinMode(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_MODE_OUTPUT); /* Reset value is LL_GPIO_OUTPUT_PUSHPULL */ //LL_GPIO_SetPinOutputType(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_OUTPUT_PUSHPULL); /* Reset value is LL_GPIO_SPEED_FREQ_LOW */ //LL_GPIO_SetPinSpeed(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_SPEED_FREQ_LOW); /* Reset value is LL_GPIO_PULL_DOWN */ //LL_GPIO_SetPinPull(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_PULL_DOWN); } /** * @brief Turn-on LED2. * @param None * @retval None */ void LED_On(void) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN); } /** * @brief Turn-off LED2. * @param None * @retval None */ void LED_Off(void) { /* Turn LED2 off */ LL_GPIO_ResetOutputPin(LED2_GPIO_PORT, LED2_PIN); } /** * @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter). * @param Period : Period of time (in ms) between each toggling of LED * This parameter can be user defined values. Pre-defined values used in that example are : * @arg LED_BLINK_FAST : Fast Blinking * @arg LED_BLINK_SLOW : Slow Blinking * @arg LED_BLINK_ERROR : Error specific Blinking * @retval None */ void LED_Blinking(uint32_t Period) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN); /* Toggle IO in an infinite loop */ while (1) { LL_GPIO_TogglePin(LED2_GPIO_PORT, LED2_PIN); LL_mDelay(Period); } } /** * @brief Configures User push-button in EXTI Line Mode. * @param None * @retval None */ void UserButton_Init(void) { /* Enable the BUTTON Clock */ USER_BUTTON_GPIO_CLK_ENABLE(); /* Configure GPIO for BUTTON */ LL_GPIO_SetPinMode(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_MODE_INPUT); LL_GPIO_SetPinPull(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_PULL_DOWN); /* if(Button_Mode == BUTTON_MODE_EXTI) */ { /* Connect External Line to the GPIO */ USER_BUTTON_SYSCFG_SET_EXTI(); /* Enable a rising trigger EXTI line 13 Interrupt */ USER_BUTTON_EXTI_LINE_ENABLE(); USER_BUTTON_EXTI_FALLING_TRIG_ENABLE(); /* Configure NVIC for USER_BUTTON_EXTI_IRQn */ NVIC_EnableIRQ(USER_BUTTON_EXTI_IRQn); NVIC_SetPriority(USER_BUTTON_EXTI_IRQn,0x03); } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 72000000 * HCLK(Hz) = 72000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSE Frequency(Hz) = 8000000 * PLLMUL = 9 * Flash Latency(WS) = 2 * @param None * @retval None */ void SystemClock_Config(void) { /* Set FLASH latency */ LL_FLASH_SetLatency(LL_FLASH_LATENCY_2); /* Enable HSE oscillator */ LL_RCC_HSE_EnableBypass(); LL_RCC_HSE_Enable(); while(LL_RCC_HSE_IsReady() != 1) { }; /* Main PLL configuration and activation */ LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE_DIV_1, LL_RCC_PLL_MUL_9); LL_RCC_PLL_Enable(); while(LL_RCC_PLL_IsReady() != 1) { }; /* Sysclk activation on the main PLL */ LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL); while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { }; /* Set APB1 & APB2 prescaler*/ LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_2); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1); /* Set systick to 1ms in using frequency set to 72MHz */ LL_Init1msTick(72000000); /* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */ LL_SetSystemCoreClock(72000000); } /******************************************************************************/ /* USER IRQ HANDLER TREATMENT */ /******************************************************************************/ /** * @brief Function to manage IRQ Handler * @param None * @retval None */ void UserButton_Callback(void) { ubUserButtonPressed = 1; } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW\Src\stm32f1xx_it.c
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_SingleConversion_TriggerSW/Src/stm32f1xx_it.c * @author MCD Application Team * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_it.h" /** @addtogroup STM32F1xx_LL_Examples * @{ */ /** @addtogroup ADC_SingleConversion_TriggerSW * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /******************************************************************************/ /* Cortex-M3 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /** * @brief This function handles PendSVC exception. * @param None * @retval None */ void PendSV_Handler(void) { } /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { } /******************************************************************************/ /* STM32F1xx Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f1xx.s). */ /******************************************************************************/ /** * @brief This function handles external lines 10 to 15 interrupt request. * @param None * @retval None */ void USER_BUTTON_IRQHANDLER(void) { /* Manage Flags */ if(LL_EXTI_IsActiveFlag_0_31(USER_BUTTON_EXTI_LINE) != RESET) { /* Call interruption treatment function */ UserButton_Callback(); /* Clear EXTI line flag */ /* Note: Clear flag after callback function to minimize user button */ /* switch debounce parasitics. */ LL_EXTI_ClearFlag_0_31(USER_BUTTON_EXTI_LINE); } } /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW\Src\system_stm32f1xx.c
/** ****************************************************************************** * @file system_stm32f1xx.c * @author MCD Application Team * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File. * * 1. This file provides two functions and one global variable to be called from * user application: * - SystemInit(): Setups the system clock (System clock source, PLL Multiplier * factors, AHB/APBx prescalers and Flash settings). * This function is called at startup just after reset and * before branch to main program. This call is made inside * the "startup_stm32f1xx_xx.s" file. * * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used * by the user application to setup the SysTick * timer or configure other parameters. * * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must * be called whenever the core clock is changed * during program execution. * * 2. After each device reset the HSI (8 MHz) is used as system clock source. * Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to * configure the system clock before to branch to main program. * * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on * the product used), refer to "HSE_VALUE". * When HSE is used as system clock source, directly or through PLL, and you * are using different crystal you have to adapt the HSE value to your own * configuration. * ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32f1xx_system * @{ */ /** @addtogroup STM32F1xx_System_Private_Includes * @{ */ #include "stm32f1xx.h" /** * @} */ /** @addtogroup STM32F1xx_System_Private_TypesDefinitions * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Defines * @{ */ #if !defined (HSE_VALUE) #define HSE_VALUE 8000000U /*!< Default value of the External oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSE_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE 8000000U /*!< Default value of the Internal oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSI_VALUE */ /*!< Uncomment the following line if you need to use external SRAM */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /* #define DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /*!< Uncomment the following line if you need to relocate your vector Table in Internal SRAM. */ /* #define VECT_TAB_SRAM */ #define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field. This value must be a multiple of 0x200. */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Macros * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Variables * @{ */ /* This variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetHCLKFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency Note: If you use this function to configure the system clock; then there is no need to call the 2 first functions listed above, since SystemCoreClock variable is updated automatically. */ uint32_t SystemCoreClock = 16000000; const uint8_t AHBPrescTable[16U] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}; const uint8_t APBPrescTable[8U] = {0, 0, 0, 0, 1, 2, 3, 4}; /** * @} */ /** @addtogroup STM32F1xx_System_Private_FunctionPrototypes * @{ */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM static void SystemInit_ExtMemCtl(void); #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Functions * @{ */ /** * @brief Setup the microcontroller system * Initialize the Embedded Flash Interface, the PLL and update the * SystemCoreClock variable. * @note This function should be used only after reset. * @param None * @retval None */ void SystemInit (void) { /* Reset the RCC clock configuration to the default reset state(for debug purpose) */ /* Set HSION bit */ RCC->CR |= 0x00000001U; /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */ #if !defined(STM32F105xC) && !defined(STM32F107xC) RCC->CFGR &= 0xF8FF0000U; #else RCC->CFGR &= 0xF0FF0000U; #endif /* STM32F105xC */ /* Reset HSEON, CSSON and PLLON bits */ RCC->CR &= 0xFEF6FFFFU; /* Reset HSEBYP bit */ RCC->CR &= 0xFFFBFFFFU; /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */ RCC->CFGR &= 0xFF80FFFFU; #if defined(STM32F105xC) || defined(STM32F107xC) /* Reset PLL2ON and PLL3ON bits */ RCC->CR &= 0xEBFFFFFFU; /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x00FF0000U; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000U; #elif defined(STM32F100xB) || defined(STM32F100xE) /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000U; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000U; #else /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000U; #endif /* STM32F105xC */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM SystemInit_ExtMemCtl(); #endif /* DATA_IN_ExtSRAM */ #endif #ifdef VECT_TAB_SRAM SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */ #else SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */ #endif } /** * @brief Update SystemCoreClock variable according to Clock Register Values. * The SystemCoreClock variable contains the core clock (HCLK), it can * be used by the user application to setup the SysTick timer or configure * other parameters. * * @note Each time the core clock (HCLK) changes, this function must be called * to update SystemCoreClock variable value. Otherwise, any configuration * based on this variable will be incorrect. * * @note - The system frequency computed by this function is not the real * frequency in the chip. It is calculated based on the predefined * constant and the selected clock source: * * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*) * * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**) * * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) * or HSI_VALUE(*) multiplied by the PLL factors. * * (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz) but the real value may vary depending on the variations * in voltage and temperature. * * (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz or 25 MHz, depending on the product used), user has to ensure * that HSE_VALUE is same as the real frequency of the crystal used. * Otherwise, this function may have wrong result. * * - The result of this function could be not correct when using fractional * value for HSE crystal. * @param None * @retval None */ void SystemCoreClockUpdate (void) { uint32_t tmp = 0U, pllmull = 0U, pllsource = 0U; #if defined(STM32F105xC) || defined(STM32F107xC) uint32_t prediv1source = 0U, prediv1factor = 0U, prediv2factor = 0U, pll2mull = 0U; #endif /* STM32F105xC */ #if defined(STM32F100xB) || defined(STM32F100xE) uint32_t prediv1factor = 0U; #endif /* STM32F100xB or STM32F100xE */ /* Get SYSCLK source -------------------------------------------------------*/ tmp = RCC->CFGR & RCC_CFGR_SWS; switch (tmp) { case 0x00U: /* HSI used as system clock */ SystemCoreClock = HSI_VALUE; break; case 0x04U: /* HSE used as system clock */ SystemCoreClock = HSE_VALUE; break; case 0x08U: /* PLL used as system clock */ /* Get PLL clock source and multiplication factor ----------------------*/ pllmull = RCC->CFGR & RCC_CFGR_PLLMULL; pllsource = RCC->CFGR & RCC_CFGR_PLLSRC; #if !defined(STM32F105xC) && !defined(STM32F107xC) pllmull = ( pllmull >> 18U) + 2U; if (pllsource == 0x00U) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1U) * pllmull; } else { #if defined(STM32F100xB) || defined(STM32F100xE) prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U; /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; #else /* HSE selected as PLL clock entry */ if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET) {/* HSE oscillator clock divided by 2 */ SystemCoreClock = (HSE_VALUE >> 1U) * pllmull; } else { SystemCoreClock = HSE_VALUE * pllmull; } #endif } #else pllmull = pllmull >> 18U; if (pllmull != 0x0DU) { pllmull += 2U; } else { /* PLL multiplication factor = PLL input clock * 6.5 */ pllmull = 13U / 2U; } if (pllsource == 0x00U) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1U) * pllmull; } else {/* PREDIV1 selected as PLL clock entry */ /* Get PREDIV1 clock source and division factor */ prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC; prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U; if (prediv1source == 0U) { /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; } else {/* PLL2 clock selected as PREDIV1 clock entry */ /* Get PREDIV2 division factor and PLL2 multiplication factor */ prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4U) + 1U; pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8U) + 2U; SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull; } } #endif /* STM32F105xC */ break; default: SystemCoreClock = HSI_VALUE; break; } /* Compute HCLK clock frequency ----------------*/ /* Get HCLK prescaler */ tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4U)]; /* HCLK clock frequency */ SystemCoreClock >>= tmp; } #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /** * @brief Setup the external memory controller. Called in startup_stm32f1xx.s * before jump to __main * @param None * @retval None */ #ifdef DATA_IN_ExtSRAM /** * @brief Setup the external memory controller. * Called in startup_stm32f1xx_xx.s/.c before jump to main. * This function configures the external SRAM mounted on STM3210E-EVAL * board (STM32 High density devices). This SRAM will be used as program * data memory (including heap and stack). * @param None * @retval None */ void SystemInit_ExtMemCtl(void) { __IO uint32_t tmpreg; /*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is required, then adjust the Register Addresses */ /* Enable FSMC clock */ RCC->AHBENR = 0x00000114U; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN); /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */ RCC->APB2ENR = 0x000001E0U; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN); (void)(tmpreg); /* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/ /*---------------- SRAM Address lines configuration -------------------------*/ /*---------------- NOE and NWE configuration --------------------------------*/ /*---------------- NE3 configuration ----------------------------------------*/ /*---------------- NBL0, NBL1 configuration ---------------------------------*/ GPIOD->CRL = 0x44BB44BBU; GPIOD->CRH = 0xBBBBBBBBU; GPIOE->CRL = 0xB44444BBU; GPIOE->CRH = 0xBBBBBBBBU; GPIOF->CRL = 0x44BBBBBBU; GPIOF->CRH = 0xBBBB4444U; GPIOG->CRL = 0x44BBBBBBU; GPIOG->CRH = 0x444B4B44U; /*---------------- FSMC Configuration ---------------------------------------*/ /*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/ FSMC_Bank1->BTCR[4U] = 0x00001091U; FSMC_Bank1->BTCR[5U] = 0x00110212U; } #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_DMA
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_DMA\Inc\main.h
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_SingleConversion_TriggerSW_DMA/Inc/main.h * @author MCD Application Team * @brief Header for main.c module ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __MAIN_H #define __MAIN_H /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_ll_bus.h" #include "stm32f1xx_ll_rcc.h" #include "stm32f1xx_ll_system.h" #include "stm32f1xx_ll_utils.h" #include "stm32f1xx_ll_cortex.h" #include "stm32f1xx_ll_gpio.h" #include "stm32f1xx_ll_exti.h" #include "stm32f1xx_ll_adc.h" #include "stm32f1xx_ll_dma.h" #include "stm32f1xx_ll_pwr.h" #if defined(USE_FULL_ASSERT) #include "stm32_assert.h" #endif /* USE_FULL_ASSERT */ /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Define used to enable time-out management*/ #define USE_TIMEOUT 0 /** * @brief LED2 */ #define LED2_PIN LL_GPIO_PIN_5 #define LED2_GPIO_PORT GPIOA #define LED2_GPIO_CLK_ENABLE() LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOA) /** * @brief Toggle periods for various blinking modes */ #define LED_BLINK_FAST 200 #define LED_BLINK_SLOW 500 #define LED_BLINK_ERROR 1000 /** * @brief Key push-button */ #define USER_BUTTON_PIN LL_GPIO_PIN_13 #define USER_BUTTON_GPIO_PORT GPIOC #define USER_BUTTON_GPIO_CLK_ENABLE() LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOC) #define USER_BUTTON_EXTI_LINE LL_EXTI_LINE_13 #define USER_BUTTON_EXTI_IRQn EXTI15_10_IRQn #define USER_BUTTON_EXTI_LINE_ENABLE() LL_EXTI_EnableIT_0_31(USER_BUTTON_EXTI_LINE) #define USER_BUTTON_EXTI_FALLING_TRIG_ENABLE() LL_EXTI_EnableFallingTrig_0_31(USER_BUTTON_EXTI_LINE) #define USER_BUTTON_SYSCFG_SET_EXTI() do { \ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_AFIO); \ LL_GPIO_AF_SetEXTISource(LL_GPIO_AF_EXTI_PORTC, LL_GPIO_AF_EXTI_LINE13); \ } while(0) #define USER_BUTTON_IRQHANDLER EXTI15_10_IRQHandler /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ /* IRQ Handler treatment */ void UserButton_Callback(void); void AdcDmaTransferComplete_Callback(void); void AdcDmaTransferHalf_Callback(void); void AdcDmaTransferError_Callback(void); #endif /* __MAIN_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_DMA
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_DMA\Inc\stm32f1xx_it.h
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_SingleConversion_TriggerSW_DMA/Inc/stm32f1xx_it.h * @author MCD Application Team * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_IT_H #define __STM32F1xx_IT_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); void USER_BUTTON_IRQHANDLER(void); void DMA1_Channel1_IRQHandler(void); #ifdef __cplusplus } #endif #endif /* __STM32F1xx_IT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_DMA
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_DMA\Inc\stm32_assert.h
/** ****************************************************************************** * @file stm32_assert.h * @author MCD Application Team * @brief STM32 assert template file. * This file should be copied to the application folder and renamed * to stm32_assert.h. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32_ASSERT_H #define __STM32_ASSERT_H #ifdef __cplusplus extern "C" { #endif /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Includes ------------------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ #ifdef USE_FULL_ASSERT /** * @brief The assert_param macro is used for function's parameters check. * @param expr: If expr is false, it calls assert_failed function * which reports the name of the source file and the source * line number of the call that failed. * If expr is true, it returns no value. * @retval None */ #define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__)) /* Exported functions ------------------------------------------------------- */ void assert_failed(uint8_t* file, uint32_t line); #else #define assert_param(expr) ((void)0U) #endif /* USE_FULL_ASSERT */ #ifdef __cplusplus } #endif #endif /* __STM32_ASSERT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_DMA
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_DMA\Src\main.c
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_SingleConversion_TriggerSW_DMA/Src/main.c * @author MCD Application Team * @brief This example describes how to use a ADC peripheral to perform * a single ADC conversion of a channel, at each software start. * Example using programming model: DMA transfer * (for programming models polling or interrupt, refer to * other examples). * This example is based on the STM32F1xx ADC LL API; * Peripheral initialization done using LL unitary services functions. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_LL_Examples * @{ */ /** @addtogroup ADC_SingleConversion_TriggerSW_DMA * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Definitions of ADC hardware constraints delays */ /* Note: Only ADC IP HW delays are defined in ADC LL driver driver, */ /* not timeout values: */ /* Timeout values for ADC operations are dependent to device clock */ /* configuration (system clock versus ADC clock), */ /* and therefore must be defined in user application. */ /* Refer to @ref ADC_LL_EC_HW_DELAYS for description of ADC timeout */ /* values definition. */ /* Timeout values for ADC operations. */ /* (enable settling time, disable settling time, ...) */ /* Values defined to be higher than worst cases: low clock frequency, */ /* maximum prescalers. */ /* Example of profile very low frequency : ADC clock frequency 12MHz */ /* prescaler 6, sampling time 1.5 ADC clock cycles, resolution 12 bits. */ /* - ADC enable time: maximum delay is 1 us */ /* (refer to device datasheet, parameter "tSTAB") */ /* - ADC disable time: maximum delay should be a few ADC clock cycles */ /* - ADC stop conversion time: maximum delay should be a few ADC clock */ /* cycles */ /* - ADC conversion time: with this hypothesis of clock settings, maximum */ /* delay will be 7us. */ /* (refer to device reference manual, section "Timing") */ /* Unit: ms */ #define ADC_CALIBRATION_TIMEOUT_MS ((uint32_t) 1) #define ADC_ENABLE_TIMEOUT_MS ((uint32_t) 1) #define ADC_DISABLE_TIMEOUT_MS ((uint32_t) 1) #define ADC_STOP_CONVERSION_TIMEOUT_MS ((uint32_t) 1) #define ADC_CONVERSION_TIMEOUT_MS ((uint32_t) 2) /* Delay between ADC enable and ADC end of calibration. */ /* Delay estimation in CPU cycles: Case of ADC calibration done */ /* immediately after ADC enable, ADC clock setting slow */ /* (LL_ADC_CLOCK_ASYNC_DIV32). Use a higher delay if ratio */ /* (CPU clock / ADC clock) is above 32. */ #define ADC_DELAY_ENABLE_CALIB_CPU_CYCLES (LL_ADC_DELAY_ENABLE_CALIB_ADC_CYCLES * 32) /* Definitions of environment analog values */ /* Value of analog reference voltage (Vref+), connected to analog voltage */ /* supply Vdda (unit: mV). */ #define VDDA_APPLI ((uint32_t)3300) /* Definitions of data related to this example */ /* Definition of ADCx conversions data table size */ #define ADC_CONVERTED_DATA_BUFFER_SIZE ((uint32_t) 4) /* Init variable out of expected ADC conversion data range */ #define VAR_CONVERTED_DATA_INIT_VALUE (__LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B) + 1) /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Variables for ADC conversion data */ __IO uint16_t aADCxConvertedData[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* ADC group regular conversion data */ /* Variables for ADC conversion data computation to physical values */ __IO uint16_t aADCxConvertedData_Voltage_mVolt[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* Value of voltage calculated from ADC conversion data (unit: mV) (array of data) */ /* Variable to report status of DMA transfer of ADC group regular conversions */ /* 0: DMA transfer is not completed */ /* 1: DMA transfer is completed */ /* 2: DMA transfer has not yet been started yet (initial state) */ __IO uint8_t ubDmaTransferStatus = 2; /* Variable set into DMA interruption callback */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void Configure_DMA(void); void Configure_ADC(void); void Activate_ADC(void); void LED_Init(void); void LED_On(void); void LED_Off(void); void LED_Blinking(uint32_t Period); void UserButton_Init(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { uint32_t tmp_index_adc_converted_data = 0; /* Configure the system clock to 72 MHz */ SystemClock_Config(); /* Init variable containing ADC conversion data */ for (tmp_index_adc_converted_data = 0; tmp_index_adc_converted_data < ADC_CONVERTED_DATA_BUFFER_SIZE; tmp_index_adc_converted_data++) { aADCxConvertedData[tmp_index_adc_converted_data] = VAR_CONVERTED_DATA_INIT_VALUE; } /* Initialize LED2 */ LED_Init(); /* Initialize button in EXTI mode */ UserButton_Init(); /* Configure DMA for data transfer from ADC */ Configure_DMA(); /* Configure ADC */ /* Note: This function configures the ADC but does not enable it. */ /* To enable it, use function "Activate_ADC()". */ /* This is intended to optimize power consumption: */ /* 1. ADC configuration can be done once at the beginning */ /* (ADC disabled, minimal power consumption) */ /* 2. ADC enable (higher power consumption) can be done just before */ /* ADC conversions needed. */ /* Then, possible to perform successive "Activate_ADC()", */ /* "Deactivate_ADC()", ..., without having to set again */ /* ADC configuration. */ Configure_ADC(); /* Activate ADC */ /* Perform ADC activation procedure to make it ready to convert. */ Activate_ADC(); /* Infinite loop */ while (1) { /* Note: ADC group regular conversion start is done into push button */ /* IRQ handler, refer to function "UserButton_Callback()". */ /* Note: LED state depending on DMA transfer status is set into DMA */ /* IRQ handler, */ /* refer to functions "AdcDmaTransferComplete_Callback()" */ /* and "AdcDmaTransferHalf_Callback()". */ /* Note: ADC conversions data are stored into array */ /* "aADCxConvertedData" */ /* (for debug: see variable content into watch window). */ /* Note: ADC conversion data are computed to physical values */ /* into array "aADCxConvertedData_Voltage_mVolt" */ /* using ADC LL driver helper macro "__LL_ADC_CALC_DATA_TO_VOLTAGE()". */ /* (for debug: see variable content into watch window). */ } } /** * @brief This function configures DMA for transfer of data from ADC * @param None * @retval None */ void Configure_DMA(void) { /*## Configuration of NVIC #################################################*/ /* Configure NVIC to enable DMA interruptions */ NVIC_SetPriority(DMA1_Channel1_IRQn, 1); /* DMA IRQ lower priority than ADC IRQ */ NVIC_EnableIRQ(DMA1_Channel1_IRQn); /*## Configuration of DMA ##################################################*/ /* Enable the peripheral clock of DMA */ LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_DMA1); /* Configure the DMA transfer */ /* - DMA transfer in circular mode to match with ADC configuration: */ /* DMA unlimited requests. */ /* - DMA transfer from ADC without address increment. */ /* - DMA transfer to memory with address increment. */ /* - DMA transfer from ADC by half-word to match with ADC configuration: */ /* ADC resolution 12 bits. */ /* - DMA transfer to memory by half-word to match with ADC conversion data */ /* buffer variable type: half-word. */ LL_DMA_ConfigTransfer(DMA1, LL_DMA_CHANNEL_1, LL_DMA_DIRECTION_PERIPH_TO_MEMORY | LL_DMA_MODE_CIRCULAR | LL_DMA_PERIPH_NOINCREMENT | LL_DMA_MEMORY_INCREMENT | LL_DMA_PDATAALIGN_HALFWORD | LL_DMA_MDATAALIGN_HALFWORD | LL_DMA_PRIORITY_HIGH ); /* Set DMA transfer addresses of source and destination */ LL_DMA_ConfigAddresses(DMA1, LL_DMA_CHANNEL_1, LL_ADC_DMA_GetRegAddr(ADC1, LL_ADC_DMA_REG_REGULAR_DATA), (uint32_t)&aADCxConvertedData, LL_DMA_DIRECTION_PERIPH_TO_MEMORY); /* Set DMA transfer size */ LL_DMA_SetDataLength(DMA1, LL_DMA_CHANNEL_1, ADC_CONVERTED_DATA_BUFFER_SIZE); /* Enable DMA transfer interruption: transfer complete */ LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_1); /* Enable DMA transfer interruption: half transfer */ LL_DMA_EnableIT_HT(DMA1, LL_DMA_CHANNEL_1); /* Enable DMA transfer interruption: transfer error */ LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_1); /*## Activation of DMA #####################################################*/ /* Enable the DMA transfer */ LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1); } /** * @brief Configure ADC (ADC instance: ADC1) and GPIO used by ADC channels. * @note In case re-use of this function outside of this example: * This function includes checks of ADC hardware constraints before * executing some configuration functions. * - In this example, all these checks are not necessary but are * implemented anyway to show the best practice usages * corresponding to reference manual procedure. * (On some STM32 series, setting of ADC features are not * conditioned to ADC state. However, in order to be compliant with * other STM32 series and to show the best practice usages, * ADC state is checked anyway with same constraints). * Software can be optimized by removing some of these checks, * if they are not relevant considering previous settings and actions * in user application. * - If ADC is not in the appropriate state to modify some parameters, * the setting of these parameters is bypassed without error * reporting: * it can be the expected behavior in case of recall of this * function to update only a few parameters (which update fulfills * the ADC state). * Otherwise, it is up to the user to set the appropriate error * reporting in user application. * @note Peripheral configuration is minimal configuration from reset values. * Thus, some useless LL unitary functions calls below are provided as * commented examples - setting is default configuration from reset. * @param None * @retval None */ void Configure_ADC(void) { /*## Configuration of GPIO used by ADC channels ############################*/ /* Note: On this STM32 device, ADC1 channel 4 is mapped on GPIO pin PA.04 */ /* Enable GPIO Clock */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOA); /* Configure GPIO in analog mode to be used as ADC input */ LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_4, LL_GPIO_MODE_ANALOG); /*## Configuration of NVIC #################################################*/ /* Configure NVIC to enable ADC1 interruptions */ NVIC_SetPriority(ADC1_IRQn, 0); /* ADC IRQ greater priority than DMA IRQ */ NVIC_EnableIRQ(ADC1_IRQn); /*## Configuration of ADC ##################################################*/ /*## Configuration of ADC hierarchical scope: common to several ADC ########*/ /* Enable ADC clock (core clock) */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_ADC1); /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if(__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE() == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC measurement path to internal channels */ // LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_PATH_INTERNAL_NONE); /*## Configuration of ADC hierarchical scope: multimode ####################*/ /* Set ADC multimode configuration */ // LL_ADC_SetMultimode(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_INDEPENDENT); /* Set ADC multimode DMA transfer */ // LL_ADC_SetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_REG_DMA_EACH_ADC); /* Set ADC multimode: delay between 2 sampling phases */ // LL_ADC_SetMultiTwoSamplingDelay(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_TWOSMP_DELAY_1CYCLE); } /*## Configuration of ADC hierarchical scope: ADC instance #################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC conversion data alignment */ // LL_ADC_SetResolution(ADC1, LL_ADC_DATA_ALIGN_RIGHT); /* Set Set ADC sequencers scan mode, for all ADC groups */ /* (group regular, group injected). */ // LL_ADC_SetSequencersScanMode(ADC1, LL_ADC_SEQ_SCAN_DISABLE); } /*## Configuration of ADC hierarchical scope: ADC group regular ############*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Set ADC group regular trigger source */ LL_ADC_REG_SetTriggerSource(ADC1, LL_ADC_REG_TRIG_SOFTWARE); /* Set ADC group regular trigger polarity */ // LL_ADC_REG_SetTriggerEdge(ADC1, LL_ADC_REG_TRIG_EXT_RISING); /* Set ADC group regular continuous mode */ LL_ADC_REG_SetContinuousMode(ADC1, LL_ADC_REG_CONV_SINGLE); /* Set ADC group regular conversion data transfer */ LL_ADC_REG_SetDMATransfer(ADC1, LL_ADC_REG_DMA_TRANSFER_UNLIMITED); /* Set ADC group regular sequencer */ /* Note: On this STM32 series, ADC group regular sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_REG_SetSequencerLength()". */ /* Set ADC group regular sequencer length and scan direction */ LL_ADC_REG_SetSequencerLength(ADC1, LL_ADC_REG_SEQ_SCAN_DISABLE); /* Set ADC group regular sequencer discontinuous mode */ // LL_ADC_REG_SetSequencerDiscont(ADC1, LL_ADC_REG_SEQ_DISCONT_DISABLE); /* Set ADC group regular sequence: channel on the selected sequence rank. */ LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_1, LL_ADC_CHANNEL_4); } /*## Configuration of ADC hierarchical scope: ADC group injected ###########*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC group injected trigger source */ // LL_ADC_INJ_SetTriggerSource(ADC1, LL_ADC_INJ_TRIG_SOFTWARE); /* Set ADC group injected trigger polarity */ // LL_ADC_INJ_SetTriggerEdge(ADC1, LL_ADC_INJ_TRIG_EXT_RISING); /* Set ADC group injected conversion trigger */ // LL_ADC_INJ_SetTrigAuto(ADC1, LL_ADC_INJ_TRIG_INDEPENDENT); /* Set ADC group injected sequencer */ /* Note: On this STM32 series, ADC group injected sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_INJ_SetSequencerLength()". */ /* Set ADC group injected sequencer length and scan direction */ // LL_ADC_INJ_SetSequencerLength(ADC1, LL_ADC_INJ_SEQ_SCAN_DISABLE); /* Set ADC group injected sequencer discontinuous mode */ // LL_ADC_INJ_SetSequencerDiscont(ADC1, LL_ADC_INJ_SEQ_DISCONT_DISABLE); /* Set ADC group injected sequence: channel on the selected sequence rank. */ // LL_ADC_INJ_SetSequencerRanks(ADC1, LL_ADC_INJ_RANK_1, LL_ADC_CHANNEL_4); } /*## Configuration of ADC hierarchical scope: channels #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Set ADC channels sampling time */ /* Note: Considering interruption occurring after each number of */ /* "ADC_CONVERTED_DATA_BUFFER_SIZE" ADC conversions */ /* (IT from DMA transfer complete), */ /* select sampling time and ADC clock with sufficient */ /* duration to not create an overhead situation in IRQHandler. */ LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_4, LL_ADC_SAMPLINGTIME_41CYCLES_5); } /*## Configuration of ADC transversal scope: analog watchdog ###############*/ /* Note: On this STM32 series, there is only 1 analog watchdog available. */ /* Set ADC analog watchdog: channels to be monitored */ // LL_ADC_SetAnalogWDMonitChannels(ADC1, LL_ADC_AWD_DISABLE); /* Set ADC analog watchdog: thresholds */ // LL_ADC_SetAnalogWDThresholds(ADC1, LL_ADC_AWD_THRESHOLD_HIGH, __LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B)); // LL_ADC_SetAnalogWDThresholds(ADC1, LL_ADC_AWD_THRESHOLD_LOW, 0x000); /*## Configuration of ADC transversal scope: oversampling ##################*/ /* Note: Feature not available on this STM32 series */ /*## Configuration of ADC interruptions ####################################*/ /* Note: In this example, no ADC interruption enabled */ /* Note: in this example, ADC group regular end of conversions */ /* (number of ADC conversions defined by DMA buffer size) */ /* are notified by DMA transfer interruptions). */ } /** * @brief Perform ADC activation procedure to make it ready to convert * (ADC instance: ADC1). * @note Operations: * - ADC instance * - Run ADC self calibration * - Enable ADC * - ADC group regular * none: ADC conversion start-stop to be performed * after this function * - ADC group injected * none: ADC conversion start-stop to be performed * after this function * @param None * @retval None */ void Activate_ADC(void) { __IO uint32_t wait_loop_index = 0; #if (USE_TIMEOUT == 1) uint32_t Timeout = 0; /* Variable used for timeout management */ #endif /* USE_TIMEOUT */ /*## Operation on ADC hierarchical scope: ADC instance #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Enable ADC */ LL_ADC_Enable(ADC1); /* Delay between ADC enable and ADC start of calibration. */ /* Note: Variable divided by 2 to compensate partially */ /* CPU processing cycles (depends on compilation optimization). */ wait_loop_index = (ADC_DELAY_ENABLE_CALIB_CPU_CYCLES >> 1); while(wait_loop_index != 0) { wait_loop_index--; } /* Run ADC self calibration */ LL_ADC_StartCalibration(ADC1); /* Poll for ADC effectively calibrated */ #if (USE_TIMEOUT == 1) Timeout = ADC_CALIBRATION_TIMEOUT_MS; #endif /* USE_TIMEOUT */ while (LL_ADC_IsCalibrationOnGoing(ADC1) != 0) { #if (USE_TIMEOUT == 1) /* Check Systick counter flag to decrement the time-out value */ if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { /* Time-out occurred. Set LED to blinking mode */ LED_Blinking(LED_BLINK_ERROR); } } #endif /* USE_TIMEOUT */ } } /*## Operation on ADC hierarchical scope: ADC group regular ################*/ /* Note: No operation on ADC group regular performed here. */ /* ADC group regular conversions to be performed after this function */ /* using function: */ /* "LL_ADC_REG_StartConversion();" */ /*## Operation on ADC hierarchical scope: ADC group injected ###############*/ /* Note: No operation on ADC group injected performed here. */ /* ADC group injected conversions to be performed after this function */ /* using function: */ /* "LL_ADC_INJ_StartConversion();" */ } /** * @brief Initialize LED2. * @param None * @retval None */ void LED_Init(void) { /* Enable the LED2 Clock */ LED2_GPIO_CLK_ENABLE(); /* Configure IO in output push-pull mode to drive external LED2 */ LL_GPIO_SetPinMode(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_MODE_OUTPUT); /* Reset value is LL_GPIO_OUTPUT_PUSHPULL */ //LL_GPIO_SetPinOutputType(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_OUTPUT_PUSHPULL); /* Reset value is LL_GPIO_SPEED_FREQ_LOW */ //LL_GPIO_SetPinSpeed(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_SPEED_FREQ_LOW); /* Reset value is LL_GPIO_PULL_DOWN */ //LL_GPIO_SetPinPull(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_PULL_DOWN); } /** * @brief Turn-on LED2. * @param None * @retval None */ void LED_On(void) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN); } /** * @brief Turn-off LED2. * @param None * @retval None */ void LED_Off(void) { /* Turn LED2 off */ LL_GPIO_ResetOutputPin(LED2_GPIO_PORT, LED2_PIN); } /** * @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter). * @param Period : Period of time (in ms) between each toggling of LED * This parameter can be user defined values. Pre-defined values used in that example are : * @arg LED_BLINK_FAST : Fast Blinking * @arg LED_BLINK_SLOW : Slow Blinking * @arg LED_BLINK_ERROR : Error specific Blinking * @retval None */ void LED_Blinking(uint32_t Period) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN); /* Toggle IO in an infinite loop */ while (1) { LL_GPIO_TogglePin(LED2_GPIO_PORT, LED2_PIN); LL_mDelay(Period); } } /** * @brief Configures User push-button in EXTI Line Mode. * @param None * @retval None */ void UserButton_Init(void) { /* Enable the BUTTON Clock */ USER_BUTTON_GPIO_CLK_ENABLE(); /* Configure GPIO for BUTTON */ LL_GPIO_SetPinMode(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_MODE_INPUT); LL_GPIO_SetPinPull(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_PULL_DOWN); /* if(Button_Mode == BUTTON_MODE_EXTI) */ { /* Connect External Line to the GPIO */ USER_BUTTON_SYSCFG_SET_EXTI(); /* Enable a rising trigger EXTI line 13 Interrupt */ USER_BUTTON_EXTI_LINE_ENABLE(); USER_BUTTON_EXTI_FALLING_TRIG_ENABLE(); /* Configure NVIC for USER_BUTTON_EXTI_IRQn */ NVIC_EnableIRQ(USER_BUTTON_EXTI_IRQn); NVIC_SetPriority(USER_BUTTON_EXTI_IRQn,0x03); } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 72000000 * HCLK(Hz) = 72000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSE Frequency(Hz) = 8000000 * PLLMUL = 9 * Flash Latency(WS) = 2 * @param None * @retval None */ void SystemClock_Config(void) { /* Set FLASH latency */ LL_FLASH_SetLatency(LL_FLASH_LATENCY_2); /* Enable HSE oscillator */ LL_RCC_HSE_EnableBypass(); LL_RCC_HSE_Enable(); while(LL_RCC_HSE_IsReady() != 1) { }; /* Main PLL configuration and activation */ LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE_DIV_1, LL_RCC_PLL_MUL_9); LL_RCC_PLL_Enable(); while(LL_RCC_PLL_IsReady() != 1) { }; /* Sysclk activation on the main PLL */ LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL); while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { }; /* Set APB1 & APB2 prescaler*/ LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_2); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1); /* Set systick to 1ms in using frequency set to 72MHz */ LL_Init1msTick(72000000); /* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */ LL_SetSystemCoreClock(72000000); } /******************************************************************************/ /* USER IRQ HANDLER TREATMENT */ /******************************************************************************/ /** * @brief Function to manage IRQ Handler * @param None * @retval None */ void UserButton_Callback(void) { /* Update status variable of DMA transfer before performing the first */ /* ADC conversion start. */ if (ubDmaTransferStatus == 2) { /* Update status variable of DMA transfer */ ubDmaTransferStatus = 0; } /* Start ADC group regular conversion */ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 1) { LL_ADC_REG_StartConversionSWStart(ADC1); } else { /* Error: ADC conversion start could not be performed */ LED_Blinking(LED_BLINK_ERROR); } } /** * @brief DMA transfer complete callback * @note This function is executed when the transfer complete interrupt * is generated * @retval None */ void AdcDmaTransferComplete_Callback() { uint32_t tmp_index = 0; /* Computation of ADC conversions raw data to physical values */ /* using LL ADC driver helper macro. */ /* Management of the 2nd half of the buffer */ for (tmp_index = (ADC_CONVERTED_DATA_BUFFER_SIZE/2); tmp_index < ADC_CONVERTED_DATA_BUFFER_SIZE; tmp_index++) { aADCxConvertedData_Voltage_mVolt[tmp_index] = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, aADCxConvertedData[tmp_index], LL_ADC_RESOLUTION_12B); } /* Update status variable of DMA transfer */ ubDmaTransferStatus = 1; /* Set LED depending on DMA transfer status */ /* - Turn-on if DMA transfer is completed */ /* - Turn-off if DMA transfer is not completed */ LED_On(); } /** * @brief DMA half transfer callback * @note This function is executed when the half transfer interrupt * is generated * @retval None */ void AdcDmaTransferHalf_Callback() { uint32_t tmp_index = 0; /* Computation of ADC conversions raw data to physical values */ /* using LL ADC driver helper macro. */ /* Management of the 1st half of the buffer */ for (tmp_index = 0; tmp_index < (ADC_CONVERTED_DATA_BUFFER_SIZE/2); tmp_index++) { aADCxConvertedData_Voltage_mVolt[tmp_index] = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, aADCxConvertedData[tmp_index], LL_ADC_RESOLUTION_12B); } /* Update status variable of DMA transfer */ ubDmaTransferStatus = 0; /* Set LED depending on DMA transfer status */ /* - Turn-on if DMA transfer is completed */ /* - Turn-off if DMA transfer is not completed */ LED_Off(); } /** * @brief DMA transfer error callback * @note This function is executed when the transfer error interrupt * is generated during DMA transfer * @retval None */ void AdcDmaTransferError_Callback() { /* Error detected during DMA transfer */ LED_Blinking(LED_BLINK_ERROR); } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_DMA
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_DMA\Src\stm32f1xx_it.c
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_SingleConversion_TriggerSW_DMA/Src/stm32f1xx_it.c * @author MCD Application Team * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_it.h" /** @addtogroup STM32F1xx_LL_Examples * @{ */ /** @addtogroup ADC_SingleConversion_TriggerSW_DMA * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /******************************************************************************/ /* Cortex-M3 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /** * @brief This function handles PendSVC exception. * @param None * @retval None */ void PendSV_Handler(void) { } /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { } /******************************************************************************/ /* STM32F1xx Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f1xx.s). */ /******************************************************************************/ /** * @brief This function handles external lines 10 to 15 interrupt request. * @param None * @retval None */ void USER_BUTTON_IRQHANDLER(void) { /* Manage Flags */ if(LL_EXTI_IsActiveFlag_0_31(USER_BUTTON_EXTI_LINE) != RESET) { /* Call interruption treatment function */ UserButton_Callback(); /* Clear EXTI line flag */ /* Note: Clear flag after callback function to minimize user button */ /* switch debounce parasitics. */ LL_EXTI_ClearFlag_0_31(USER_BUTTON_EXTI_LINE); } } /** * @brief This function handles DMA1 interrupt request. * @param None * @retval None */ void DMA1_Channel1_IRQHandler(void) { /* Check whether DMA transfer complete caused the DMA interruption */ if(LL_DMA_IsActiveFlag_TC1(DMA1) == 1) { /* Clear flag DMA transfer complete */ LL_DMA_ClearFlag_TC1(DMA1); /* Call interruption treatment function */ AdcDmaTransferComplete_Callback(); } /* Check whether DMA half transfer caused the DMA interruption */ if(LL_DMA_IsActiveFlag_HT1(DMA1) == 1) { /* Clear flag DMA half transfer */ LL_DMA_ClearFlag_HT1(DMA1); /* Call interruption treatment function */ AdcDmaTransferHalf_Callback(); } /* Note: If DMA half transfer is not used, possibility to replace */ /* management of DMA half transfer and transfer complete flags by */ /* DMA global interrupt flag: */ /* Clear flag DMA global interrupt */ /* (global interrupt flag: half transfer and transfer complete flags) */ // LL_DMA_ClearFlag_GI1(DMA1); /* Check whether DMA transfer error caused the DMA interruption */ if(LL_DMA_IsActiveFlag_TE1(DMA1) == 1) { /* Clear flag DMA transfer error */ LL_DMA_ClearFlag_TE1(DMA1); /* Call interruption treatment function */ AdcDmaTransferError_Callback(); } } /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_DMA
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_DMA\Src\system_stm32f1xx.c
/** ****************************************************************************** * @file system_stm32f1xx.c * @author MCD Application Team * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File. * * 1. This file provides two functions and one global variable to be called from * user application: * - SystemInit(): Setups the system clock (System clock source, PLL Multiplier * factors, AHB/APBx prescalers and Flash settings). * This function is called at startup just after reset and * before branch to main program. This call is made inside * the "startup_stm32f1xx_xx.s" file. * * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used * by the user application to setup the SysTick * timer or configure other parameters. * * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must * be called whenever the core clock is changed * during program execution. * * 2. After each device reset the HSI (8 MHz) is used as system clock source. * Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to * configure the system clock before to branch to main program. * * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on * the product used), refer to "HSE_VALUE". * When HSE is used as system clock source, directly or through PLL, and you * are using different crystal you have to adapt the HSE value to your own * configuration. * ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32f1xx_system * @{ */ /** @addtogroup STM32F1xx_System_Private_Includes * @{ */ #include "stm32f1xx.h" /** * @} */ /** @addtogroup STM32F1xx_System_Private_TypesDefinitions * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Defines * @{ */ #if !defined (HSE_VALUE) #define HSE_VALUE 8000000U /*!< Default value of the External oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSE_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE 8000000U /*!< Default value of the Internal oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSI_VALUE */ /*!< Uncomment the following line if you need to use external SRAM */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /* #define DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /*!< Uncomment the following line if you need to relocate your vector Table in Internal SRAM. */ /* #define VECT_TAB_SRAM */ #define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field. This value must be a multiple of 0x200. */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Macros * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Variables * @{ */ /* This variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetHCLKFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency Note: If you use this function to configure the system clock; then there is no need to call the 2 first functions listed above, since SystemCoreClock variable is updated automatically. */ uint32_t SystemCoreClock = 16000000; const uint8_t AHBPrescTable[16U] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}; const uint8_t APBPrescTable[8U] = {0, 0, 0, 0, 1, 2, 3, 4}; /** * @} */ /** @addtogroup STM32F1xx_System_Private_FunctionPrototypes * @{ */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM static void SystemInit_ExtMemCtl(void); #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Functions * @{ */ /** * @brief Setup the microcontroller system * Initialize the Embedded Flash Interface, the PLL and update the * SystemCoreClock variable. * @note This function should be used only after reset. * @param None * @retval None */ void SystemInit (void) { /* Reset the RCC clock configuration to the default reset state(for debug purpose) */ /* Set HSION bit */ RCC->CR |= 0x00000001U; /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */ #if !defined(STM32F105xC) && !defined(STM32F107xC) RCC->CFGR &= 0xF8FF0000U; #else RCC->CFGR &= 0xF0FF0000U; #endif /* STM32F105xC */ /* Reset HSEON, CSSON and PLLON bits */ RCC->CR &= 0xFEF6FFFFU; /* Reset HSEBYP bit */ RCC->CR &= 0xFFFBFFFFU; /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */ RCC->CFGR &= 0xFF80FFFFU; #if defined(STM32F105xC) || defined(STM32F107xC) /* Reset PLL2ON and PLL3ON bits */ RCC->CR &= 0xEBFFFFFFU; /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x00FF0000U; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000U; #elif defined(STM32F100xB) || defined(STM32F100xE) /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000U; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000U; #else /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000U; #endif /* STM32F105xC */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM SystemInit_ExtMemCtl(); #endif /* DATA_IN_ExtSRAM */ #endif #ifdef VECT_TAB_SRAM SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */ #else SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */ #endif } /** * @brief Update SystemCoreClock variable according to Clock Register Values. * The SystemCoreClock variable contains the core clock (HCLK), it can * be used by the user application to setup the SysTick timer or configure * other parameters. * * @note Each time the core clock (HCLK) changes, this function must be called * to update SystemCoreClock variable value. Otherwise, any configuration * based on this variable will be incorrect. * * @note - The system frequency computed by this function is not the real * frequency in the chip. It is calculated based on the predefined * constant and the selected clock source: * * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*) * * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**) * * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) * or HSI_VALUE(*) multiplied by the PLL factors. * * (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz) but the real value may vary depending on the variations * in voltage and temperature. * * (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz or 25 MHz, depending on the product used), user has to ensure * that HSE_VALUE is same as the real frequency of the crystal used. * Otherwise, this function may have wrong result. * * - The result of this function could be not correct when using fractional * value for HSE crystal. * @param None * @retval None */ void SystemCoreClockUpdate (void) { uint32_t tmp = 0U, pllmull = 0U, pllsource = 0U; #if defined(STM32F105xC) || defined(STM32F107xC) uint32_t prediv1source = 0U, prediv1factor = 0U, prediv2factor = 0U, pll2mull = 0U; #endif /* STM32F105xC */ #if defined(STM32F100xB) || defined(STM32F100xE) uint32_t prediv1factor = 0U; #endif /* STM32F100xB or STM32F100xE */ /* Get SYSCLK source -------------------------------------------------------*/ tmp = RCC->CFGR & RCC_CFGR_SWS; switch (tmp) { case 0x00U: /* HSI used as system clock */ SystemCoreClock = HSI_VALUE; break; case 0x04U: /* HSE used as system clock */ SystemCoreClock = HSE_VALUE; break; case 0x08U: /* PLL used as system clock */ /* Get PLL clock source and multiplication factor ----------------------*/ pllmull = RCC->CFGR & RCC_CFGR_PLLMULL; pllsource = RCC->CFGR & RCC_CFGR_PLLSRC; #if !defined(STM32F105xC) && !defined(STM32F107xC) pllmull = ( pllmull >> 18U) + 2U; if (pllsource == 0x00U) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1U) * pllmull; } else { #if defined(STM32F100xB) || defined(STM32F100xE) prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U; /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; #else /* HSE selected as PLL clock entry */ if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET) {/* HSE oscillator clock divided by 2 */ SystemCoreClock = (HSE_VALUE >> 1U) * pllmull; } else { SystemCoreClock = HSE_VALUE * pllmull; } #endif } #else pllmull = pllmull >> 18U; if (pllmull != 0x0DU) { pllmull += 2U; } else { /* PLL multiplication factor = PLL input clock * 6.5 */ pllmull = 13U / 2U; } if (pllsource == 0x00U) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1U) * pllmull; } else {/* PREDIV1 selected as PLL clock entry */ /* Get PREDIV1 clock source and division factor */ prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC; prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U; if (prediv1source == 0U) { /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; } else {/* PLL2 clock selected as PREDIV1 clock entry */ /* Get PREDIV2 division factor and PLL2 multiplication factor */ prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4U) + 1U; pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8U) + 2U; SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull; } } #endif /* STM32F105xC */ break; default: SystemCoreClock = HSI_VALUE; break; } /* Compute HCLK clock frequency ----------------*/ /* Get HCLK prescaler */ tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4U)]; /* HCLK clock frequency */ SystemCoreClock >>= tmp; } #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /** * @brief Setup the external memory controller. Called in startup_stm32f1xx.s * before jump to __main * @param None * @retval None */ #ifdef DATA_IN_ExtSRAM /** * @brief Setup the external memory controller. * Called in startup_stm32f1xx_xx.s/.c before jump to main. * This function configures the external SRAM mounted on STM3210E-EVAL * board (STM32 High density devices). This SRAM will be used as program * data memory (including heap and stack). * @param None * @retval None */ void SystemInit_ExtMemCtl(void) { __IO uint32_t tmpreg; /*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is required, then adjust the Register Addresses */ /* Enable FSMC clock */ RCC->AHBENR = 0x00000114U; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN); /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */ RCC->APB2ENR = 0x000001E0U; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN); (void)(tmpreg); /* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/ /*---------------- SRAM Address lines configuration -------------------------*/ /*---------------- NOE and NWE configuration --------------------------------*/ /*---------------- NE3 configuration ----------------------------------------*/ /*---------------- NBL0, NBL1 configuration ---------------------------------*/ GPIOD->CRL = 0x44BB44BBU; GPIOD->CRH = 0xBBBBBBBBU; GPIOE->CRL = 0xB44444BBU; GPIOE->CRH = 0xBBBBBBBBU; GPIOF->CRL = 0x44BBBBBBU; GPIOF->CRH = 0xBBBB4444U; GPIOG->CRL = 0x44BBBBBBU; GPIOG->CRH = 0x444B4B44U; /*---------------- FSMC Configuration ---------------------------------------*/ /*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/ FSMC_Bank1->BTCR[4U] = 0x00001091U; FSMC_Bank1->BTCR[5U] = 0x00110212U; } #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @} */ /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_IT
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_IT\Inc\main.h
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_SingleConversion_TriggerSW_IT/Inc/main.h * @author MCD Application Team * @brief Header for main.c module ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __MAIN_H #define __MAIN_H /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_ll_bus.h" #include "stm32f1xx_ll_rcc.h" #include "stm32f1xx_ll_system.h" #include "stm32f1xx_ll_utils.h" #include "stm32f1xx_ll_cortex.h" #include "stm32f1xx_ll_gpio.h" #include "stm32f1xx_ll_exti.h" #include "stm32f1xx_ll_adc.h" #include "stm32f1xx_ll_pwr.h" #if defined(USE_FULL_ASSERT) #include "stm32_assert.h" #endif /* USE_FULL_ASSERT */ /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Define used to enable time-out management*/ #define USE_TIMEOUT 0 /** * @brief LED2 */ #define LED2_PIN LL_GPIO_PIN_5 #define LED2_GPIO_PORT GPIOA #define LED2_GPIO_CLK_ENABLE() LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOA) /** * @brief Toggle periods for various blinking modes */ #define LED_BLINK_FAST 200 #define LED_BLINK_SLOW 500 #define LED_BLINK_ERROR 1000 /** * @brief Key push-button */ #define USER_BUTTON_PIN LL_GPIO_PIN_13 #define USER_BUTTON_GPIO_PORT GPIOC #define USER_BUTTON_GPIO_CLK_ENABLE() LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOC) #define USER_BUTTON_EXTI_LINE LL_EXTI_LINE_13 #define USER_BUTTON_EXTI_IRQn EXTI15_10_IRQn #define USER_BUTTON_EXTI_LINE_ENABLE() LL_EXTI_EnableIT_0_31(USER_BUTTON_EXTI_LINE) #define USER_BUTTON_EXTI_FALLING_TRIG_ENABLE() LL_EXTI_EnableFallingTrig_0_31(USER_BUTTON_EXTI_LINE) #define USER_BUTTON_SYSCFG_SET_EXTI() do { \ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_AFIO); \ LL_GPIO_AF_SetEXTISource(LL_GPIO_AF_EXTI_PORTC, LL_GPIO_AF_EXTI_LINE13); \ } while(0) #define USER_BUTTON_IRQHANDLER EXTI15_10_IRQHandler /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ /* IRQ Handler treatment */ void UserButton_Callback(void); void AdcGrpRegularUnitaryConvComplete_Callback(void); #endif /* __MAIN_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_IT
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_IT\Inc\stm32f1xx_it.h
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_SingleConversion_TriggerSW_IT/Inc/stm32f1xx_it.h * @author MCD Application Team * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_IT_H #define __STM32F1xx_IT_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); void USER_BUTTON_IRQHANDLER(void); void ADC1_IRQHandler(void); #ifdef __cplusplus } #endif #endif /* __STM32F1xx_IT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_IT
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_IT\Inc\stm32_assert.h
/** ****************************************************************************** * @file stm32_assert.h * @author MCD Application Team * @brief STM32 assert template file. * This file should be copied to the application folder and renamed * to stm32_assert.h. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32_ASSERT_H #define __STM32_ASSERT_H #ifdef __cplusplus extern "C" { #endif /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Includes ------------------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ #ifdef USE_FULL_ASSERT /** * @brief The assert_param macro is used for function's parameters check. * @param expr: If expr is false, it calls assert_failed function * which reports the name of the source file and the source * line number of the call that failed. * If expr is true, it returns no value. * @retval None */ #define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__)) /* Exported functions ------------------------------------------------------- */ void assert_failed(uint8_t* file, uint32_t line); #else #define assert_param(expr) ((void)0U) #endif /* USE_FULL_ASSERT */ #ifdef __cplusplus } #endif #endif /* __STM32_ASSERT_H */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_IT
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_IT\Src\main.c
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_SingleConversion_TriggerSW_IT/Src/main.c * @author MCD Application Team * @brief This example describes how to use a ADC peripheral to perform * a single ADC conversion of a channel, at each software start. * Example using programming model: interrupt * (for programming models polling or DMA transfer, refer to * other examples). * This example is based on the STM32F1xx ADC LL API; * Peripheral initialization done using LL unitary services functions. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F1xx_LL_Examples * @{ */ /** @addtogroup ADC_SingleConversion_TriggerSW_IT * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Definitions of ADC hardware constraints delays */ /* Note: Only ADC IP HW delays are defined in ADC LL driver driver, */ /* not timeout values: */ /* Timeout values for ADC operations are dependent to device clock */ /* configuration (system clock versus ADC clock), */ /* and therefore must be defined in user application. */ /* Refer to @ref ADC_LL_EC_HW_DELAYS for description of ADC timeout */ /* values definition. */ /* Timeout values for ADC operations. */ /* (enable settling time, disable settling time, ...) */ /* Values defined to be higher than worst cases: low clock frequency, */ /* maximum prescalers. */ /* Example of profile very low frequency : ADC clock frequency 12MHz */ /* prescaler 6, sampling time 1.5 ADC clock cycles, resolution 12 bits. */ /* - ADC enable time: maximum delay is 1 us */ /* (refer to device datasheet, parameter "tSTAB") */ /* - ADC disable time: maximum delay should be a few ADC clock cycles */ /* - ADC stop conversion time: maximum delay should be a few ADC clock */ /* cycles */ /* - ADC conversion time: with this hypothesis of clock settings, maximum */ /* delay will be 7us. */ /* (refer to device reference manual, section "Timing") */ /* Unit: ms */ #define ADC_CALIBRATION_TIMEOUT_MS ((uint32_t) 1) #define ADC_ENABLE_TIMEOUT_MS ((uint32_t) 1) #define ADC_DISABLE_TIMEOUT_MS ((uint32_t) 1) #define ADC_STOP_CONVERSION_TIMEOUT_MS ((uint32_t) 1) #define ADC_CONVERSION_TIMEOUT_MS ((uint32_t) 2) /* Delay between ADC enable and ADC end of calibration. */ /* Delay estimation in CPU cycles: Case of ADC calibration done */ /* immediately after ADC enable, ADC clock setting slow */ /* (LL_ADC_CLOCK_ASYNC_DIV32). Use a higher delay if ratio */ /* (CPU clock / ADC clock) is above 32. */ #define ADC_DELAY_ENABLE_CALIB_CPU_CYCLES (LL_ADC_DELAY_ENABLE_CALIB_ADC_CYCLES * 32) /* Definitions of environment analog values */ /* Value of analog reference voltage (Vref+), connected to analog voltage */ /* supply Vdda (unit: mV). */ #define VDDA_APPLI ((uint32_t)3300) /* Definitions of data related to this example */ /* Init variable out of expected ADC conversion data range */ #define VAR_CONVERTED_DATA_INIT_VALUE (__LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B) + 1) /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Variables for ADC conversion data */ __IO uint16_t uhADCxConvertedData = VAR_CONVERTED_DATA_INIT_VALUE; /* ADC group regular conversion data */ /* Variables for ADC conversion data computation to physical values */ __IO uint16_t uhADCxConvertedData_Voltage_mVolt = 0; /* Value of voltage calculated from ADC conversion data (unit: mV) */ /* Variable to report status of ADC group regular unitary conversion */ /* 0: ADC group regular unitary conversion is not completed */ /* 1: ADC group regular unitary conversion is completed */ /* 2: ADC group regular unitary conversion has not been started yet */ /* (initial state) */ __IO uint8_t ubAdcGrpRegularUnitaryConvStatus = 2; /* Variable set into ADC interruption callback */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void Configure_ADC(void); void Activate_ADC(void); void LED_Init(void); void LED_On(void); void LED_Off(void); void LED_Blinking(uint32_t Period); void UserButton_Init(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { /* Configure the system clock to 72 MHz */ SystemClock_Config(); /* Initialize LED2 */ LED_Init(); /* Initialize button in EXTI mode */ UserButton_Init(); /* Configure ADC */ /* Note: This function configures the ADC but does not enable it. */ /* To enable it, use function "Activate_ADC()". */ /* This is intended to optimize power consumption: */ /* 1. ADC configuration can be done once at the beginning */ /* (ADC disabled, minimal power consumption) */ /* 2. ADC enable (higher power consumption) can be done just before */ /* ADC conversions needed. */ /* Then, possible to perform successive "Activate_ADC()", */ /* "Deactivate_ADC()", ..., without having to set again */ /* ADC configuration. */ Configure_ADC(); /* Activate ADC */ /* Perform ADC activation procedure to make it ready to convert. */ Activate_ADC(); /* Infinite loop */ while (1) { /* Note: ADC group regular conversion start is done into push button */ /* IRQ handler, refer to function "UserButton_Callback()". */ /* Note: LED state depending on ADC conversion status is set into ADC */ /* IRQ handler, refer to function */ /* "AdcGrpRegularUnitaryConvComplete_Callback()". */ /* Note: ADC conversion data is stored into variable */ /* "uhADCxConvertedData". */ /* (for debug: see variable content into watch window). */ /* Note: ADC conversion data are computed to physical values */ /* into variable "uhADCxConvertedData_Voltage_mVolt" */ /* using ADC LL driver helper macro "__LL_ADC_CALC_DATA_TO_VOLTAGE()". */ /* (for debug: see variable content into watch window). */ } } /** * @brief Configure ADC (ADC instance: ADC1) and GPIO used by ADC channels. * @note In case re-use of this function outside of this example: * This function includes checks of ADC hardware constraints before * executing some configuration functions. * - In this example, all these checks are not necessary but are * implemented anyway to show the best practice usages * corresponding to reference manual procedure. * (On some STM32 series, setting of ADC features are not * conditioned to ADC state. However, in order to be compliant with * other STM32 series and to show the best practice usages, * ADC state is checked anyway with same constraints). * Software can be optimized by removing some of these checks, * if they are not relevant considering previous settings and actions * in user application. * - If ADC is not in the appropriate state to modify some parameters, * the setting of these parameters is bypassed without error * reporting: * it can be the expected behavior in case of recall of this * function to update only a few parameters (which update fulfills * the ADC state). * Otherwise, it is up to the user to set the appropriate error * reporting in user application. * @note Peripheral configuration is minimal configuration from reset values. * Thus, some useless LL unitary functions calls below are provided as * commented examples - setting is default configuration from reset. * @param None * @retval None */ void Configure_ADC(void) { /*## Configuration of GPIO used by ADC channels ############################*/ /* Note: On this STM32 device, ADC1 channel 4 is mapped on GPIO pin PA.04 */ /* Enable GPIO Clock */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_GPIOA); /* Configure GPIO in analog mode to be used as ADC input */ LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_4, LL_GPIO_MODE_ANALOG); /*## Configuration of NVIC #################################################*/ /* Configure NVIC to enable ADC1 interruptions */ NVIC_SetPriority(ADC1_IRQn, 0); NVIC_EnableIRQ(ADC1_IRQn); /*## Configuration of ADC ##################################################*/ /*## Configuration of ADC hierarchical scope: common to several ADC ########*/ /* Enable ADC clock (core clock) */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_ADC1); /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if(__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE() == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC measurement path to internal channels */ // LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_PATH_INTERNAL_NONE); /*## Configuration of ADC hierarchical scope: multimode ####################*/ /* Set ADC multimode configuration */ // LL_ADC_SetMultimode(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_INDEPENDENT); /* Set ADC multimode DMA transfer */ // LL_ADC_SetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_REG_DMA_EACH_ADC); /* Set ADC multimode: delay between 2 sampling phases */ // LL_ADC_SetMultiTwoSamplingDelay(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_TWOSMP_DELAY_1CYCLE); } /*## Configuration of ADC hierarchical scope: ADC instance #################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC conversion data alignment */ // LL_ADC_SetResolution(ADC1, LL_ADC_DATA_ALIGN_RIGHT); /* Set Set ADC sequencers scan mode, for all ADC groups */ /* (group regular, group injected). */ // LL_ADC_SetSequencersScanMode(ADC1, LL_ADC_SEQ_SCAN_DISABLE); } /*## Configuration of ADC hierarchical scope: ADC group regular ############*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Set ADC group regular trigger source */ LL_ADC_REG_SetTriggerSource(ADC1, LL_ADC_REG_TRIG_SOFTWARE); /* Set ADC group regular trigger polarity */ // LL_ADC_REG_SetTriggerEdge(ADC1, LL_ADC_REG_TRIG_EXT_RISING); /* Set ADC group regular continuous mode */ LL_ADC_REG_SetContinuousMode(ADC1, LL_ADC_REG_CONV_SINGLE); /* Set ADC group regular conversion data transfer */ // LL_ADC_REG_SetDMATransfer(ADC1, LL_ADC_REG_DMA_TRANSFER_NONE); /* Set ADC group regular sequencer */ /* Note: On this STM32 series, ADC group regular sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_REG_SetSequencerLength()". */ /* Set ADC group regular sequencer length and scan direction */ LL_ADC_REG_SetSequencerLength(ADC1, LL_ADC_REG_SEQ_SCAN_DISABLE); /* Set ADC group regular sequencer discontinuous mode */ // LL_ADC_REG_SetSequencerDiscont(ADC1, LL_ADC_REG_SEQ_DISCONT_DISABLE); /* Set ADC group regular sequence: channel on the selected sequence rank. */ LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_1, LL_ADC_CHANNEL_4); } /*## Configuration of ADC hierarchical scope: ADC group injected ###########*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC group injected trigger source */ // LL_ADC_INJ_SetTriggerSource(ADC1, LL_ADC_INJ_TRIG_SOFTWARE); /* Set ADC group injected trigger polarity */ // LL_ADC_INJ_SetTriggerEdge(ADC1, LL_ADC_INJ_TRIG_EXT_RISING); /* Set ADC group injected conversion trigger */ // LL_ADC_INJ_SetTrigAuto(ADC1, LL_ADC_INJ_TRIG_INDEPENDENT); /* Set ADC group injected sequencer */ /* Note: On this STM32 series, ADC group injected sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_INJ_SetSequencerLength()". */ /* Set ADC group injected sequencer length and scan direction */ // LL_ADC_INJ_SetSequencerLength(ADC1, LL_ADC_INJ_SEQ_SCAN_DISABLE); /* Set ADC group injected sequencer discontinuous mode */ // LL_ADC_INJ_SetSequencerDiscont(ADC1, LL_ADC_INJ_SEQ_DISCONT_DISABLE); /* Set ADC group injected sequence: channel on the selected sequence rank. */ // LL_ADC_INJ_SetSequencerRanks(ADC1, LL_ADC_INJ_RANK_1, LL_ADC_CHANNEL_4); } /*## Configuration of ADC hierarchical scope: channels #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Set ADC channels sampling time */ /* Note: Considering IT occurring after each ADC conversion */ /* (IT by ADC group regular end of unitary conversion), */ /* select sampling time and ADC clock with sufficient */ /* duration to not create an overhead situation in IRQHandler. */ LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_4, LL_ADC_SAMPLINGTIME_41CYCLES_5); } /*## Configuration of ADC transversal scope: analog watchdog ###############*/ /* Note: On this STM32 series, there is only 1 analog watchdog available. */ /* Set ADC analog watchdog: channels to be monitored */ // LL_ADC_SetAnalogWDMonitChannels(ADC1, LL_ADC_AWD_DISABLE); /* Set ADC analog watchdog: thresholds */ // LL_ADC_SetAnalogWDThresholds(ADC1, LL_ADC_AWD_THRESHOLD_HIGH, __LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B)); // LL_ADC_SetAnalogWDThresholds(ADC1, LL_ADC_AWD_THRESHOLD_LOW, 0x000); /*## Configuration of ADC transversal scope: oversampling ##################*/ /* Note: Feature not available on this STM32 series */ /*## Configuration of ADC interruptions ####################################*/ /* Enable interruption ADC group regular end of unitary conversion */ LL_ADC_EnableIT_EOS(ADC1); } /** * @brief Perform ADC activation procedure to make it ready to convert * (ADC instance: ADC1). * @note Operations: * - ADC instance * - Run ADC self calibration * - Enable ADC * - ADC group regular * none: ADC conversion start-stop to be performed * after this function * - ADC group injected * none: ADC conversion start-stop to be performed * after this function * @param None * @retval None */ void Activate_ADC(void) { __IO uint32_t wait_loop_index = 0; #if (USE_TIMEOUT == 1) uint32_t Timeout = 0; /* Variable used for timeout management */ #endif /* USE_TIMEOUT */ /*## Operation on ADC hierarchical scope: ADC instance #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Enable ADC */ LL_ADC_Enable(ADC1); /* Delay between ADC enable and ADC start of calibration. */ /* Note: Variable divided by 2 to compensate partially */ /* CPU processing cycles (depends on compilation optimization). */ wait_loop_index = (ADC_DELAY_ENABLE_CALIB_CPU_CYCLES >> 1); while(wait_loop_index != 0) { wait_loop_index--; } /* Run ADC self calibration */ LL_ADC_StartCalibration(ADC1); /* Poll for ADC effectively calibrated */ #if (USE_TIMEOUT == 1) Timeout = ADC_CALIBRATION_TIMEOUT_MS; #endif /* USE_TIMEOUT */ while (LL_ADC_IsCalibrationOnGoing(ADC1) != 0) { #if (USE_TIMEOUT == 1) /* Check Systick counter flag to decrement the time-out value */ if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { /* Time-out occurred. Set LED to blinking mode */ LED_Blinking(LED_BLINK_ERROR); } } #endif /* USE_TIMEOUT */ } } /*## Operation on ADC hierarchical scope: ADC group regular ################*/ /* Note: No operation on ADC group regular performed here. */ /* ADC group regular conversions to be performed after this function */ /* using function: */ /* "LL_ADC_REG_StartConversion();" */ /*## Operation on ADC hierarchical scope: ADC group injected ###############*/ /* Note: No operation on ADC group injected performed here. */ /* ADC group injected conversions to be performed after this function */ /* using function: */ /* "LL_ADC_INJ_StartConversion();" */ } /** * @brief Initialize LED2. * @param None * @retval None */ void LED_Init(void) { /* Enable the LED2 Clock */ LED2_GPIO_CLK_ENABLE(); /* Configure IO in output push-pull mode to drive external LED2 */ LL_GPIO_SetPinMode(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_MODE_OUTPUT); /* Reset value is LL_GPIO_OUTPUT_PUSHPULL */ //LL_GPIO_SetPinOutputType(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_OUTPUT_PUSHPULL); /* Reset value is LL_GPIO_SPEED_FREQ_LOW */ //LL_GPIO_SetPinSpeed(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_SPEED_FREQ_LOW); /* Reset value is LL_GPIO_PULL_DOWN */ //LL_GPIO_SetPinPull(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_PULL_DOWn); } /** * @brief Turn-on LED2. * @param None * @retval None */ void LED_On(void) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN); } /** * @brief Turn-off LED2. * @param None * @retval None */ void LED_Off(void) { /* Turn LED2 off */ LL_GPIO_ResetOutputPin(LED2_GPIO_PORT, LED2_PIN); } /** * @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter). * @param Period : Period of time (in ms) between each toggling of LED * This parameter can be user defined values. Pre-defined values used in that example are : * @arg LED_BLINK_FAST : Fast Blinking * @arg LED_BLINK_SLOW : Slow Blinking * @arg LED_BLINK_ERROR : Error specific Blinking * @retval None */ void LED_Blinking(uint32_t Period) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN); /* Toggle IO in an infinite loop */ while (1) { LL_GPIO_TogglePin(LED2_GPIO_PORT, LED2_PIN); LL_mDelay(Period); } } /** * @brief Configures User push-button in EXTI Line Mode. * @param None * @retval None */ void UserButton_Init(void) { /* Enable the BUTTON Clock */ USER_BUTTON_GPIO_CLK_ENABLE(); /* Configure GPIO for BUTTON */ LL_GPIO_SetPinMode(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_MODE_INPUT); LL_GPIO_SetPinPull(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_PULL_DOWN); /* if(Button_Mode == BUTTON_MODE_EXTI) */ { /* Connect External Line to the GPIO */ USER_BUTTON_SYSCFG_SET_EXTI(); /* Enable a rising trigger EXTI line 13 Interrupt */ USER_BUTTON_EXTI_LINE_ENABLE(); USER_BUTTON_EXTI_FALLING_TRIG_ENABLE(); /* Configure NVIC for USER_BUTTON_EXTI_IRQn */ NVIC_EnableIRQ(USER_BUTTON_EXTI_IRQn); NVIC_SetPriority(USER_BUTTON_EXTI_IRQn,0x03); } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 72000000 * HCLK(Hz) = 72000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSE Frequency(Hz) = 8000000 * PLLMUL = 9 * Flash Latency(WS) = 2 * @param None * @retval None */ void SystemClock_Config(void) { /* Set FLASH latency */ LL_FLASH_SetLatency(LL_FLASH_LATENCY_2); /* Enable HSE oscillator */ LL_RCC_HSE_EnableBypass(); LL_RCC_HSE_Enable(); while(LL_RCC_HSE_IsReady() != 1) { }; /* Main PLL configuration and activation */ LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE_DIV_1, LL_RCC_PLL_MUL_9); LL_RCC_PLL_Enable(); while(LL_RCC_PLL_IsReady() != 1) { }; /* Sysclk activation on the main PLL */ LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL); while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { }; /* Set APB1 & APB2 prescaler*/ LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_2); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1); /* Set systick to 1ms in using frequency set to 72MHz */ LL_Init1msTick(72000000); /* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */ LL_SetSystemCoreClock(72000000); } /******************************************************************************/ /* USER IRQ HANDLER TREATMENT */ /******************************************************************************/ /** * @brief Function to manage IRQ Handler * @param None * @retval None */ void UserButton_Callback(void) { /* Turn LED off before performing a new ADC conversion start */ LED_Off(); /* Reset status variable of ADC group regular unitary conversion before */ /* performing a new ADC group regular conversion start. */ /* Note: Optionally, for this example purpose, check ADC unitary */ /* conversion status before starting another ADC conversion. */ if (ubAdcGrpRegularUnitaryConvStatus != 0) { ubAdcGrpRegularUnitaryConvStatus = 0; } else { /* Error: Previous action (ADC conversion or DMA transfer) not yet */ /* completed. */ LED_Blinking(LED_BLINK_ERROR); } /* Init variable containing ADC conversion data */ uhADCxConvertedData = VAR_CONVERTED_DATA_INIT_VALUE; /* Start ADC group regular conversion */ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 1) { LL_ADC_REG_StartConversionSWStart(ADC1); } else { /* Error: ADC conversion start could not be performed */ LED_Blinking(LED_BLINK_ERROR); } } /** * @brief ADC group regular end of unitary conversion interruption callback * @note This function is executed when the ADC group regular * sequencer has converted one rank of the sequence. * Therefore, this function is executed as many times as number * of ranks in the sequence. * @retval None */ void AdcGrpRegularUnitaryConvComplete_Callback() { /* Retrieve ADC conversion data */ /* (data maximum amplitude corresponds to ADC resolution: 12 bits) */ uhADCxConvertedData = LL_ADC_REG_ReadConversionData12(ADC1); /* Computation of ADC conversions raw data to physical values */ /* using LL ADC driver helper macro. */ uhADCxConvertedData_Voltage_mVolt = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, uhADCxConvertedData, LL_ADC_RESOLUTION_12B); /* Update status variable of ADC unitary conversion */ ubAdcGrpRegularUnitaryConvStatus = 1; /* Set LED depending on ADC unitary conversion status */ /* - Turn-on if ADC group regular unitary conversion is completed */ /* - Turn-off if ADC group regular unitary conversion is not completed */ LED_On(); } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */
0
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_IT
D://workCode//uploadProject\STM32CubeF1\Projects\STM32F103RB-Nucleo\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_IT\Src\stm32f1xx_it.c
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_SingleConversion_TriggerSW_IT/Src/stm32f1xx_it.c * @author MCD Application Team * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_it.h" /** @addtogroup STM32F1xx_LL_Examples * @{ */ /** @addtogroup ADC_SingleConversion_TriggerSW_IT * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /******************************************************************************/ /* Cortex-M3 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /** * @brief This function handles PendSVC exception. * @param None * @retval None */ void PendSV_Handler(void) { } /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { } /******************************************************************************/ /* STM32F1xx Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f1xx.s). */ /******************************************************************************/ /** * @brief This function handles external lines 10 to 15 interrupt request. * @param None * @retval None */ void USER_BUTTON_IRQHANDLER(void) { /* Manage Flags */ if(LL_EXTI_IsActiveFlag_0_31(USER_BUTTON_EXTI_LINE) != RESET) { /* Call interruption treatment function */ UserButton_Callback(); /* Clear EXTI line flag */ /* Note: Clear flag after callback function to minimize user button */ /* switch debounce parasitics. */ LL_EXTI_ClearFlag_0_31(USER_BUTTON_EXTI_LINE); } } /** * @brief This function handles ADC1 interrupt request. * @param None * @retval None */ void ADC1_IRQHandler(void) { /* Check whether ADC group regular end of unitary conversion caused */ /* the ADC interruption. */ /* Note: On this STM32 series, there is no flag of group regular */ /* end of unitary conversion. Therefore, flag of group regular */ /* end of sequence conversions is used (equivalent when there is */ /* only 1 rank in group regular sequencer). */ if(LL_ADC_IsActiveFlag_EOS(ADC1) != 0) { /* Clear flag ADC group regular end of sequence conversions */ LL_ADC_ClearFlag_EOS(ADC1); /* Call interruption treatment function */ AdcGrpRegularUnitaryConvComplete_Callback(); } } /** * @} */ /** * @} */
0