content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
import math def sieve(n): """ Returns a list with all prime numbers up to n. >>> sieve(50) [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47] >>> sieve(25) [2, 3, 5, 7, 11, 13, 17, 19, 23] >>> sieve(10) [2, 3, 5, 7] >>> sieve(9) [2, 3, 5, 7] >>> sieve(2) [2] >>> sieve(1) [] """ l = [True] * (n + 1) # noqa: E741 prime = [] start = 2 end = int(math.sqrt(n)) while start <= end: # If start is a prime if l[start] is True: prime.append(start) # Set multiples of start be False for i in range(start * start, n + 1, start): if l[i] is True: l[i] = False start += 1 for j in range(end + 1, n + 1): if l[j] is True: prime.append(j) return prime
f6c930c604839ba1872bd3168c76b353606ee8ee
708,558
def is_trueish(expression: str) -> bool: """True if string and "True", "Yes", "On" (ignorecase), False otherwise""" expression = str(expression).strip().lower() return expression in {'true', 'yes', 'on'}
7d958c068281deb68de7665dc1eeb07acf5e941f
708,559
import re def contains_order_by(query): """Returns true of the query contains an 'order by' clause""" return re.search( r'order\s+by\b', query, re.M|re.I) is not None
4f4eebadfd5dc4cb1121378db4ef5f68d27bf787
708,560
import re def __shorten_floats(source): """ Use short float notation whenever possible :param source: The source GLSL string :return: The GLSL string with short float notation applied """ # Strip redundant leading digits source = re.sub(re.compile(r'(?<=[^\d.])0(?=\.)'), '', source) # Strip redundant trailing digits return re.sub(re.compile(r'(?<=\d\.)0(?=\D)'), '', source)
538645cde50e6c9a4ed3960cf6bbd177c5583381
708,561
from typing import OrderedDict def elem_props_template_init(templates, template_type): """ Init a writing template of given type, for *one* element's properties. """ ret = OrderedDict() tmpl = templates.get(template_type) if tmpl is not None: written = tmpl.written[0] props = tmpl.properties ret = OrderedDict((name, [val, ptype, anim, written]) for name, (val, ptype, anim) in props.items()) return ret
c31d5ca8224763701f44471f23f00454c4365240
708,562
def mean(l): """ Returns the mean value of the given list """ sum = 0 for x in l: sum = sum + x return sum / float(len(l))
74926c9aaafd2362ce8821d7040afcba1f569400
708,564
import re def clean_hotel_maxpersons(string): """ """ if string is not None: r = int(re.findall('\d+', string)[0]) else: r = 0 return r
d20d9db1da49eea1a4057e43b9f43f2960dbd27a
708,565
from typing import OrderedDict def merge_nodes(nodes): """ Merge nodes to deduplicate same-name nodes and add a "parents" attribute to each node, which is a list of Node objects. """ def add_parent(unique_node, parent): if getattr(unique_node, 'parents', None): if parent.name not in unique_node.parents: unique_node.parents[parent.name] = parent else: unique_node.parents = {parent.name: parent} names = OrderedDict() for node in nodes: if node.name not in names: names[node.name] = node add_parent(names[node.name], node.parent) else: add_parent(names[node.name], node.parent) return names.values()
1f5a2a7188071d9d6f8b6ab1f25ceff1a0ba8484
708,566
def find_records(dataset, search_string): """Retrieve records filtered on search string. Parameters: dataset (list): dataset to be searched search_string (str): query string Returns: list: filtered list of records """ records = [] # empty list (accumulator pattern) for record in dataset: if search_string.lower() in record.lower(): # case insensitive records.append(record) # add to new list return records
c6cbd5c239f410a8658e62c1bbacc877eded5105
708,567
from functools import reduce def flatten(l): """Flatten 2 list """ return reduce(lambda x, y: list(x) + list(y), l, [])
85b4fad4ef0326304c1ee44714d8132841d13b16
708,569
def get_mapping(): """ Returns a dictionary with the mapping of Spacy dependency labels to a numeric value, spacy dependency annotations can be found here https://spacy.io/api/annotation :return: dictionary """ keys = ['acl', 'acomp', 'advcl', 'advmod', 'agent', 'amod', 'appos', 'attr', 'aux', 'auxpass', 'case', 'cc', 'ccomp', 'clf', 'compound', 'conj', 'cop', 'csubj', 'csubjpass', 'dative', 'dep', 'det', 'discourse', 'dislocated', 'dobj', 'expl', 'fixed', 'flat', 'goeswith', 'iobj', 'intj', 'list', 'mark', 'meta', 'neg', 'nn', 'nmod', 'nounmod', 'npadvmod', 'npmod', 'nsubj', 'nsubjpass', 'nummod', 'oprd', 'obj', 'obl', 'orphan', 'parataxis', 'pcomp', 'pobj', 'poss', 'preconj', 'predet', 'prep', 'prt', 'punct', 'quantmod', 'relcl', 'reparandum', 'root', 'vocative', 'xcomp', ''] values = list(range(2, len(keys) + 2)) assert len(keys) == len(values) return dict(zip(keys, values))
164d2292bdd573a5805f9a66f685d21aac92061e
708,570
def filter_spans(spans): """Filter a sequence of spans and remove duplicates or overlaps. Useful for creating named entities (where one token can only be part of one entity) or when merging spans with `Retokenizer.merge`. When spans overlap, the (first) longest span is preferred over shorter spans. spans (iterable): The spans to filter. RETURNS (list): The filtered spans. """ get_sort_key = lambda span: (span.end - span.start, -span.start) sorted_spans = sorted(spans, key=get_sort_key, reverse=True) result = [] seen_tokens = set() for span in sorted_spans: # Check for end - 1 here because boundaries are inclusive if span.start not in seen_tokens and span.end - 1 not in seen_tokens: result.append(span) seen_tokens.update(range(span.start, span.end)) result = sorted(result, key=lambda span: span.start) return result
3b15a79b14f02ffa870b94eb9b61261c4befc0eb
708,571
import itertools def generate_combinations (n, rlist): """ from n choose r elements """ combs = [list(itertools.combinations(n, r)) for r in rlist] combs = [item for sublist in combs for item in sublist] return combs
7339b61a7ea76813c8356cf4a87b1e81b67ce10e
708,572
def get_description_value(name_of_file): """ :param name_of_file: Source file for function. :return: Description value for particular CVE. """ line = name_of_file.readline() while 'value" :' not in line: line = name_of_file.readline() tmp_list = line.split(':') if len(tmp_list) == 2: value = tmp_list[1][:] return value else: # When description value contains ":" too. concatenation = "" for i in range(1, len(tmp_list)-1): concatenation = concatenation + tmp_list[i] + ":" concatenation = concatenation + tmp_list[-1] return concatenation
a7b0915feff7fcd2a175bdb8fe9af48d0d9f14d7
708,573
from typing import Optional from typing import List def to_lines(text: str, k: int) -> Optional[List[str]]: """ Given a block of text and a maximum line length k, split the text into lines of length at most k. If this cannot be done, i.e. a word is longer than k, return None. :param text: the block of text to process :param k: the maximum length of each line :return: the list of lines >>> text = 'the quick brown fox jumps over the lazy dog' >>> to_lines(text, 4) is None True >>> to_lines(text, 5) ['the', 'quick', 'brown', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog'] >>> to_lines(text, 9) ['the quick', 'brown fox', 'jumps', 'over the', 'lazy dog'] >>> to_lines(text, 10) ['the quick', 'brown fox', 'jumps over', 'the lazy', 'dog'] >>> to_lines(text, 12) ['the quick', 'brown fox', 'jumps over', 'the lazy dog'] >>> to_lines('AAAAA', 5) ['AAAAA'] """ def line_to_str(l: List[str]) -> str: return ' '.join(l) # If there is no text or the line length is 0, we can't do anything. if not text or not k: return None # If any word is longer then k, we can't do anything. words = text.split() if max(len(word) for word in words) > k: return None # Now split the word into lines. lines = [] line = [] len_so_far = 0 for word in words: len_word = len(word) if len_word + len_so_far <= k: # We add the word to the line plus a blank space afterwards. # If this is the last word in the line, the blank space will not occur; hence why we check the # condition <= k rather than < k. line.append(word) len_so_far += len_word + 1 else: # Make the line into a string, add it to lines, and reset everything. lines.append(line_to_str(line)) line = [word] len_so_far = len_word + 1 # Last case: if we have a partial line, add it. if line: lines.append(line_to_str(line)) # Assert that none of the lines went over the length. for line in lines: assert(len(line) <= k) return lines
1797f45ce4999a29a9cc74def3f868e473c2775a
708,575
def product_except_self(nums: list[int]) -> list[int]: """Computes the product of all the elements of given array at each index excluding the value at that index. Note: could also take math.prod(nums) and divide out the num at each index, but corner cases of num_zeros > 1 and num_zeros == 1 make code inelegant. Args: nums: Returns: Examples: >>> product_except_self([]) [] >>> product_except_self([1,2,3,4]) [24, 12, 8, 6] >>> product_except_self([-1,1,0,-3,3]) [0, 0, 9, 0, 0] """ """ALGORITHM""" ## INITIALIZE VARS ## nums_sz = len(nums) # DS's/res nums_products_except_i = [1] * nums_sz ## Multiply against product of all elements PRECEDING i total_product = 1 for i in range(nums_sz): nums_products_except_i[i] *= total_product total_product *= nums[i] ## Multiply against product of all elements FOLLOWING i total_product = 1 for i in reversed(range(nums_sz)): nums_products_except_i[i] *= total_product total_product *= nums[i] return nums_products_except_i
15090d4873b0dec9ea6119e7c097ccda781e51fa
708,576
def find_missing_letter(chars): """ chars: string of characters return: missing letter between chars or after """ letters = [char for char in chars][0] chars = [char.lower() for char in chars] alphabet = [char for char in "abcdefghijklmnopqrstuvwxyz"] starting_index = alphabet.index(chars[0]) for letter in alphabet[starting_index:]: if letter not in chars and chars[0].lower() == letters[0]: return letter if letter not in chars and chars[0].upper() == letters[0]: return letter.upper()
bc663b68ac49095285a24b06554337c1582c8199
708,577
def tally_cache_file(results_dir): """Return a fake tally cache file for testing.""" file = results_dir / 'tally.npz' file.touch() return file
271c58cc263cf0bfba80f00b0831303326d4d1a8
708,578
import torch def get_soft_label(cls_label, num_classes): """ compute soft label replace one-hot label :param cls_label:ground truth class label :param num_classes:mount of classes :return: """ # def metrix_fun(a, b): # torch.IntTensor(a) # torch.IntTensor(b) # metrix_dis = (a - b) ** 2 # return metrix_dis def metrix_fun(a, b): a = a.type_as(torch.FloatTensor()) b = b.type_as(torch.FloatTensor()) metrix_dis = (torch.log(a) - torch.log(b)) ** 2 return metrix_dis def exp(x): x = x.type_as(torch.FloatTensor()) return torch.exp(x) rt = torch.IntTensor([cls_label]) # must be torch.IntTensor or torch.LongTensor rk = torch.IntTensor([idx for idx in range(1, num_classes + 1, 1)]) metrix_vector = exp(-metrix_fun(rt, rk)) return metrix_vector / torch.sum(metrix_vector)
e08e6fc86252bf76dd8a852c63e92776b4fdcfc3
708,579
def get_option(args, config, key, default=None): """Gets key option from args if it is provided, otherwise tries to get it from config""" if hasattr(args, key) and getattr(args, key) is not None: return getattr(args, key) return config.get(key, default)
54d77c6ae3e40b2739156b07747facc4a952c237
708,580
import re def parse_extension(uri): """ Parse the extension of URI. """ patt = re.compile(r'(\.\w+)') return re.findall(patt, uri)[-1]
5ed4eee77b92f04e62390128939113168d715342
708,581
import math def rotz(ang): """ Calculate the transform for rotation around the Z-axis. Arguments: angle: Rotation angle in degrees. Returns: A 4x4 numpy array of float32 representing a homogeneous coordinates matrix for rotation around the Z axis. """ rad = math.radians(ang) c = math.cos(rad) s = math.sin(rad) return [ [c, -s, 0.0, 0.0], [s, c, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0], ]
4332242c5818ccc00d64cbebf7a861727e080964
708,582
def getBits(data, offset, bits=1): """ Get specified bits from integer >>> bin(getBits(0b0011100,2)) '0b1' >>> bin(getBits(0b0011100,0,4)) '0b1100' """ mask = ((1 << bits) - 1) << offset return (data & mask) >> offset
0bdae35f5afa076d0e5a73b91d2743d9cf156f7d
708,583
import argparse def get_args(): """ gets cli args via the argparse module """ msg = "This script records cpu statistics" # create an instance of parser from the argparse module parser = argparse.ArgumentParser(description=msg) # add expected arguments parser.add_argument('-s', dest='silent', required=False, action="store_true", help="dont display statistics to screen") parser.add_argument('-a', dest='append', required=False, action="store_true", help="dont overwrite previous files") parser.add_argument('-c', dest='convert', required=False, action="store_true", help="converts data to human readable") parser.add_argument('-n', dest='noheader', required=False, action="store_true", help="dont write header") parser.add_argument('-R', dest='refresh', required=False) parser.add_argument('-r', dest='runtime', required=False) parser.add_argument('-o', dest='outfile', required=False) args = parser.parse_args() if args.silent: silent = True else: silent = False if args.noheader: noheader = True else: noheader = False if args.append: append = True else: append = False if args.refresh: refresh = float(args.refresh) else: # default refresh i s 5 seconds refresh = 5 if args.runtime: runtime = float(args.runtime) else: # default runtime is eight hours runtime = 28800 if args.outfile: outfile = args.outfile else: outfile = 'memutil.csv' if args.convert: convert = True else: convert = False return silent, noheader, refresh, runtime, append, outfile, convert
a97cdbf33710bac17d78581548970e85c2397e15
708,585
import copy import json def compress_r_params(r_params_dict): """ Convert a dictionary of r_paramsters to a compressed string format Parameters ---------- r_params_dict: Dictionary dictionary with parameters for weighting matrix. Proper fields and formats depend on the mode of data_weighting. data_weighting == 'dayenu': dictionary with fields 'filter_centers', list of floats (or float) specifying the (delay) channel numbers at which to center filtering windows. Can specify fractional channel number. 'filter_half_widths', list of floats (or float) specifying the width of each filter window in (delay) channel numbers. Can specify fractional channel number. 'filter_factors', list of floats (or float) specifying how much power within each filter window is to be suppressed. Returns ------- string containing r_params dictionary in json format and only containing one copy of each unique dictionary with a list of associated baselines. """ if r_params_dict == {} or r_params_dict is None: return '' else: r_params_unique = {} r_params_unique_bls = {} r_params_index = -1 for rp in r_params_dict: #do not include data set in tuple key already_in = False for rpu in r_params_unique: if r_params_unique[rpu] == r_params_dict[rp]: r_params_unique_bls[rpu] += [rp,] already_in = True if not already_in: r_params_index += 1 r_params_unique[r_params_index] = copy.copy(r_params_dict[rp]) r_params_unique_bls[r_params_index] = [rp,] for rpi in r_params_unique: r_params_unique[rpi]['baselines'] = r_params_unique_bls[rpi] r_params_str = json.dumps(r_params_unique) return r_params_str
4e56badfb7ea773d9d1104b134aa61b83d8d2f2f
708,586
def replace_ext(filename, oldext, newext): """Safely replaces a file extension new a new one""" if filename.endswith(oldext): return filename[:-len(oldext)] + newext else: raise Exception("file '%s' does not have extension '%s'" % (filename, oldext))
33ab99860cfe90b72388635d5d958abe431fa45e
708,587
import functools import time def debounce(timeout, **kwargs): """Use: @debounce(text=lambda t: t.id, ...) def on_message(self, foo=..., bar=..., text=None, ...)""" keys = sorted(kwargs.items()) def wrapper(f): @functools.wraps(f) def handler(self, *args, **kwargs): # Construct a tuple of keys from the input args key = tuple(fn(kwargs.get(k)) for k, fn in keys) curr = set() if hasattr(self, '__debounce_curr'): curr = self.__debounce_curr prev = set() if hasattr(self, '__debounce_prev'): prev = self.__debounce_prev now = time.time() tick = time.time() if hasattr(self, '__debounce_tick'): tick = self.__debounce_tick # Check the current and previous sets, if present if key in curr or key in prev: return # Rotate and update if now > tick: prev = curr curr = set() tick = now + timeout curr.add(key) self.__debounce_curr = curr self.__debounce_prev = prev self.__debounce_tick = tick # Call the wrapped function return f(self, *args, **kwargs) return handler return wrapper
ac457a68834f1a6305ff4be8f7f19607f17e95fb
708,589
import curses def acs_map(): """call after curses.initscr""" # can this mapping be obtained from curses? return { ord(b'l'): curses.ACS_ULCORNER, ord(b'm'): curses.ACS_LLCORNER, ord(b'k'): curses.ACS_URCORNER, ord(b'j'): curses.ACS_LRCORNER, ord(b't'): curses.ACS_LTEE, ord(b'u'): curses.ACS_RTEE, ord(b'v'): curses.ACS_BTEE, ord(b'w'): curses.ACS_TTEE, ord(b'q'): curses.ACS_HLINE, ord(b'x'): curses.ACS_VLINE, ord(b'n'): curses.ACS_PLUS, ord(b'o'): curses.ACS_S1, ord(b's'): curses.ACS_S9, ord(b'`'): curses.ACS_DIAMOND, ord(b'a'): curses.ACS_CKBOARD, ord(b'f'): curses.ACS_DEGREE, ord(b'g'): curses.ACS_PLMINUS, ord(b'~'): curses.ACS_BULLET, ord(b','): curses.ACS_LARROW, ord(b'+'): curses.ACS_RARROW, ord(b'.'): curses.ACS_DARROW, ord(b'-'): curses.ACS_UARROW, ord(b'h'): curses.ACS_BOARD, ord(b'i'): curses.ACS_LANTERN, ord(b'p'): curses.ACS_S3, ord(b'r'): curses.ACS_S7, ord(b'y'): curses.ACS_LEQUAL, ord(b'z'): curses.ACS_GEQUAL, ord(b'{'): curses.ACS_PI, ord(b'|'): curses.ACS_NEQUAL, ord(b'}'): curses.ACS_STERLING, }
2121ab5dd650019ae7462d2ab34cf436966cffe9
708,590
import os import sqlite3 import csv def map2sqldb(map_path, column_names, sep='\t'): """Determine the mean and 2std of the length distribution of a group """ table_name = os.path.basename(map_path).rsplit('.', 1)[0] sqldb_name = table_name + '.sqlite3db' sqldb_path = os.path.join(os.path.dirname(map_path), sqldb_name) conn = sqlite3.connect(sqldb_path) # @UndefinedVariable c = conn.cursor() # If table already exist, return the connector and the table_name SQL = ''' SELECT count(*) FROM sqlite_master WHERE name == \"{}\" '''.format(table_name) c.execute(SQL) exists_flag = False if c.fetchone()[0] == 1: c.fetchall() #get rid of the remainder exists_flag=True if exists_flag: return c, table_name # Create table SQL = ''' create table if not exists {0} ({1}); '''.format(table_name, '\"' + '\" text,\"'.join([str(n).lower() for n in column_names]) + '\" text') c.execute(SQL) c.close() # Fill table SQL = ''' insert into {0} values ({1}) '''.format(table_name, ' ,'.join(['?']*len(column_names))) with open(map_path, 'r') as map_file: csv.field_size_limit(2147483647) csv_reader = csv.reader(map_file, delimiter=sep, quoting=csv.QUOTE_NONE) with sqlite3.connect(sqldb_path) as conn: # @UndefinedVariable c = conn.cursor() c.executemany(SQL, csv_reader) return c, table_name
656db3aa8797231ba09f6ddd08d00c0308be9285
708,591
def next_method(): """next, for: Get one item of an iterators.""" class _Iterator: def __init__(self): self._stop = False def __next__(self): if self._stop: raise StopIteration() self._stop = True return "drums" return next(_Iterator())
85cdd08a65ae66c2869ba2067db81ff37f40d0b8
708,592
def u1_series_summation(xarg, a, kmax): """ 5.3.2 ROUTINE - U1 Series Summation PLATE 5-10 (p32) :param xarg: :param a: :param kmax: :return: u1 """ du1 = 0.25*xarg u1 = du1 f7 = -a*du1**2 k = 3 while k < kmax: du1 = f7*du1 / (k*(k-1)) u1old = u1 u1 = u1+du1 if u1 == u1old: break k = k+2 return u1
e54cb5f68dd5ecba5dd7f540ac645ff8d70ae0e3
708,593
import torch def normalized_grid_coords(height, width, aspect=True, device="cuda"): """Return the normalized [-1, 1] grid coordinates given height and width. Args: height (int) : height of the grid. width (int) : width of the grid. aspect (bool) : if True, use the aspect ratio to scale the coordinates, in which case the coords will not be normalzied to [-1, 1]. (Default: True) device : the device the tensors will be created on. """ aspect_ratio = width/height if aspect else 1.0 window_x = torch.linspace(-1, 1, steps=width, device=device) * aspect_ratio window_y = torch.linspace(1, -1, steps=height, device=device) coord = torch.stack(torch.meshgrid(window_x, window_y, indexing='ij')).permute(2,1,0) return coord
7ddd1c5eda2e28116e40fa99f6cd794d9dfd48cc
708,594
import struct def pack4(v): """ Takes a 32 bit integer and returns a 4 byte string representing the number in little endian. """ assert 0 <= v <= 0xffffffff # The < is for little endian, the I is for a 4 byte unsigned int. # See https://docs.python.org/2/library/struct.html for more info. return struct.pack('<I', v)
bbaeb0026624a7ec30ec379466ef11398f93d573
708,595
def maximum_sum_increasing_subsequence(numbers, size): """ Given an array of n positive integers. Write a program to find the sum of maximum sum subsequence of the given array such that the integers in the subsequence are sorted in increasing order. """ results = [numbers[i] for i in range(size)] for i in range(1, size): for j in range(i): if numbers[i] > numbers[j] and results[i] < results[j] + numbers[i]: results[i] = results[j] + numbers[i] return max(results)
a684ead4dcd9acbf8c796f5d24a3bf826fb5ad9d
708,596
import json def getResourceDefUsingSession(url, session, resourceName, sensitiveOptions=False): """ get the resource definition - given a resource name (and catalog url) catalog url should stop at port (e.g. not have ldmadmin, ldmcatalog etc... or have v2 anywhere since we are using v1 api's returns rc=200 (valid) & other rc's from the get resourceDef (json) """ print( "getting resource for catalog:-" + url + " resource=" + resourceName ) apiURL = url + "/access/1/catalog/resources/" + resourceName if sensitiveOptions: apiURL += "?sensitiveOptions=true" # print("\turl=" + apiURL) header = {"Accept": "application/json"} tResp = session.get(apiURL, params={}, headers=header, ) print("\tresponse=" + str(tResp.status_code)) if tResp.status_code == 200: # valid - return the jsom return tResp.status_code, json.loads(tResp.text) else: # not valid return tResp.status_code, None
883a393018b068b8f15a8c0ea5ac6969c1a386b6
708,597
def _merge_sse(sum1, sum2): """Merge the partial SSE.""" sum_count = sum1 + sum2 return sum_count
0aae96262cfb56c6052fdbe5bbd92437d37b1f76
708,598
def print_param_list(param_list, result, decimal_place=2, unit=''): """ Return a result string with parameter data appended. The input `param_list` is a list of a tuple (param_value, param_name), where `param_value` is a float and `param_name` is a string. If `param_value` is None, it writes 'N/A'. """ for param_value, param_name in param_list: result += '<tr>' result += r' <td class = "key"><span>{0}</span></td>'.format(param_name) result += r' <td class="equals">=</td>' if param_value is None: result += r' <td class="value">N/A</td>' else: param_value = '%.*f' % (decimal_place, param_value) result += r' <td class="value"><script type="math/tex">{0} \ \mathrm{{ {1!s} }}</script></td>'.format( param_value, unit) result += '</tr>\n' return result
f92fd926eaf312e625058c394c42e9909cac7a43
708,600
def has_soa_perm(user_level, obj, ctnr, action): """ Permissions for SOAs SOAs are global, related to domains and reverse domains """ return { 'cyder_admin': True, #? 'ctnr_admin': action == 'view', 'user': action == 'view', 'guest': action == 'view', }.get(user_level, False)
6b32c9f3411d9341d9692c46e84a7506d649f36d
708,601
def fix_units(dims): """Fill in missing units.""" default = [d.get("units") for d in dims][-1] for dim in dims: dim["units"] = dim.get("units", default) return dims
d3a47ad84e1b4e44bedebb1e5739778df975a6fe
708,602
def _uno_struct__setattr__(self, name, value): """Sets attribute on UNO struct. Referenced from the pyuno shared library. """ return setattr(self.__dict__["value"], name, value)
6b66213e33bb8b882407ff33bcca177701fb98cd
708,604
def partCmp(verA: str, verB: str) -> int: """Compare parts of a semver. Args: verA (str): lhs part to compare verB (str): rhs part to compare Returns: int: 0 if equal, 1 if verA > verB and -1 if verA < verB """ if verA == verB or verA == "*" or verB == "*": return 0 if int(verA) > int(verB): return 1 return -1
d9417ce482bf0c2332175412ba3125435f884336
708,607
import argparse def get_args(**kwargs): """Generate cli args Arguments: kwargs[dict]: Pair value in which key is the arg and value a tuple with the help message and default value Returns: Namespace: Args namespace object """ parser = argparse.ArgumentParser() for key, (help, default) in kwargs.items(): parser.add_argument("--{}".format(key), help=help, default=default) return parser.parse_args()
f2cade1e0ec3b5a1fccd7ea94090c719de2849b6
708,608
import copy def stretch(alignment, factor): """Time-stretch the alignment by a constant factor""" # Get phoneme durations durations = [factor * p.duration() for p in alignment.phonemes()] alignment = copy.deepcopy(alignment) alignment.update(durations=durations) return alignment
1ea58c32509365d503379df616edd00718cfca19
708,609
def _read_node( data, pos, md_total ): """ 2 3 0 3 10 11 12 1 1 0 1 99 2 1 1 2 The quantity of child nodes. The quantity of metadata entries. Zero or more child nodes (as specified in the header). """ child_count = data[ pos ] pos += 1 md_count = data[ pos ] pos += 1 for i in range( child_count ): pos, md_total = _read_node( data, pos, md_total ) for m in range( md_count ): md_total += data[ pos ] pos += 1 return ( pos, md_total )
768036031ab75b532d667769477f8d3144129ac8
708,610
def sequence_equals(sequence1, sequence2): """ Inspired by django's self.assertSequenceEquals Useful for comparing lists with querysets and similar situations where simple == fails because of different type. """ assert len(sequence1) == len(sequence2), (len(sequence1), len(sequence2)) for item_from_s1, item_from_s2 in zip(sequence1, sequence2): assert item_from_s1 == item_from_s2, (item_from_s1, item_from_s2) return True
38016a347caf79458bb2a872d0fd80d6b813ba33
708,611
def second_order_difference(t, y): """ Calculate the second order difference. Args: t: ndarray, the list of the three independent variables y: ndarray, three values of the function at every t Returns: double: the second order difference of given points """ # claculate the first order difference first_order_difference = (y[1:] - y[:-1]) / (t[1:] - t[:-1]) return (first_order_difference[1] - first_order_difference[0]) / (t[2] - t[0])
40e37d2b34104772966afc34e41c1ebc742c9adf
708,612
def _load_method_arguments(name, argtypes, args): """Preload argument values to avoid freeing any intermediate data.""" if not argtypes: return args if len(args) != len(argtypes): raise ValueError(f"{name}: Arguments length does not match argtypes length") return [ arg if hasattr(argtype, "_type_") else argtype.from_param(arg) for (arg, argtype) in zip(args, argtypes) ]
0eb6a16c2e4c1cd46a114923f81e93af331c3d6e
708,613
import requests def download(url, local_filename, chunk_size=1024 * 10): """Download `url` into `local_filename'. :param url: The URL to download from. :type url: str :param local_filename: The local filename to save into. :type local_filename: str :param chunk_size: The size to download chunks in bytes (10Kb by default). :type chunk_size: int :rtype: str :returns: The path saved to. """ response = requests.get(url) with open(local_filename, 'wb') as fp: for chunk in response.iter_content(chunk_size=chunk_size): if chunk: fp.write(chunk) return fp.name
0a86b8600e72e349a4e1344d2ce1ad2bb00b889d
708,614
def sum_2_level_dict(two_level_dict): """Sum all entries in a two level dict Parameters ---------- two_level_dict : dict Nested dict Returns ------- tot_sum : float Number of all entries in nested dict """ '''tot_sum = 0 for i in two_level_dict: for j in two_level_dict[i]: tot_sum += two_level_dict[i][j] ''' tot_sum = 0 for _, j in two_level_dict.items(): tot_sum += sum(j.values()) return tot_sum
6b5be015fb84fa20006c11e9a3e0f094a6761e74
708,615
import re def check_ip(ip): """ Check whether the IP is valid or not. Args: IP (str): IP to check Raises: None Returns: bool: True if valid, else False """ ip = ip.strip() if re.match(r'^(?:(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9])' '(\.(?!$)|$)){4}$', ip): return True else: return False
2ff9a9262e46546fcb8854edee4b3b18ae1e2cc4
708,617
from typing import Iterator from typing import Optional def _stream_lines(blob: bytes) -> Iterator[bytes]: """ Split bytes into lines (newline (\\n) character) on demand. >>> iter = _stream_lines(b"foo\\nbar\\n") >>> next(iter) b'foo' >>> next(iter) b'bar' >>> next(iter) Traceback (most recent call last): ... StopIteration >>> iter = _stream_lines(b"\\x00") >>> next(iter) b'\\x00' :param blob: the bytes to split. :return: a generated list of lines. """ start = 0 def _index(needle: bytes) -> Optional[int]: try: return blob.index(needle, start) except ValueError: return None line_index = _index(b"\n") while line_index is not None: yield blob[start:line_index] start = line_index + 1 line_index = _index(b"\n") # Deal with blobs that do not end in a newline. if start < len(blob): yield blob[start:]
8a166af1f765ca9eb70728d4c4bb21c00d7ddbf8
708,618
def chao1_var_no_doubletons(singles, chao1): """Calculates chao1 variance in absence of doubletons. From EstimateS manual, equation 7. chao1 is the estimate of the mean of Chao1 from the same dataset. """ s = float(singles) return s*(s-1)/2 + s*(2*s-1)**2/4 - s**4/(4*chao1)
6b93743a35c70c9ed5b9f3fc9bece1e9363c5802
708,619
def inBarrel(chain, index): """ Establish if the outer hit of a muon is in the barrel region. """ if abs(chain.muon_outerPositionz[index]) < 108: return True
9cbc5dad868d6e0ca221524ef8fc5ed5501adaa4
708,620
def to_string(class_name): """ Magic method that is used by the Metaclass created for Itop object. """ string = "%s : { " % type(class_name) for attribute, value in class_name.__dict__.iteritems(): string += "%s : %s, " % (attribute, value) string += "}" return string
a7e155c92c4e62c1f070a474905a7e0c654f45ff
708,621
def molefraction_2_pptv(n): """Convert mixing ratio units from mole fraction to parts per thousand by volume (pptv) INPUTS n: mole fraction (moles per mole air) OUTPUTS q: mixing ratio in parts per trillion by volume (pptv) """ # - start with COS mixing ratio n as mole fraction: # (n mol COS) / (mol air) # convert to mixing ratio as volumetric fraction # = (n * 6.023 * 10^23 molecules COS) / (6.023 * 10^23 molecules air) # = (q molecules COS) / (1000 molecules air) # q is mixing ratio in pptv, n is mole fraction # solve for q --> 1000n = q # therefore pptv = 1000 * mole fraction q = 1e3 * n return(q)
a6a26267f45fb70c346e86421c427bd155bfa65a
708,622
def find_shortest_path(node): """Finds shortest path from node to it's neighbors""" next_node,next_min_cost=node.get_min_cost_neighbor() if str(next_node)!=str(node): return find_shortest_path(next_node) else: return node
4fa3979ff665b5cf8df423ff9b3fbaa880d62a73
708,623
def str_is_float(value): """Test if a string can be parsed into a float. :returns: True or False """ try: _ = float(value) return True except ValueError: return False
08f2e30f134479137052fd821e53e050375cd11e
708,624
def activate_model(cfg): """Activate the dynamic parts.""" cfg["fake"] = cfg["fake"]() return cfg
df8b0a23dc683435c1379e57bc9fd98149876d9d
708,625
def convert_to_number(string): """ Tries to cast input into an integer number, returning the number if successful and returning False otherwise. """ try: number = int(string) return number except: return False
30110377077357d3e7d45cac4c106f5dc9349edd
708,626
from typing import List def mean(nums: List) -> float: """ Find mean of a list of numbers. Wiki: https://en.wikipedia.org/wiki/Mean >>> mean([3, 6, 9, 12, 15, 18, 21]) 12.0 >>> mean([5, 10, 15, 20, 25, 30, 35]) 20.0 >>> mean([1, 2, 3, 4, 5, 6, 7, 8]) 4.5 >>> mean([]) Traceback (most recent call last): ... ValueError: List is empty """ if not nums: raise ValueError("List is empty") return sum(nums) / len(nums)
3c802b4967f646b6338e52b4ce12977274054c15
708,627
def is_gzip(name): """Return True if the name indicates that the file is compressed with gzip.""" return name.endswith(".gz")
a6ea06f04808a07c4b26338f87273986eda86ef1
708,629
def possible_sums_of(numbers: list) -> list: """Compute all possible sums of numbers excluding self.""" possible_sums = [] for idx, nr_0 in enumerate(numbers[:-1]): for nr_1 in numbers[idx + 1:]: possible_sums.append(nr_0 + nr_1) return possible_sums
39ebe3e48c45a9c30f16b43e6c34778c5e813940
708,631
def fibonacci(n): """ object: fibonacci(n) returns the first n Fibonacci numbers in a list input: n- the number used to calculate the fibonacci list return: retList- the fibonacci list """ if type(n) != int: print(n) print(":input not an integer") return False if n <= 0: print(str(n)+"not a postive integer") return False f1=1 f2=1 retList=[] for i in range (0,n): retList.append(f1) fn=f1+f2 f1=f2 f2=fn return retList
ac37d952eecae57b33fb3768f1c8097d76769534
708,632
def upcoming_movie_name(soup): """ Extracts the list of movies from BeautifulSoup object. :param soup: BeautifulSoup object containing the html content. :return: list of movie names """ movie_names = [] movie_name_tag = soup.find_all('h4') for _movie in movie_name_tag: _movie_result = _movie.find_all('a') try: _movie_name = _movie_result[0]['title'] movie_names.append(_movie_name) except KeyError as e: continue return movie_names
6bac06375109ec103492a079746e2c0364bfac17
708,633
def learning_rate_decay(alpha, decay_rate, global_step, decay_step): """learning_rate_decay: updates the learning rate using inverse time decay in numpy Args: alpha : is the original learning rate decay_rate : is the weight used to determine the rate at which alpha will decay global_step : is the number of passes of gradient descent that have elapsed decay_step : is the number of passes of gradient descent that should occur before alpha is decayed further Returns: the updated value for alpha """ alpha = alpha / (1 + decay_rate * int(global_step / decay_step)) return alpha
a98f893acc7f14dafcf2dea551df4eb44da07bc4
708,634
def predict(model, img_base64): """ Returns the prediction for a given image. Params: model: the neural network (classifier). """ return model.predict_disease(img_base64)
545a98dd682b81a1662878f91091615871562226
708,635
import hashlib def get_hash(x: str): """Generate a hash from a string.""" h = hashlib.md5(x.encode()) return h.hexdigest()
538c936c29867bb934776333fb2dcc73c06e23d0
708,636
def is_anagram(s,t): """True if strings s and t are anagrams. """ # We can use sorted() on a string, which will give a list of characters # == will then compare two lists of characters, now sorted. return sorted(s)==sorted(t)
2b615f8180bcaa598e24c0772893c9a528bc5153
708,637
def lif_r_psc_aibs_converter(config, syn_tau=[5.5, 8.5, 2.8, 5.8]): """Creates a nest glif_lif_r_psc object""" coeffs = config['coeffs'] threshold_params = config['threshold_dynamics_method']['params'] reset_params = config['voltage_reset_method']['params'] params = {'V_th': coeffs['th_inf'] * config['th_inf'] * 1.0e03 + config['El_reference'] * 1.0e03, 'g': coeffs['G'] / config['R_input'] * 1.0e09, 'E_L': config['El'] * 1.0e03 + config['El_reference'] * 1.0e03, 'C_m': coeffs['C'] * config['C'] * 1.0e12, 't_ref': config['spike_cut_length'] * config['dt'] * 1.0e03, 'a_spike': threshold_params['a_spike'] * 1.0e03, 'b_spike': threshold_params['b_spike'] * 1.0e-03, 'a_reset': reset_params['a'], 'b_reset': reset_params['b'] * 1.0e03, 'tau_syn': syn_tau, # in ms 'V_dynamics_method': 'linear_exact'} return params
091e45f44f9c777dac6c2b35fd51459a7947e301
708,638
def _organize_parameter(parameter): """ Convert operation parameter message to its dict format. Args: parameter (OperationParameter): Operation parameter message. Returns: dict, operation parameter. """ parameter_result = dict() parameter_keys = [ 'mapStr', 'mapBool', 'mapInt', 'mapDouble', ] for parameter_key in parameter_keys: base_attr = getattr(parameter, parameter_key) parameter_value = dict(base_attr) # convert str 'None' to None for key, value in parameter_value.items(): if value == 'None': parameter_value[key] = None parameter_result.update(parameter_value) # drop `mapStrList` and `strValue` keys in result parameter str_list_para = dict(getattr(parameter, 'mapStrList')) result_str_list_para = dict() for key, value in str_list_para.items(): str_list_para_list = list() for str_ele in getattr(value, 'strValue'): str_list_para_list.append(str_ele) str_list_para_list = list(map(lambda x: None if x == '' else x, str_list_para_list)) result_str_list_para[key] = str_list_para_list parameter_result.update(result_str_list_para) return parameter_result
8cbd7c863bb244e71266a573ba756647d0ba13ea
708,639
import json def open_json(filepath): """ Returns open .json file in python as a list. :param: .json file path :returns: list :rvalue: str """ with open(filepath) as f: notes = json.load(f) return notes
a7cae15880ee1caaaf7bfa8c1aec98f5f83debe7
708,640
import json def load_credentials(): """ load_credentials :return: dict """ with open("credentials.json", "r", encoding="UTF-8") as stream: content = json.loads(stream.read()) return content
2f08fc4e897a7c7eb91de804158ee67cd91635d0
708,641
def get_utm_string_from_sr(spatialreference): """ return utm zone string from spatial reference instance """ zone_number = spatialreference.GetUTMZone() if zone_number > 0: return str(zone_number) + 'N' elif zone_number < 0: return str(abs(zone_number)) + 'S' else: return str(zone_number)
50f01758f7ee29f1b994d36cda34b6b36157fd9e
708,642
def return_intersect(cameraList): """ Calculates the intersection of the Camera objects in the *cameraList*. Function returns an empty Camera if there exists no intersection. Parameters: cameraList : *list* of *camera.Camera* objects A list of cameras from the camera.Camera class, each containing a *poly* and a *coordsList*. Returns: intersectCam : *camera.Camera* object An object from the camera.Camera class that is the intersection between all cameras in the cameraList. If there exists no intersection between any cameras in the camerList, an empty Camera will be returned. """ intersectCam = None for camera in cameraList: if intersectCam is None: # Initiates the intersectCam variable intersectCam = camera else: intersectCam = intersectCam.intersect(camera) return intersectCam
a47613b8d79c4a4535cd5e7e07aa3b26dea019a5
708,643
import struct def readShort(f): """Read 2 bytes as BE integer in file f""" read_bytes = f.read(2) return struct.unpack(">h", read_bytes)[0]
1b31c2285d055df3c128e8158dcc67eb6c0a2b18
708,644
def build_table(infos): """ Builds markdown table. """ table_str = '| ' for key in infos[0].keys(): table_str += key + ' | ' table_str += '\n' table_str += '| ' for key in infos[0].keys(): table_str += '--- | ' table_str += '\n' for info in infos: table_str += '| ' for value in info.values(): table_str += str(value) + ' | ' table_str += '\n' return table_str
8d31e6abc9edd0014acbac3570e4a2bc711baa4a
708,645
import csv def load_data(filename): """ Load shopping data from a CSV file `filename` and convert into a list of evidence lists and a list of labels. Return a tuple (evidence, labels). evidence should be a list of lists, where each list contains the following values, in order: - Administrative, an integer - Administrative_Duration, a floating point number - Informational, an integer - Informational_Duration, a floating point number - ProductRelated, an integer - ProductRelated_Duration, a floating point number - BounceRates, a floating point number - ExitRates, a floating point number - PageValues, a floating point number - SpecialDay, a floating point number - Month, an index from 0 (January) to 11 (December) - OperatingSystems, an integer - Browser, an integer - Region, an integer - TrafficType, an integer - VisitorType, an integer 0 (not returning) or 1 (returning) - Weekend, an integer 0 (if false) or 1 (if true) labels should be the corresponding list of labels, where each label is 1 if Revenue is true, and 0 otherwise. """ with open("shopping.csv") as f: reader = csv.reader(f) next(reader) months = ["Jan", "Feb", "Mar", "Apr", "May", "June", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"] data = [] for row in reader: data.append({ "evidence": [int(row[0]), float(row[1]), int(row[2]), float(row[3]), int(row[4]), float(row[5]), float(row[6]), float(row[7]), float(row[8]), float(row[9]), months.index(row[10]), int(row[11]), int(row[12]), int(row[13]), int(row[14]), 0 if row[15] == "New_Visitor" else 1, 0 if row[16] == "FALSE" else 1], "label": 0 if row[17] == "FALSE" else 1 }) evidence = [row["evidence"] for row in data] labels = [row["label"] for row in data] return (evidence, labels)
eb2465d0ebfb7398a3742d8fb79463d3d7b076f0
708,647
def get_loci_score(state, loci_w, data_w, species_w, better_loci, species_counts, total_individuals, total_species, individuals): """ Scoring function with user-specified weights. :param state: :param loci_w: the included proportion of loci from the original data set (higher is better). :param data_w: 1 - the proportion of missing data for the selected loci (higher is better). :param species_w: the average proportion of species represented per locus (higher is better). :param better_loci: :param species_counts: :param total_individuals: :param total_species: :param individuals: :return: """ num_loci = sum(state) species_loci_counts = {species: 0 for species in species_counts} individual_count = 0 missing_counts = {individual: 0 for individual in individuals} total_loci = len(better_loci) for i in range(total_loci): if state[i] == 0: continue found_species = set() found_individuals = set() lines = better_loci[i].split("\n") for line in lines: if line == "": continue (individual, sequence) = line[1:].split() found_individuals.add(individual) individual_count += 1 species = individual.split("_")[-1] found_species.add(species) for species in found_species: species_loci_counts[species] += 1 # Keep track of the amount of missing data for each individual. for individual in individuals: if individual not in found_individuals: missing_counts[individual] += 1 num_missing = num_loci * total_individuals - individual_count score_comps = [loci_w * float(num_loci) / float(total_loci), data_w * (1 - float(num_missing) / float(num_loci * total_individuals)), species_w * float(sum([species_loci_counts[species] for species in species_loci_counts])) / (float(num_loci) * float(total_species))] return score_comps, missing_counts
e5e12bf2f9f76e994289a33b52d4cdc3d641ec8e
708,648
def _find_full_periods(events, quantity, capacity): """Find the full periods.""" full_periods = [] used = 0 full_start = None for event_date in sorted(events): used += events[event_date]['quantity'] if not full_start and used + quantity > capacity: full_start = event_date elif full_start and used + quantity <= capacity: full_periods.append((full_start, event_date)) full_start = None return full_periods
16c36ce8cc5a91031117534e66c67605e13e3bd4
708,649
import random def crop_image(img, target_size, center): """ crop_image """ height, width = img.shape[:2] size = target_size if center == True: w_start = (width - size) / 2 h_start = (height - size) / 2 else: w_start = random.randint(0, width - size) h_start = random.randint(0, height - size) w_end = w_start + size h_end = h_start + size img = img[h_start:h_end, w_start:w_end, :] return img
c61d4410155501e3869f2e243af22d7fc13c10ee
708,650
def create_dist_list(dist: str, param1: str, param2: str) -> list: """ Creates a list with a special syntax describing a distribution Syntax: [identifier, param1, param2 (if necessary)] """ dist_list: list = [] if dist == 'fix': dist_list = ["f", float(param1)] elif dist == 'binary': dist_list = ["b", float(param1)] elif dist == 'binomial': dist_list = ["i", float(param1), float(param2)] elif dist == 'normal': dist_list = ["n", float(param1), float(param2)] elif dist == 'uniform': dist_list = ["u", float(param1), float(param2)] elif dist == 'poisson': dist_list = ["p", float(param1)] elif dist == 'exponential': dist_list = ["e", float(param1)] elif dist == 'lognormal': dist_list = ["l", float(param1), float(param2)] elif dist == 'chisquare': dist_list = ["c", float(param1)] elif dist == 'standard-t': dist_list = ["t", float(param1)] return dist_list
19cb93867639bcb4ae8152e4a28bb5d068a9c756
708,653
import time def timeit(func): """ Decorator that returns the total runtime of a function @param func: function to be timed @return: (func, time_taken). Time is in seconds """ def wrapper(*args, **kwargs) -> float: start = time.time() func(*args, **kwargs) total_time = time.time() - start return total_time return wrapper
68723a74c96c2d004eed9533f9023d77833c509b
708,654
def merge_count(data1, data2): """Auxiliary method to merge the lengths.""" return data1 + data2
8c0280b043b7d21a411ac14d3571acc50327fdbc
708,655
def B(s): """string to byte-string in Python 2 (including old versions that don't support b"") and Python 3""" if type(s)==type(u""): return s.encode('utf-8') # Python 3 return s
b741bf4a64bd866283ca789745f373db360f4016
708,656
def density_speed_conversion(N, frac_per_car=0.025, min_val=0.2): """ Fraction to multiply speed by if there are N nearby vehicles """ z = 1.0 - (frac_per_car * N) # z = 1.0 - 0.04 * N return max(z, min_val)
95285a11be84df5ec1b6c16c5f24b3831b1c0348
708,657
def get_receiver_type(rinex_fname): """ Return the receiver type (header line REC # / TYPE / VERS) found in *rinex_fname*. """ with open(rinex_fname) as fid: for line in fid: if line.rstrip().endswith('END OF HEADER'): break elif line.rstrip().endswith('REC # / TYPE / VERS'): return line[20:40].strip() raise ValueError('receiver type not found in header of RINEX file ' '{}'.format(rinex_fname))
7391f7a100455b8ff5ab01790f62518a3c4a079b
708,658
def buildHeaderString(keys): """ Use authentication keys to build a literal header string that will be passed to the API with every call. """ headers = { # Request headers 'participant-key': keys["participantKey"], 'Content-Type': 'application/json', 'Ocp-Apim-Subscription-Key': keys["subscriptionKey"] } return headers
4505fb679dec9727a62dd328f92f832ab45c417b
708,659
def classname(obj): """Returns the name of an objects class""" return obj.__class__.__name__
15b03c9ce341bd151187f03e8e95e6299e4756c3
708,660
def getbias(x, bias): """Bias in Ken Perlin’s bias and gain functions.""" return x / ((1.0 / bias - 2.0) * (1.0 - x) + 1.0 + 1e-6)
0bc551e660e133e0416f5e426e5c7c302ac3fbbe
708,661
from typing import Dict from typing import Optional def get_exif_flash_fired(exif_data: Dict) -> Optional[bool]: """ Parses the "flash" value from exif do determine if it was fired. Possible values: +-------------------------------------------------------+------+----------+-------+ | Status | Hex | Binary | Fired | +-------------------------------------------------------+------+----------+-------+ | No Flash | 0x0 | 00000000 | No | | Fired | 0x1 | 00000001 | Yes | | "Fired, Return not detected" | 0x5 | 00000101 | Yes | | "Fired, Return detected" | 0x7 | 00000111 | Yes | | "On, Did not fire" | 0x8 | 00001000 | No | | "On, Fired" | 0x9 | 00001001 | Yes | | "On, Return not detected" | 0xd | 00001011 | Yes | | "On, Return detected" | 0xf | 00001111 | Yes | | "Off, Did not fire" | 0x10 | 00010000 | No | | "Off, Did not fire, Return not detected" | 0x14 | 00010100 | No | | "Auto, Did not fire" | 0x18 | 00011000 | No | | "Auto, Fired" | 0x19 | 00011001 | Yes | | "Auto, Fired, Return not detected" | 0x1d | 00011101 | Yes | | "Auto, Fired, Return detected" | 0x1f | 00011111 | Yes | | No flash function | 0x20 | 00100000 | No | | "Off, No flash function" | 0x30 | 00110000 | No | | "Fired, Red-eye reduction" | 0x41 | 01000001 | Yes | | "Fired, Red-eye reduction, Return not detected" | 0x45 | 01000101 | Yes | | "Fired, Red-eye reduction, Return detected" | 0x47 | 01000111 | Yes | | "On, Red-eye reduction" | 0x49 | 01001001 | Yes | | "On, Red-eye reduction, Return not detected" | 0x4d | 01001101 | Yes | | "On, Red-eye reduction, Return detected" | 0x4f | 01001111 | Yes | | "Off, Red-eye reduction" | 0x50 | 01010000 | No | | "Auto, Did not fire, Red-eye reduction" | 0x58 | 01011000 | No | | "Auto, Fired, Red-eye reduction" | 0x59 | 01011001 | Yes | | "Auto, Fired, Red-eye reduction, Return not detected" | 0x5d | 01011101 | Yes | | "Auto, Fired, Red-eye reduction, Return detected" | 0x5f | 01011111 | Yes | +-------------------------------------------------------+------+----------+-------+ :param exif_data: :return: If the flash was fired, or None if the exif information is not present """ if 'Flash' not in exif_data: return None return bool((int(exif_data['Flash']) & 1) > 0)
82b4fc095d60426622202243f141614b9632340f
708,662
import shlex import os def gyp_generator_flags(): """Parses and returns GYP_GENERATOR_FLAGS env var as a dictionary.""" return dict(arg.split('=', 1) for arg in shlex.split(os.environ.get('GYP_GENERATOR_FLAGS', '')))
51777f7b9ad87291dc176ce4673cb8a9cd5864f9
708,663
def array_pair_sum_iterative(arr, k): """ returns the array of pairs using an iterative method. complexity: O(n^2) """ result = [] for i in range(len(arr)): for j in range(i + 1, len(arr)): if arr[i] + arr[j] == k: result.append([arr[i], arr[j]]) return result
c4f0eb5e290c784a8132472d85023662be291a71
708,664
def merge_named_payload(name_to_merge_op): """Merging dictionary payload by key. name_to_merge_op is a dict mapping from field names to merge_ops. Example: If name_to_merge_op is { 'f1': mergeop1, 'f2': mergeop2, 'f3': mergeop3 }, Then two payloads { 'f1': a1, 'f2': b1, 'f3': c1 } and { 'f1': a2, 'f2': b2, 'f3': c2 } will be merged into { 'f1': mergeop1(a1, a2), 'f2': mergeop2(b1, b2), 'f3': mergeop3(c1, c2) }. """ def merge(p1,p2): p = {} for name, op in name_to_merge_op.items(): p[name] = op(p1[name], p2[name]) return p return merge
ee20147b7937dff208da6ea0d025fe466d8e92ed
708,665
def euclidean_distance(this_set, other_set, bsf_dist): """Calculate the Euclidean distance between 2 1-D arrays. If the distance is larger than bsf_dist, then we end the calculation and return the bsf_dist. Args: this_set: ndarray The array other_set: ndarray The comparative array. bsf_dist: The best so far distance. Returns: output: float The accumulation of Euclidean distance. """ sum_dist = 0 for index in range(0, len(this_set)): sum_dist += (this_set[index] - other_set[index]) ** 2 if sum_dist > bsf_dist: return bsf_dist return sum_dist
7055c0de77cad987738c9b3ec89b0381002fbfd4
708,666
import math def FibanocciSphere(samples=1): """ Return a Fibanocci sphere with N number of points on the surface. This will act as the template for the nanoparticle core. Args: Placeholder Returns: Placeholder Raises: Placeholder """ points = [] phi = math.pi * (3. - math.sqrt(5.)) # golden angle in radians for i in range(samples): y = 1 - (i / float(samples - 1)) * 2 # y goes from 1 to -1 radius = math.sqrt(1 - y * y) # radius at y theta = phi * i # golden angle increment x = math.cos(theta) * radius z = math.sin(theta) * radius points.append((x, y, z)) return points
ea47b7c2eed34bd826ddff1619adac887439f5e0
708,667
def model(p, x): """ Evaluate the model given an X array """ return p[0] + p[1]*x + p[2]*x**2. + p[3]*x**3.
fe923f6f6aea907d3dc07756813ed848fbcc2ac6
708,668
import time def perf_counter_ms(): """Returns a millisecond performance counter""" return time.perf_counter() * 1_000
55f1bbbd8d58593d85f2c6bb4ca4f79ad22f233a
708,669
from typing import List import os def find_files( path: str, skip_folders: tuple, skip_files: tuple, extensions: tuple = (".py",), ) -> List[str]: """Find recursively all files in path. Parameters ---------- path : str Path to a folder to find files in. skip_folders : tuple Skip folders containing folder to skip skip_files : tuple Skip files. extensions : tuple, optional Extensions to filter by. Default is (".py", ) Returns ------- list Sorted list of found files. """ found_files = [] for root, _dirs, files in os.walk(path, topdown=False): for filename in files: fpath = os.path.join(root, filename) if any(folder in fpath for folder in skip_folders): continue if fpath in skip_files: continue if filename.endswith(extensions): found_files.append(fpath) return list(sorted(found_files))
c3513c68cb246052f4ad677d1dc0116d253eae1a
708,670
def TourType_LB_rule(M, t): """ Lower bound on tour type :param M: Model :param t: tour type :return: Constraint rule """ return sum(M.TourType[i, t] for (i, s) in M.okTourType if s == t) >= M.tt_lb[t]
0495e2d01c7d5d02e8bc85374ec1d05a8fdcbd91
708,673
def pick_ind(x, minmax): """ Return indices between minmax[0] and minmax[1]. Args: x : Input vector minmax : Minimum and maximum values Returns: indices """ return (x >= minmax[0]) & (x <= minmax[1])
915a1003589b880d4edf5771a23518d2d4224094
708,674