content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
def word_flipper(our_string): """ Flip the individual words in a sentence Args: our_string(string): Strings to have individual words flip Returns: string: String with words flipped """ word_list = our_string.split(" ") for idx in range(len(word_list)): word_list[idx] = word_list[idx][::-1] # [index1:index2:step] return " ".join(word_list)
fd484079407342925fc13583fb1fbee9ee472b14
708,675
def create_table_string(data, highlight=(True, False, False, False), table_class='wikitable', style=''): """ Takes a list and returns a wikitable. @param data: The list that is converted to a wikitable. @type data: List (Nested) @param highlight: Tuple of rows and columns that should be highlighted. (first row, last row, left column, right column) @type highlight: Tuple @param table_class: A string containing the class description. See wikitable help. @type table_class: String @param style: A string containing the style description. See wikitable help. @type style: String """ last_row = len(data) - 1 last_cell = len(data[0]) - 1 table = '{{| class="{}" style="{}"\n'.format(table_class, style) for key, row in enumerate(data): if key == 0 and highlight[0] or key == last_row and highlight[1]: row_string = '|-\n! ' + '\n! '.join(cell for cell in row) else: row_string = '|-' cells = '' for ckey, cell in enumerate(row): if ckey == 0 and highlight[2]: cells += '\n! ' + cell elif ckey == last_cell and highlight[3]: cells += '\n! ' + cell else: cells += '\n| ' + cell row_string += cells table += row_string + '\n' table += '|}' return table
f586fac681e1b4f06ad5e2a1cc451d9250fae929
708,678
from pathlib import Path import os def path_to_dnd(path: Path) -> str: """Converts a `Path` into an acceptable value for `tkinterdnd2.`""" # tkinterdnd2 will only accept fs paths with forward slashes, even on Windows. wants_sep = '/' if os.path.sep == wants_sep: return str(path) else: return wants_sep.join(str(path).split(os.path.sep))
61c4f88b944551f16f1baf127ddc3ccc5018267a
708,679
def get_logging_format(): """return the format string for the logger""" formt = "[%(asctime)s] %(levelname)s:%(message)s" return formt
3380cdd34f1a44cf15b9c55d2c05d3ecb81116cb
708,680
import torch def list2tensors(some_list): """ :math:`` Description: Implemented: [True/False] Args: (:): (:): Default: Shape: - Input: list - Output: list of tensors Examples:: """ t_list=[] for i in some_list: t_list.append(torch.tensor(i)) return t_list
35efe7c13c8c4f75266eceb912e8afccd25408cf
708,681
import six from typing import Any def _get_kind_name(item): """Returns the kind name in CollectionDef. Args: item: A data item. Returns: The string representation of the kind in CollectionDef. """ if isinstance(item, (six.string_types, six.binary_type)): kind = "bytes_list" elif isinstance(item, six.integer_types): kind = "int64_list" elif isinstance(item, float): kind = "float_list" elif isinstance(item, Any): kind = "any_list" else: kind = "node_list" return kind
094298763f9bf1e3e7a421c19e08016f2138b7d7
708,682
def complement_angle(angle): """ 90 minus angle, in degrees""" return 90 - angle;
bca1dfa3158df61e87cbadc47307f68298a237b7
708,684
def parse_custom_commands(command, separator=";"): """Parse run custom command string into the commands list :param str command: run custom [config] command(s) :param str separator: commands separator in the string :rtype: list[str] """ if not command: return [] return command.strip(separator).split(separator)
4d55ef149aa16e224f5894fb0ef506a1bd8285f3
708,685
def lower_volatility_band(c, dev_target, band_target, center_target): """ | Calculates the lower volatility band | Name: lower\_volatility\_band\_\ **c**\ \_times\_\ **band_target.name**\ &\ **dev_target.name**\ \_over\_\ **center_target.name** :param c: Multiplier constant :type c: float :param dev_target: Used for band displacement. Can be a constant or a function :type dev_target: function or float :param band_target: Used for band displacement. Can be a constant or a function :type band_target: function or float :param center_target: Data column for the band center :type center_target: str """ def return_function(data): if hasattr(band_target, "name") & hasattr(dev_target, "name"): column_name = f"lower_volatility_band_{c}_times_{band_target.name}&{dev_target.name}_under_{center_target.name}" elif hasattr(band_target, "name"): column_name = f"lower_volatility_band_{c}_times_{band_target.name}&{dev_target}_under_{center_target.name}" else: column_name = f"lower_volatility_band_{c}_times_{band_target}&{dev_target}_under_{center_target.name}" if column_name not in data.columns: data[column_name] = center_target - c * dev_target * band_target return data[column_name].copy() return return_function
d910c1f9e14fa28b171dd16e937fa65c220839d7
708,686
def get_limits(data): """ Get the x, y ranges of the ST data. """ y_min = 1e6 y_max = -1e6 x_min = 1e6 x_max = -1e6 for doc in data: x = doc["x"] y = doc["y"] y_min = y if y < y_min else y_min y_max = y if y > y_max else y_max x_min = x if x < x_min else x_min x_max = x if x > x_max else x_max return x_min, x_max, y_min, y_max
9e2894626b9de59e94d65affa0a1d1c6f30e6399
708,687
def proj_helsinki(x, y): """Project Helsinki coordinates into ETRS-GK25 (EPSG:3879). https://www.hel.fi/helsinki/fi/kartat-ja-liikenne/kartat-ja-paikkatieto/paikkatiedot+ja+-aineistot/koordinaatistot_ja+_korkeudet/koordinaatti_ja_korkeusjarjestelmat # pylint: disable=line-too-long """ # pylint: disable=invalid-name output_epsg = "EPSG:3879" a = 6654650.14636 b = 25447166.49457 c = 0.99998725362 d = -0.00120230340 e = 0.00120230340 f = 0.99998725362 x, y = a + c * x + d * y, b + e * x + f * y return x, y, output_epsg
d1dc6cc314e767cc971c6b8695d2a4c4043b608a
708,688
def pattern_classifier(data, pattern_threshold): """Return an array mask passing our selection.""" return data["key_pattern"] > pattern_threshold
116a7f84a18b57188fb2ce24fa7ecacd1b61c3da
708,690
def is_scalar(a) -> bool: """ Tests if a python object is a scalar (instead of an array) Parameters ---------- a : object Any object to be checked Returns ------- bool Whether the input object is a scalar """ if isinstance(a, (list, tuple)): return False if hasattr(a, "__array__") and hasattr(a, "__len__"): # np.array(1) is scalar return False return True
29206a7921da74257e6af66311c0bbfc4b576ac0
708,691
import os def extract_strings_from_file(filename): """ extracts strings from a provided filename Returns the a list of extracted strings found in a provided filename. Entries are stripped when processing and lines leading with a comment are ignored. Args: filename: the filename Returns: the list of strings """ filelist = [] if os.path.isfile(filename): with open(filename) as f: for raw_line in f: line = raw_line.strip() if not line or line.startswith('#'): continue filelist.append(line) return filelist
7288250ee6682068d7d5217ce0a3030d03f4ca30
708,692
def get_cred_fh(library: str) -> str: """ Determines correct SimplyE credential file """ if library == "BPL": return ".simplyE/bpl_simply_e.yaml" elif library == "NYPL": return ".simplyE/nyp_simply_e.yaml" else: raise ValueError("Invalid library code passsed")
aefea283c171963778bdc34ddf2f2aeb18fd126d
708,693
import json def payload_from_api_post_event(event): """Maps an API event to the expected payload""" # event = { # 'timeserie1': [(1, 100), (2, 100)], # 'timeserie2': [(3, 100), (4, 100)], # } body = json.loads(event['body']) return body
897a3d2e846e7bbf96d0acd288924d96b07acc78
708,694
def format_link_header(link_header_data): """Return a string ready to be used in a Link: header.""" links = ['<{0}>; rel="{1}"'.format(data['link'], data['rel']) for data in link_header_data] return ', '.join(links)
9a68ff381d51e6e10fe257d2d2d6766295ffc050
708,695
import re def prune_string(string): """Prune a string. - Replace multiple consecutive spaces with a single space. - Remove spaces after open brackets. - Remove spaces before close brackets. """ return re.sub( r" +(?=[\)\]\}])", "", re.sub(r"(?<=[\(\[\{]) +", "", re.sub(r" +", " ", string)), )
53a2c00f50c16b568a75e59bc32a124a5f152b4a
708,696
import json import requests def search_full_text(text, ipstreet_api_key): """sends input text to /full_text semantic search endpoint. returns json results""" endpoint = 'https://api.ipstreet.com/v2/full_text' headers = {'x-api-key': ipstreet_api_key} payload = json.dumps({'raw_text': str(text), 'q': { 'start_date': '1976-01-01', 'start_date_type': 'application_date', 'end_date': '2017-03-10', 'end_date_type': 'application_date', 'applied': True, 'granted': True, 'expired': True, 'max_expected_results': 500, 'page_size': 500, } }) r = requests.post(endpoint, headers=headers, data=payload) return r.json()
7112e04698dcfaf3072b30d0085fa2dc18043f76
708,697
def _get_go2parents(go2parents, goid, goterm): """Add the parent GO IDs for one GO term and their parents.""" if goid in go2parents: return go2parents[goid] parent_goids = set() for parent_goterm in goterm.parents: parent_goid = parent_goterm.id parent_goids.add(parent_goid) parent_goids |= _get_go2parents(go2parents, parent_goid, parent_goterm) go2parents[goid] = parent_goids return parent_goids
e4585bb84a4ac9532468451036a609a1d561c928
708,698
def solve_capcha(capcha_str): """Function which calculates the solution to part 1 Arguments --------- capcha_str : str, a string of numbers Returns ------- total : int, the sum of adjacent matches """ capcha = [int(cc) for cc in list(capcha_str)] total = 0 for ii in range(len(capcha)): if capcha[ii] == capcha[ii - 1]: total += capcha[ii] return total
85a74f9b708f8134500d9c7add6e2df8617ec305
708,700
import functools def keyword_decorator(deco): """Wrap a decorator to optionally takes keyword arguments.""" @functools.wraps(deco) def new_deco(fn=None, **kwargs): if fn is None: @functools.wraps(deco) def newer_deco(fn): return deco(fn, **kwargs) return newer_deco else: return deco(fn, **kwargs) return new_deco
5ffc100c4fbbf7657c974685ab70dfc903a4abe1
708,701
def benchmark_summary(benchmark_snapshot_df): """Creates summary table for a benchmark snapshot with columns: |fuzzer|time||count|mean|std|min|25%|median|75%|max| """ groups = benchmark_snapshot_df.groupby(['fuzzer', 'time']) summary = groups['edges_covered'].describe() summary.rename(columns={'50%': 'median'}, inplace=True) return summary.sort_values(('median'), ascending=False)
5cdaa888adb47906659a249076c8a4acb27c6d1d
708,702
def org_repos(info): """ 处理组织的仓库 :param info: 字典 :return: 两个列表,第一个包含字典(id,全名,url),第二个包含所用到的语言 """ repo_info = [] languages = [] if info: for repo in info: temp = {"id": repo["id"], "full_name": repo["full_name"], "url": repo["url"], "language": repo["language"]} repo_info.append(temp) languages.append(repo["language"]) return repo_info, languages
9d5633bf834845e1301e0fd383a57c42f2bd530c
708,703
import re def normalize_spaces(s: str) -> str: """ 連続する空白を1つのスペースに置き換え、前後の空白を削除した新しい文字列を取得する。 """ return re.sub(r'\s+', ' ', s).strip()
aac95ed5b77b5c65f9ce16cfa685d80c56f0e66f
708,704
def create_abstract_insert(table_name, row_json, return_field=None): """Create an abstracted raw insert psql statement for inserting a single row of data :param table_name: String of a table_name :param row_json: dictionary of ingestion data :param return_field: String of the column name to RETURNING in statement :return: String of an insert statement """ columns = [] for key, value in row_json.items(): if key in columns: continue else: columns.append(key) values = [':' + item for item in columns] values = ', '.join(map(str, values)) list_columns = ', '.join(map(str, columns)) if return_field is not None: statement = 'INSERT INTO ' + str(table_name) + '(' + list_columns + ')' \ + ' VALUES (' + values + ') RETURNING ' + str(return_field) else: statement = 'INSERT INTO ' + str(table_name) + '(' + list_columns + ')' \ + ' VALUES (' + values + ')' return statement
8b0a960178a0162b7a0c339682541f0f13520d85
708,705
def combine_index(df, n1, n2): """將dataframe df中的股票代號與股票名稱合併 Keyword arguments: Args: df (pandas.DataFrame): 此dataframe含有column n1, n2 n1 (str): 股票代號 n2 (str): 股票名稱 Returns: df (pandas.DataFrame): 此dataframe的index為「股票代號+股票名稱」 """ return df.set_index(df[n1].str.replace(' ', '') + \ ' ' + df[n2].str.replace(' ', '')).drop([n1, n2], axis=1)
645c62fdc7d8e541c9b55b5f1621d6c442ca683a
708,706
import os def join(*args): """Join multiple path - join('c:', 'pp', 'c.txt') -> 'c:\pp\c.txt'""" assert len(args) >= 2 ret_arg = args[0] for arg in args[1:]: ret_arg = os.path.join(ret_arg, arg) return ret_arg
f628b0fb47898ad9d98714d4329d2ded183242a3
708,707
def _str_or_none(value): """Helper: serialize value to JSON string.""" if value is not None: return str(value)
7aa1550f71accaa4111386153b2c331e2ff076bc
708,708
def convert(secs): """Takes a time in seconds and converts to min:sec:msec""" mins = int(secs // 60) secs %= 60 msecs = int(round(((secs - int(secs)) * 1000))) secs = int(secs) return f'{mins} mins, {secs} secs, {msecs} msecs'
70752f190f94d3bdb4cb3b562b6bf9d1c7d28479
708,709
def outer2D(v1, v2): """Calculates the magnitude of the outer product of two 2D vectors, v1 and v2""" return v1[0]*v2[1] - v1[1]*v2[0]
b1f80afa3b8537eb11d79b17d0f12903bec9387c
708,711
def bytes_filesize_to_readable_str(bytes_filesize: int) -> str: """Convert bytes integer to kilobyte/megabyte/gigabyte/terabyte equivalent string""" if bytes_filesize < 1024: return "{} B" num = float(bytes_filesize) for unit in ["B", "KB", "MB", "GB"]: if abs(num) < 1024.0: return "{:.1f} {}".format(num, unit) num /= 1024.0 return "{:.1f} {}".format(num, "TB")
cdeb228de80422f541c5fa682422d77a44d19ca2
708,712
def import_class(path): """ Import a class from a dot-delimited module path. Accepts both dot and colon seperators for the class portion of the path. ex:: import_class('package.module.ClassName') or import_class('package.module:ClassName') """ if ':' in path: module_path, class_name = path.split(':') else: module_path, class_name = path.rsplit('.', 1) module = __import__(module_path, fromlist=[class_name], level=0) return getattr(module, class_name)
dcdf71a3bb665dae1fe5913e19be3a4c0aa3c5d3
708,714
def fixture_make_bucket(request): """ Return a factory function that can be used to make a bucket for testing. :param request: The Pytest request object that contains configuration data. :return: The factory function to make a test bucket. """ def _make_bucket(s3_stub, wrapper, bucket_name, region_name=None): """ Make a bucket that can be used for testing. When stubbing is used, a stubbed bucket is created. When AWS services are used, the bucket is deleted after the test completes. :param s3_stub: The S3Stubber object, configured for stubbing or AWS. :param wrapper: The bucket wrapper object, used to create the bucket. :param bucket_name: The unique name for the bucket. :param region_name: The Region in which to create the bucket. :return: The test bucket. """ if not region_name: region_name = s3_stub.region_name s3_stub.stub_create_bucket(bucket_name, region_name) # Bucket.wait_until_exists calls head_bucket on a timer until it returns 200. s3_stub.stub_head_bucket(bucket_name) bucket = wrapper.create_bucket(bucket_name, region_name) def fin(): if not s3_stub.use_stubs and wrapper.bucket_exists(bucket_name): bucket.delete() request.addfinalizer(fin) return bucket return _make_bucket
bdfbbad1b80f43a1b81f5bf8f69db350128e3304
708,715
def _get_remote_user(): """ Get the remote username. Returns ------- str: the username. """ return input('\nRemote User Name: ')
5f2bb67b5f55ec053a755c015755f488ab6d8c71
708,716
def num_range(num): """ Use in template language to loop through numberic range """ return range(num)
7b66e4ffd264ea7b49850a9300c3a6c80282fce1
708,718
def filter_background(bbox, bg_data): """ Takes bounding box and background geojson file assumed to be the US states, and outputs a geojson-like dictionary containing only those features with at least one point within the bounding box, or any state that completely contains the bounding box. This tests if a feature contains the bounding box by drawing the box that contains the feature and checking if that box also contains the bounding box. Because features are odd shapes, this may find that more than one feature completely contains the bounding box. E.g., if you draw a box around Maryland it will also contain a chunk of West Virginia. To deal with this, we are allowed to find that multiple states contain the bounding box. :param bbox: The coordinates of the bounding box as [lon, lat, lon, lat] :param bg_data: a geojson-like dict describing the background :return: the features from bg_filename whose borders intersect bbox OR the feature which completely contains bbox """ box_lon = [bbox[0], bbox[2]] box_lat = [bbox[1], bbox[3]] features = bg_data['features'] in_box = [] for f in features: starting_len = len(in_box) # Define points for bounding box around the feature. feature_max_lat = -90 feature_max_lon = -180 feature_min_lat = 90 feature_min_lon = 180 coordinates = f['geometry']['coordinates'] for group in coordinates: if len(in_box) > starting_len: # This feature has already been added break # actual points for MultiPolygons are nested one layer deeper than those for polygons if f['geometry']['type'] == 'MultiPolygon': geom = group[0] else: geom = group for lon, lat in geom: # check if any point along the state's borders falls within the bounding box. if min(box_lon) <= lon <= max(box_lon) and min(box_lat) <= lat <= max(box_lat): in_box.append(f) break # If any point of a feature falls within the bounding box, then the feature cannot contain the box, # so this only needs to be run if the above if statement is not executed feature_min_lon = min(feature_min_lon, lon) feature_min_lat = min(feature_min_lat, lat) feature_max_lon = max(feature_max_lon, lon) feature_max_lat = max(feature_max_lat, lat) # If the box containing a feature also contains the bounding box, keep this feature # Allow adding more than one because otherwise MD contains boxes in WV, and CA would contain most of NV. if feature_min_lat < min(box_lat) and feature_max_lat > max(box_lat) and \ feature_min_lon < min(box_lon) and feature_max_lon > max(box_lon): in_box.append(f) keepers = { 'type': 'FeatureCollection', 'features': in_box } return keepers
f06fe5efe1e3920d8b1092601a121e313da4eec4
708,719
def rename_columns(table, mapper): """ Renames the table headings to conform with the ketos naming convention. Args: table: pandas DataFrame Annotation table. mapper: dict Dictionary mapping the headings of the input table to the standard ketos headings. Returns: : pandas DataFrame Table with new headings """ return table.rename(columns=mapper)
c9c9228f4f477b8d5ade234964c2540fd20ddd09
708,720
from typing import Union import json def parse_tuple(s: Union[str, tuple]) -> tuple: """Helper for load_detections_csv, to parse string column into column of Tuples.""" if isinstance(s, str): result = s.replace("(", "[").replace(")", "]") result = result.replace("'", '"').strip() result = result.replace(",]", "]") if result: # print(result) return tuple(sorted((json.loads(result)))) else: return tuple() else: return s
ad568bfc8ccdf8440378e852daccaf2f24a7e2d0
708,721
def pair_sorter(aln): """Get the alignment name and attributes for sorting.""" return ( aln.name, not aln.first_in_pair, aln.unmapped, aln.supplementary_alignment, aln.secondary_alignment)
217eac7c89a12f68f4c9fe324c4feb6c2a955d58
708,724
def is_private_bool(script_dict): """ Returns is_private boolean value from user dictionary object """ return script_dict['entry_data']['ProfilePage'][0]['graphql']['user']['is_private']
1e8b30a38dc527dc5e2ea73e75c253d8f1a59550
708,726
def parse_tuple(tuple_string): """ strip any whitespace then outter characters. """ return tuple_string.strip().strip("\"[]")
d0052dce0582ca04d70455f1833d98545792c8ac
708,727
def autofs(): """Fixture data from /proc/mounts.""" data = "flux-support -rw,tcp,hard,intr,noacl,nosuid,vers=3,retrans=5 flux-support.locker.arc-ts.umich.edu:/gpfs/locker0/ces/g/nfs/f/flux-support\numms-remills -rw,tcp,hard,intr,noacl,nosuid,vers=3,retrans=5 umms-remills.locker.arc-ts.umich.edu:/gpfs/locker0/ces/g/nfs/u/umms-remills" return data
ea53c34d863de69c15f1e1247b98599c5f365ab7
708,728
import shutil import os def where(cmd, path=None): """ A function to wrap shutil.which for universal usage """ raw_result = shutil.which(cmd, os.X_OK, path) if raw_result: return os.path.abspath(raw_result) else: raise ValueError("Could not find '{}' in the path".format(cmd))
bbac46386ef955190898e52ee3efa57aac3fa264
708,729
def score(self, features): """ return score from ML models""" assert len(self._models) > 0, 'No valid prediction model' scores = list() for feature in features: # when feature list extraction fails if not feature: scores.append(-float('inf')) continue item = list() for ins in self._models: item.append(ins.inference(feature)) pred = [i for i in item if i] scores.append(float(sum(pred)/len(pred))) return scores
413eb4a0ecdcf0ac4b8f9cf9643b08a839c78b9a
708,730
def fromRGB(rgb): """Convert tuple or list to red, green and blue values that can be accessed as follows: a = fromRGB((255, 255, 255)) a["red"] a["green"] a["blue"] """ return {"red":rgb[0], "green":rgb[1], "blue":rgb[2]}
205a8f189d177e7af5cdc686e7c52fd2053a3c87
708,731
import math def computeTelescopeTransmission(pars, offAxis): """ Compute tel. transmission (0 < T < 1) for a given set of parameters as defined by the MC model and for a given off-axis angle. Parameters ---------- pars: list of float Parameters of the telescope transmission. Len(pars) should be 4. offAxis: float Off-axis angle in deg. Returns ------- float Telescope transmission. """ _degToRad = math.pi / 180.0 if pars[1] == 0: return pars[0] else: t = math.sin(offAxis * _degToRad) / (pars[3] * _degToRad) return pars[0] / (1.0 + pars[2] * t ** pars[4])
50b2e2908726b8a77bc83a2821cf760b7475300b
708,732
def guarantee_trailing_slash(directory_name: str) -> str: """Adds a trailling slash when missing Params: :directory_name: str, required A directory name to add trailling slash if missing Returns: A post processed directory name with trailling slash """ if not directory_name.endswith('/'): return directory_name + '/' return directory_name
38cfdf971262fceb4888277522b22ba7276fa9b7
708,733
from pathlib import Path def output_file_path(status_id, phase): """ """ BASE_DIR = Path(__file__).resolve().parent.parent return f"%s/logs/stage/{status_id}-{phase}.txt" %str(BASE_DIR)
3bcbd80ad95389b9cf37fa66923bacb819ede710
708,734
def clean(some_string, uppercase=False): """ helper to clean up an input string """ if uppercase: return some_string.strip().upper() else: return some_string.strip().lower()
cdc4587b762625e00c91189950bd45840861c93f
708,735
def pretty_print_large_number(number): """Given a large number, it returns a string of the sort: '10.5 Thousand' or '12.3 Billion'. """ s = str(number).ljust(12) if number > 0 and number < 1e3: pass elif number >= 1e3 and number < 1e6: s = s + " (%3.1f Thousand)" % (number * 1.0 / 1e3) elif number >= 1e6 and number < 1e9: s = s + " (%3.1f Million)" % (number * 1.0 / 1e6) elif number >= 1e9 and number < 1e12: s = s + " (%3.1f Billion)" % (number * 1.0 / 1e9) elif number >= 1e12 and number < 1e15: s = s + " (%3.1f Trillion)" % (number * 1.0 / 1e12) return s
6762f34744da360b36d4a4fc0659fcf7d3fb0465
708,736
def find_all_visit(tx): """ Method that queries the database to find all VISIT relationships :param tx: session :return: nodes of Person , Location """ query = ( """ MATCH (p:Person)-[r:VISIT]->(l:Location) RETURN p , ID(p) , r , r.start_hour , r.end_hour , r.date , l , ID(l) """ ) result = tx.run(query).data() return result
851d790b16f9db285a6d09b5cabc4e12ad364484
708,737
def get_defense_type(action: int, game_config) -> int: """ Utility method for getting the defense type of action-id :param action: action-id :param game_config: game configuration :return: action type """ defense_type = action % (game_config.num_attack_types+1) # +1 for detection return defense_type
68a05cf15bd833fb24aa448b8be2d08c1a949d12
708,738
from typing import Optional import os def _get_eula_date(extract_path: str) -> Optional[str]: """Get any EULA accept date in the install script, if any. :param extract_path: The path to the extracted archive. :return: The EULA date, if any. """ install_script = os.path.join(extract_path, "houdini.install") if not os.path.exists(install_script): return None with open(install_script) as handle: for line in handle: if line.startswith("LICENSE_DATE"): return line.split("=")[1].strip() return None
044ff76dadf7c4bdcd74b1435e02d2ec29c0a877
708,739
def unpack_singleton(x): """ >>> unpack_singleton([[[[1]]]]) 1 >>> unpack_singleton(np.array(np.datetime64('2000-01-01'))) array('2000-01-01', dtype='datetime64[D]') """ while isinstance(x, (list, tuple)): try: x = x[0] except (IndexError, TypeError, KeyError): break return x
f6f55ff17ba29aab5946c682b825c72eb70324dd
708,740
def return_json(): """ Sample function that has been given a different name """ print("Tooler should render out the JSON value returned") return {"one": 1, "deep": {"structure": ["example"]}}
bf28fab61cabfc3a4f30736e58490d5df6702dc2
708,743
def reg2deg(reg): """ Converts phase register values into degrees. :param cycles: Re-formatted number of degrees :type cycles: int :return: Number of degrees :rtype: float """ return reg*360/2**32
c7dbd6119ad3bce9261fb3d78a369251ade2d8af
708,744
def plot3dOnFigure(ax, pixels, colors_rgb,axis_labels=list("RGB"), axis_limits=((0, 255), (0, 255), (0, 255))): """Plot pixels in 3D.""" # Set axis limits ax.set_xlim(*axis_limits[0]) ax.set_ylim(*axis_limits[1]) ax.set_zlim(*axis_limits[2]) # Set axis labels and sizes ax.tick_params(axis='both', which='major', labelsize=14, pad=8) ax.set_xlabel(axis_labels[0], fontsize=16, labelpad=16) ax.set_ylabel(axis_labels[1], fontsize=16, labelpad=16) ax.set_zlabel(axis_labels[2], fontsize=16, labelpad=16) # Plot pixel values with colors given in colors_rgb ax.scatter( pixels[:, :, 0].ravel(), pixels[:, :, 1].ravel(), pixels[:, :, 2].ravel(), c=colors_rgb.reshape((-1, 3)), edgecolors='none') return ax
067219abba7f77f7c4fbb4404ff16a3f5192f7cd
708,745
import numpy def ellipse(a, b, center=(0.0, 0.0), num=50): """Return the coordinates of an ellipse. Parameters ---------- a : float The semi-major axis of the ellipse. b : float The semi-minor axis of the ellipse. center : 2-tuple of floats, optional The position of the center of the ellipse; default: (0.0, 0.0) num : integer, optional The number of points on the upper side of the ellipse. The number includes the leading and trailing edges. Thus, the total number of points will be 2 * (num - 1); default: 50. Returns ------- x : numpy.ndarray The x-coordinates of the ellipse as a 1D array of floats. y: numpy.ndarray The y-coordinates of the ellipse as a 1D array of floats. """ xc, yc = center x_upper = numpy.linspace(xc + a, xc - a, num=num) y_upper = b / a * numpy.sqrt(a**2 - x_upper**2) x_lower = numpy.linspace(xc - a, xc + a, num=num)[1:-1] y_lower = -b / a * numpy.sqrt(a**2 - x_lower**2) x = numpy.concatenate((x_upper, x_lower)) y = numpy.concatenate((y_upper, y_lower)) return x, y
bd4d4663981a0431e40b20d38cc48a7f2476c13b
708,746
import os def pinghost(host): """ Ping target with a 1-second timeout limit :param str host: Destination to reach. IP address or domain name :returns: True if reached, otherwise False """ host = str(host).split(':')[0] # leave off the port if exists # print "Pinging" if os.name == 'posix': target = "ping -W1 -c 1 " + host + " > /dev/null 2>&1 " else: target = "ping " + host + " -w 1000 -n 1 > nul 2>&1" response = os.system(target) # Note:original response is 1 for fail; 0 for success; so we flip it return not response
f0e6d84edf1093580159d08359bfd61adeb3b987
708,747
def server_hello(cmd, response): """Test command """ return response
7e0cc03d1b64afb1a4fc44264096e6888ddb5df2
708,748
def _get_controller_of(pod): """Get a pod's controller's reference. This uses the pod's metadata, so there is no guarantee that the controller object reference returned actually corresponds to a controller object in the Kubernetes API. Args: - pod: kubernetes pod object Returns: the reference to a controller object """ if pod["metadata"].get("ownerReferences"): for owner_ref in pod["metadata"]["ownerReferences"]: if owner_ref.get("controller"): return owner_ref return None
9c9e58e2fc49729c618af2c5bb9b4d033d90a831
708,749
import subprocess def get_cluster_cids(): """return list of CIDs with pin types""" output = subprocess.check_output([ 'docker-compose', 'exec', '-T', 'cluster', 'ipfs-cluster-ctl', 'pin', 'ls' ]) return [ '-'.join([l.split()[0], l.split()[-1].lower()]) for l in output.decode('utf-8').splitlines() ]
c38e2742fa0476e2240d9759c6d8525a3add083b
708,750
def parse_record1(raw_record): """Parse raw record and return it as a set of unique symbols without \n""" return set(raw_record) - {"\n"}
4ffd3ebd0aaa17ddd42baf3b9d44614784c8ff33
708,751
import math def colorDistance(col1, col2): """Returns a number between 0 and root(3) stating how similar two colours are - distance in r,g,b, space. Only used to find names for things.""" return math.sqrt( (col1.red - col2.red)**2 + (col1.green - col2.green)**2 + (col1.blue - col2.blue)**2 )
ef18dede8312f78b4ba4258e87d4630863f1243c
708,753
def combine(arr): """ makes overlapping sequences 1 sequence """ def first(item): return item[0] def second(item): return item[1] if len(arr) == 0 or len(arr) == 1: return arr sarr = [] for c, val in enumerate(arr): sarr.append((val[0], val[1], c)) sarr = sorted(sarr, key = second) sarr = sorted(sarr, key = first) chains = [[sarr[0][0], sarr[0][1], [sarr[0][2]]]] for s, e, c in sarr[1:]: #start, end, counter if s <= chains[-1][1] +1: chains[-1][1] = max(e, chains[-1][1]) chains[-1][2].append(c) else: chains.append([s, e, [c]]) return chains
b46bb7f73fa6857ed4c980bdbdff77acde64b18d
708,754
from operator import sub def sub_fft(f_fft, g_fft): """Substraction of two polynomials (FFT representation).""" return sub(f_fft, g_fft)
a559429a4d10889be3ffa776153854248ac7a496
708,755
def recursive_fill_fields(input, output): """ Fills fields from output with fields from input, with support for nested structures. Parameters ---------- input : ndarray Input array. output : ndarray Output array. Notes ----- * `output` should be at least the same size as `input` Examples -------- >>> from numpy_demo.lib import recfunctions as rfn >>> a = np.array([(1, 10.), (2, 20.)], dtype=[('A', np.int64), ('B', np.float64)]) >>> b = np.zeros((3,), dtype=a.dtype) >>> rfn.recursive_fill_fields(a, b) array([(1, 10.), (2, 20.), (0, 0.)], dtype=[('A', '<i8'), ('B', '<f8')]) """ newdtype = output.dtype for field in newdtype.names: try: current = input[field] except ValueError: continue if current.dtype.names is not None: recursive_fill_fields(current, output[field]) else: output[field][:len(current)] = current return output
5508f1681eaa3f2c5ccb44b6329ad012f85c42e8
708,756
import uuid def generate_code() -> str: """Generates password reset code :return: Password reset code :rtype: str """ return str(uuid.uuid4())
bcd8377afd5598e71f8bb8eb217c3f3fd53fc5c7
708,758
import pickle import os def cached(path: str, validate: bool = False): """Similar to ``define``, but cache to a file. :param path: the path of the cache file to use :param validate: if `True`, always execute the function. The loaded result will be passed to the function, when the cache exists. In that case the function should return the value to use. If the returned value is not identical to the loaded value, the cache is updated with the new value. Usage:: @cached('./cache/result') def dataset(): ... return result or:: @cached('./cache/result', validate=True) def model(result=None): if result is not None: # running to validate ... return result """ def update_cache(result): print("save cache", path) with open(path, "wb") as fobj: pickle.dump(result, fobj) def load_cache(): print("load cache", path) with open(path, "rb") as fobj: return pickle.load(fobj) def decorator(func): if os.path.exists(path): result = load_cache() if not validate: return result else: print("validate") new_result = func(result) if new_result is not result: update_cache(new_result) return new_result else: print("compute") result = func() update_cache(result) return result return decorator
d4b5b861bf43294d3e5f84b57f648a2e32b6428b
708,759
def play(p1:list[int], p2:list[int]) -> list[int]: """Gets the final hand of the winning player""" while p1 and p2: a = p1.pop(0) b = p2.pop(0) if a > b: p1 += [a, b] else: p2 += [b, a] return p1 + p2
2a2b561474b3cd0841dcbe881e74b4767b4102b1
708,760
def marks(family, glyph): """ :param family: :param glyph: :return: True when glyph has at least one anchor """ has_mark_anchor = False for anchor in glyph.anchors: if anchor.name: if anchor.name.startswith("_"): has_mark_anchor = True break return has_mark_anchor
101555dcadfd78b0550606f843e32dce99de62b8
708,761
import os def check_file(filename): """Check if "filename" exists and is a file. Returns: True if file exists and is a file. False if filename==None or is not a file. """ file_ok = True error_mssg = "" if(filename == None): error_mssg = "Error: file is missing." file_ok = False else: if not os.path.isfile(filename): error_mssg = "Error: '"+str(filename)+"' is not a file." file_ok = False return file_ok, error_mssg
4a9e9284648c5d6222a44f1156b198f6e64dd409
708,764
import hashlib def calculate_file_sha256(file_path): """calculate file sha256 hash code.""" with open(file_path, 'rb') as fp: sha256_cal = hashlib.sha256() sha256_cal.update(fp.read()) return sha256_cal.hexdigest()
bfa7a43516e51a80ccd63ea3ace6be6e5e9dd2c0
708,765
def prod(*args: int) -> int: """ This function is wrapped and documented in `_polymorphic.prod()`. """ prod_ = 1 for arg in args: prod_ *= arg return prod_
eec30bf6339280173e0e2fa517558e6a452b9c37
708,766
import numpy def shuffle_and_split_data(data_frame): """ Shuffle and split the data into 2 sets: training and validation. Args: data_frame (pandas.DataFrame): the data to shuffle and split Returns: 2 numpy.ndarray objects -> (train_indices, validation_indices) Each hold the index positions for data in the pandas.DataFrame """ shuffled_indices = numpy.random.permutation(len(data_frame)) train_up_to = int(len(data_frame) * 0.7) train_indices = shuffled_indices[:train_up_to] validation_indices = shuffled_indices[train_up_to:] return train_indices, validation_indices
dfcad7edb9ec17b81057e00816fe3d5bdadc39be
708,767
def Maj(x, y, z): """ Majority function: False when majority are False Maj(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z) """ return (x & y) ^ (x & z) ^ (y & z)
7d4013dfc109b4fc39fd3b0bd3f2f5947d207ff0
708,768
def create_dictionary(timestamp, original_sentence, sequence_switched, err_message, suggestion_list): """Create Dictionary Function Generates and exports a dictionary object with relevant data for website interaction to take place. """ if len(suggestion_list) != 0: err_message_str = "Possible error: " + err_message + "\n \n" new_dictionary = { "timestamp": timestamp, "original_sentence": original_sentence, "masked_sentence": sequence_switched, "err_message": err_message, "possible_corrections": suggestion_list } return new_dictionary else: return {}
057d407089a7bb4e445bd0db2632dfcb9f291ed6
708,769
def rigidBlades(blds, hub=None, r_O=[0,0,0]): """ return a rigid body for the three blades All bodies should be in a similar frame """ blades = blds[0].toRigidBody() for B in blds[1:]: B_rigid = B.toRigidBody() blades = blades.combine(B_rigid, r_O=r_O) blades.name='blades' return blades
89b48ba43f748fa4b2db7ee768eabe9e79e9a453
708,770
def response_json(status, message, response): """ Helper method that converts the given data in json format :param success: status of the APIs either true or false :param data: data returned by the APIs :param message: user-friendly message :return: json response """ data = { "status": status, "message": message, "response": response, } return data
9c7e30e81c5412998bc8523b0e45a353c82b5a41
708,771
def NDVI(R, NIR): """ Compute the NDVI INPUT : R (np.array) -> the Red band images as a numpy array of float NIR (np.array) -> the Near Infrared images as a numpy array of float OUTPUT : NDVI (np.array) -> the NDVI """ NDVI = (NIR - R) / (NIR + R + 1e-12) return NDVI
aa1789c80720c09aa464b3ae67da7de821e2ba97
708,772
import re def getPredictedAnchor(title: str) -> str: """Return predicted anchor for given title, usually first letter.""" title = title.lower() if title.startswith('npj '): return 'npj series' title = re.sub(r'^(the|a|an|der|die|das|den|dem|le|la|les|el|il)\s+', '', title) return title[0].upper()
972eaa495078bc3929967a052f031c50d439fbdc
708,773
import re def convert_check_filter(tok): """Convert an input string into a filter function. The filter function accepts a qualified python identifier string and returns a bool. The input can be a regexp or a simple string. A simple string must match a component of the qualified name exactly. A regexp is matched against the entire qualified name. Matches are case-insensitive. Examples:: convert_check_filter('foo')('a.foo.b') == True convert_check_filter('foo')('a.foobar') == False convert_check_filter('foo.*')('a.foobar') == False convert_check_filter('foo.*')('foobar') == True """ tok = tok.lower() if '+' in tok or '*' in tok: return re.compile(tok, re.I).match else: toklist = tok.split('.') def func(name): chunks = name.lower().split('.') if len(toklist) > len(chunks): return False for i in range(len(chunks)): if chunks[i:i + len(toklist)] == toklist: return True return False return func
9d1aaa9a5007371e4f33ce3b4fbc86edd15875c6
708,774
def _get_operations(rescale=0.003921, normalize_weight=0.48): """Get operations.""" operation_0 = { 'tensor_op_module': 'minddata.transforms.c_transforms', 'tensor_op_name': 'RandomCrop', 'weight': [32, 32, 4, 4, 4, 4], 'padding_mode': "constant", 'pad_if_needed': False, 'fill_value': 0 } operation_1 = { 'tensor_op_module': 'minddata.transforms.c_transforms', 'tensor_op_name': 'Rescale', 'rescale': rescale, 'shift': 0, 'num_classes': 10 } operation_2 = { 'tensor_op_module': 'minddata.transforms.c_transforms', 'tensor_op_name': 'Normalize', 'weights': [normalize_weight] } return [operation_0, operation_1, operation_2]
a3bab4147f1a2020fb87853fc30bede277f0f4bd
708,776
def project(name, param): """a tilemill project description, including a basic countries-of-the-world layer.""" return { "bounds": [-180, -85.05112877980659, 180, 85.05112877980659], "center": [0, 0, 2], "format": "png", "interactivity": False, "minzoom": 0, "maxzoom": 22, "srs": "+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 " "+y_0=0.0 +k=1.0 +units=m +nadgrids=@null +wktext +no_defs +over", "Stylesheet": ["style.mss"], "Layer": [ { "id": "countries", "name": "countries", "srs": "+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 " "+y_0=0.0 +k=1.0 +units=m +nadgrids=@null +wktext +no_defs +over", "geometry": "polygon", "Datasource": { "file": "http://mapbox-geodata.s3.amazonaws.com/natural-earth-1.4.0/" "cultural/10m-admin-0-countries.zip", "type": "shape" } }, ], "scale": 1, "metatile": 2, "name": name, "description": param['properties']['name'], }
9609c523cccc99168bbc0e7dbf10fe8624d399c2
708,777
import torch def ppg_acoustics_collate(batch): """Zero-pad the PPG and acoustic sequences in a mini-batch. Also creates the stop token mini-batch. Args: batch: An array with B elements, each is a tuple (PPG, acoustic). Consider this is the return value of [val for val in dataset], where dataset is an instance of PPGSpeechLoader. Returns: ppg_padded: A (batch_size, feature_dim_1, num_frames_1) tensor. input_lengths: A batch_size array, each containing the actual length of the input sequence. acoustic_padded: A (batch_size, feature_dim_2, num_frames_2) tensor. gate_padded: A (batch_size, num_frames_2) tensor. If "1" means reaching stop token. Currently assign "1" at the last frame and the padding. output_lengths: A batch_size array, each containing the actual length of the output sequence. """ # Right zero-pad all PPG sequences to max input length. # x is (PPG, acoustic), x[0] is PPG, which is an (L(varied), D) tensor. input_lengths, ids_sorted_decreasing = torch.sort( torch.LongTensor([x[0].shape[0] for x in batch]), dim=0, descending=True) max_input_len = input_lengths[0] ppg_dim = batch[0][0].shape[1] ppg_padded = torch.FloatTensor(len(batch), max_input_len, ppg_dim) ppg_padded.zero_() for i in range(len(ids_sorted_decreasing)): curr_ppg = batch[ids_sorted_decreasing[i]][0] ppg_padded[i, :curr_ppg.shape[0], :] = curr_ppg # Right zero-pad acoustic features. feat_dim = batch[0][1].shape[1] max_target_len = max([x[1].shape[0] for x in batch]) # Create acoustic padded and gate padded acoustic_padded = torch.FloatTensor(len(batch), max_target_len, feat_dim) acoustic_padded.zero_() gate_padded = torch.FloatTensor(len(batch), max_target_len) gate_padded.zero_() output_lengths = torch.LongTensor(len(batch)) for i in range(len(ids_sorted_decreasing)): curr_acoustic = batch[ids_sorted_decreasing[i]][1] acoustic_padded[i, :curr_acoustic.shape[0], :] = curr_acoustic gate_padded[i, curr_acoustic.shape[0] - 1:] = 1 output_lengths[i] = curr_acoustic.shape[0] ppg_padded = ppg_padded.transpose(1, 2) acoustic_padded = acoustic_padded.transpose(1, 2) return ppg_padded, input_lengths, acoustic_padded, gate_padded,\ output_lengths
1357a8a9fa901a9be4f79ea13fd5ae7c3810bbeb
708,778
import torch def compute_batch_jacobian(input, output, retain_graph=False): """ Compute the Jacobian matrix of a batch of outputs with respect to some input (normally, the activations of a hidden layer). Returned Jacobian has dimensions Batch x SizeOutput x SizeInput Args: input (list or torch.Tensor): Tensor or sequence of tensors with the parameters to which the Jacobian should be computed. Important: the requires_grad attribute of input needs to be True while computing output in the forward pass. output (torch.Tensor): Tensor with the values of which the Jacobian is computed Returns (torch.Tensor): 3D tensor containing the Jacobian of output with respect to input: batch_size x output_size x input_size. """ batch_jacobian = torch.Tensor(output.shape[0], output.shape[1], input.shape[1]) assert output.shape[0] == input.shape[0], \ "Batch size needs to be the same for both input and output" for batch_idx in range(output.shape[0]): for i, output_elem in enumerate(output[batch_idx]): if i < output.shape[1]: rg = True else: rg = retain_graph gradients = torch.autograd.grad(output_elem, input, retain_graph=rg)[0][batch_idx].detach() batch_jacobian[batch_idx, i, :] = gradients return batch_jacobian
c18f596a3500f2f82e2b4716e6f9892a01fb31c7
708,779
def is_associative(value): """Checks if `value` is an associative object meaning that it can be accessed via an index or key Args: value (mixed): Value to check. Returns: bool: Whether `value` is associative. Example: >>> is_associative([]) True >>> is_associative({}) True >>> is_associative(1) False >>> is_associative(True) False .. versionadded:: 2.0.0 """ return hasattr(value, '__getitem__')
5d2a9e0e69ad793a98657dc13b26f79900f29294
708,780
def join_audio(audio1, audio2): """ >>> join_audio(([1], [4]), ([2, 3], [5, 6])) ([1, 2, 3], [4, 5, 6]) """ (left1, right1) = audio1 (left2, right2) = audio2 left = left1 + left2 right = right1 + right2 audio = (left, right) return audio
23348b746469d362fd66371d61142b4227814ff3
708,781
def csi_from_sr_and_pod(success_ratio_array, pod_array): """Computes CSI (critical success index) from success ratio and POD. POD = probability of detection :param success_ratio_array: np array (any shape) of success ratios. :param pod_array: np array (same shape) of POD values. :return: csi_array: np array (same shape) of CSI values. """ return (success_ratio_array ** -1 + pod_array ** -1 - 1.) ** -1
84952fe6f7c8bd780c64c53183342ab0d8f3f90f
708,782
def get_account_number(arn): """ Extract the account number from an arn. :param arn: IAM SSL arn :return: account number associated with ARN """ return arn.split(":")[4]
3d0fe552691ae98cf0dc70bc2055297f01a5d800
708,783
def first_index_k_zeros_left(qstr, k, P): """ For a binary string qstr, return the first index of q with k (mod P) zeros to the left. Return: index in [0, qstr.length] """ num_zeros_left = 0 for j in range(qstr.length+1): if (num_zeros_left - k) % P == 0: return j if j == qstr.length: raise Exception("No valid position found") if qstr[j] == 0: num_zeros_left += 1
62e505290fb32b43860deae3477dec718028e7af
708,785
def all_equal(values: list): """Check that all values in given list are equal""" return all(values[0] == v for v in values)
8ed08f63959367f3327554adc11b1286291963d8
708,786
def _tester(func, *args): """ Tests function ``func`` on arguments and returns first positive. >>> _tester(lambda x: x%3 == 0, 1, 2, 3, 4, 5, 6) 3 >>> _tester(lambda x: x%3 == 0, 1, 2) None :param func: function(arg)->boolean :param args: other arguments :return: something or none """ for arg in args: if arg is not None and func(arg): return arg return None
035c8bf68b4ff7e4fbdb7ed1b2601f04110287d8
708,787
import math def entropy(data): """ Compute the Shannon entropy, a measure of uncertainty. """ if len(data) == 0: return None n = sum(data) _op = lambda f: f * math.log(f) return - sum(_op(float(i) / n) for i in data)
ebfd9a84885a95ec6e4e7b2d88a0fb69fbbfaea1
708,788
def indexate(points): """ Create an array of unique points and indexes into this array. Arguments: points: A sequence of 3-tuples Returns: An array of indices and a sequence of unique 3-tuples. """ pd = {} indices = tuple(pd.setdefault(tuple(p), len(pd)) for p in points) pt = sorted([(v, k) for k, v in pd.items()], key=lambda x: x[0]) unique = tuple(i[1] for i in pt) return indices, unique
f78ef40ea9bf6cfe427d366026b633fbb67016a2
708,789
import re def install_package_family(pkg): """ :param: pkg ie asr900rsp2-universal.03.13.03.S.154-3.S3-ext.bin :return: device_type of the installed image ie asr900 """ img_dev = None m = re.search(r'(asr\d+)\w*', pkg) if m: img_dev = m.group(1) return img_dev
b344d51ae426e167dbd2397ab93cbf8707b01496
708,790
from typing import List import json import os def _ignored_jenkins_node_names() -> List[str]: """ Ignore nodes with these names :return: Config list """ return json.loads(os.environ['IGNORED_JENKINS_NODE_NAMES'])
cec9685517cb1344bbf1ec7a6352e6727d7e80e2
708,792
def recipe_clone_message(recipe): """ Renders the recipe clone message. """ return dict(recipe=recipe)
09728b431966b12415861a212f2cb85af475dc37
708,793
def get_drawdowns(cum_returns): """ Computes the drawdowns of the cumulative returns. Parameters ---------- cum_returns : Series or DataFrame, required a Series or DataFrame of cumulative returns Returns ------- Series or DataFrame """ cum_returns = cum_returns[cum_returns.notnull()] highwater_marks = cum_returns.expanding().max() drawdowns = cum_returns/highwater_marks - 1 return drawdowns
1f4da9e405b8b4f8a691b09e42e479cd6fdec3ae
708,794