text
stringlengths
21
4.2k
54첩에 달하는 장편으로 800여 수의 와카(和歌)가 들어있다
고대의 일본 문학의 최고 걸작이라는 의견도 있다
이야기는 헤이안 시대를 배경으로 천황의 황자로 태어나 신하 계급으로 강하한 히카루 겐지(光源氏)와 그의 아들 세대까지의 이야기를 그리고 있다
등장인물은 500명에 가깝고 4대의 임금 70여 년에 걸친 장편이다
작자는 궁정 귀족사회의 진상을 포착하고, 인간의 운명을 깊고 예리하게 응시하고 있다
성격묘사라든지 자연묘사에서 세세한 부분에까지 빛을 발하는 완성도가 높은 작품이다
헤이안 시대 중기 11세기 초에 성립된 장편 소설(모노가타리, 物語)이다
≪겐지 모노가타리(源氏物語)≫는 오랫동안 특정한 명칭 없이 ≪源氏の物語≫, ≪光源氏物語≫, ≪紫の物語≫, ≪光源氏≫, ≪源氏≫, ≪源語≫, ≪紫文≫ 등으로 불려 오다가, 오늘날에는 일반적으로 ≪源氏物語≫라는 서명으로 불리게 되었다
전체 54권으로 나뉘어 있으며 200자 원고지 5000매가 넘는 세계 최고(最古), 최장(最長)의 고전 소설로 치밀한 구성과 인간의 심리 묘사, 표현의 정교함과 미의식 등으로 일본 문학사상 최고 걸작으로 평가된다
당시의 전형적인 이야기가 보통 ‘옛날에 남자가 있었다’라고 시작되는 것과는 달리, ≪겐지 모노가타리≫는 ‘어느 천황의 치세 때였는지’라는 독창적인 서두로 시작된다
작품 전체는 400여 명의 등장인물과 기리쓰보(桐壷), 스자쿠(朱雀), 레이제이(冷泉), 금상(今上)에 이르는 4대 천황에 걸친 70여 년간의 이야기로, 히카루겐지(光源氏, 이하 겐지)라고 하는 주인공의 비현실적이라 할 만큼 이상적인 일생과 그 후손인 가오루(薫)와 니오미야(匂宮) 등의 인간관계를 그리고 있다
또한 본문은 수많은 전기(伝奇)적 화형(話型)과 함께 795수의 와카(和歌)가 산재되어 있어 긴장감 있는 문체를 이루고 있다
독일 단치히 자유시(오늘날 폴란드의 그단스크)에서 식료품 상인이었던 독일계 아버지와 슬라브계 어머니 사이에서 태어났다
하버드 대학에서 명예박사학위를 받았다
1999년에 노벨 문학상을 수상하였다
제2차 세계 대전 당시 독일 제국노동봉사대(RAD)에서 근무하던 중, 1944년에 무장친위대에 입대하여 10 SS기갑사단 프른즈베르크로 발령받아 참전했다
징집당한 것이라는 얘기도 있으나, 당시 친위대의 독일인 대원들은 징집 대상이 아니라 자원 입대가 기본이었다(국방군 육군은 징병제였다)
종전후 부상당한 채 미군 포로로 잡혀 1946년까지 포로 수용소에 수감되었다
이런 사실은 그라스 자신이 최근 발간한 자서전에서 인정했다
전후 1947~48년에는 광산에서 일하며 석공 기술 과정을 마친다
이어 1948년부터 1952년까지는 뒤셀도르프 미술대학에서 그래픽과 조각을, 1953년부터 1956년까지는 베를린 예술대학에서 조각을 배웠다
1955년 슈투트가르트 방송국의 서정시 경연대회에 입상하고, 1956~57년에 예술 작품 전시와 별도로 작가 활동을 시작했다
1958년까지 단문, 시, 희곡 등을 발표한다
1954년에 결혼을 하고, 1960년부터 계속 베를린에 산다
1959년에 매우 묘사적인 언어로 나중에 영화화 되기까지 한 《양철북》을 발표했다
이 작품으로 그는 제2차 세계 대전 후 처음으로 세계 문학계에 이름을 날린 독일 작가가 된다
이어 <고양이와 쥐> <개의 해>에서도 전쟁 전과 전쟁 후에 걸친 시대의 과오와 대결하고 있으며, 무대는 다같이 단치히이다
이밖의 작품에 <달팽이의 일기에서> <넙치> 등이 있다
그는 소설가로 활약하는 한편, 부조리극적인 소품(小品)인 <요리사> <홍수> <버팔로까지 앞으로 10분> 등을 발표한 바 있는데, 현대정치에도 직접 행동으로 참가하여 동·서 독일의 분열이라는 가장 현실적인 문제에 대담하게 도전한 <천민의 폭동연습>(1965)을 발표했다
1953년 동독의 폭동 당시 브레히트를 모델로 하여 예술과 정치의 관련을 추구한 작품으로 <독일의 비극>이 있다
일반 상대성이론(一般相對性理論, , ) 또는 일반상대론(一般相對論, )은 마르셀 그로스만, 다비드 힐베르트, 알베르트 아인슈타인 등에 의해 발전되고 아인슈타인이 1915년에 발표한, 중력을 상대론적으로 다루는 물리 이론이다
핀란드의 이론물리학자 노르드스트룀도 일반 상대론의 많은 부분을 논문으로 발표했었다
일반 상대론은 현재까지 알려진, 중력을 다루는 이론 가운데 가장 정확하게 실험적으로 검증되었다
특수 상대성 이론에서 수학자 헤르만 민코프스키가 민코프스키 공간을 도입하여 평평한 시공간을 기하학적으로 다루었다
일반 상대성 이론은 중력의 영향을 시공간의 휘어짐으로 기술한다
일반상대론에서 시공간의 수학적 구조는 특별한 종류의 준 리만 다양체이며 국소적(locally)으로 민코프스키 공간이다
시공간의 휘어짐은 수학적으로 준 리만 다양체의 곡률에 해당한다(더 정확히는 준 리만 다양체 중에서도 특수한 로런츠 다양체의 곡률)
즉, 일반상대론은 1850년대에 만들어진 수학인 리만 기하학으로 기술된다
시공의 곡률(아인슈타인 텐서)은 (우주 상수를 무시하면) 4차원 운동량 밀도에 비례하는데, 이를 아인슈타인 방정식이라고 한다
일반 상대성 이론에서는 관성계뿐만 아니라 비관성계를 포함한 임의의 좌표계에 대해 물리 법칙이 동등한 형태를 유지하여야 한다
자유낙하하는 승강기와 승강기 바닥에서 승강기 천장으로 쏘여진 빛을 떠올려보면, 승강기 안에서 승강기와 같이 자유낙하하는 관찰자는 빛에서 어떠한 도플러 효과도 보지 못할 것이다
왜냐하면 등가원리를 따르면, 중력장 내에서 자유낙하하는 관찰자는 중력장이 없는 관성계의 관찰자와 같으며, 중력장이 없는 관성계에서는 빛에 어떠한 변형도 일어나지 않기 때문이다
따라서 자유낙하하는 관찰자는 승강기 천장에 설치된 빛 감지기에서 어떠한 도플러 효과도 나타나지 않을 것이라고 결론짓는다
하지만 승강기 밖에서 땅 위에 서있는 관찰자는 빛에서 도플러 효과를 기대한다
왜냐하면, 승강기가 자유낙하를 시작할 때 빛이 출발했다고 가정하면, 빛이 승강기 바닥에서 승강기 천장으로 가는 시간 formula_1 동안 승강기 천장은 formula_2만큼 빠르게 되고, 이 속도에 따라 빛에 대한 청색편이를 감지해야 하기 때문이다
여기서 청색편이는 느린 속도 근사식 formula_3만큼 일어났다고 가정한다
감지기가 어떤 관찰자에게는 도플러 효과가 없다고 감지하고, 어떤 관찰자에게는 청색편이의 도플러 효과가 있다고 감지할 수는 없으므로, 우리는 청색편이의 결과를 상쇄시켜 자유낙하하는 관찰자의 결과와 일치시킬 어떤 것을 필요로 한다
다행히, 중력장이란 존재가 있으므로, 중력장이 청색편이를 상쇄시키는 적색편이를 일으켰다고 할 수 있다
중력 적색편이는 formula_4만큼 일어나며, 여기에 빛이 감지되었을 때의 승강기 천장의 속도와, 빛이 승강기 천장으로 가는 시간을 대입하면 formula_5라는, 중력 퍼텐셜의 차이 formula_6에 따른 적색편이의 식을 얻을 수 있다
그러므로 승강기에서처럼 빛 방출기와 빛 감지기가 서로 상대적인 운동에 있는 상황이 아니라, 서로에 대해서 정지해있는 상황이라면, 빛의 감지기는 청색편이로 상쇄되지 않는 중력 적색편이를 감지할 것이다
빛의 감지기가 빛의 방출기에 대해서 정적인 상황에서, 어떻게 서로 다른 진동수를 얻을 수 있을까? 다시 말해, 빛의 감지기와 빛의 방출기가 단위 시간 당 서로 다른 개수의 파면을 받아들일까? 아인슈타인은 여기에 대해서 파면의 개수는 동일하지만, 빛의 감지기와 빛의 방출기가 서로 다른 시간 단위를 갖는다고 지적했다
즉, 서로 다른 중력 퍼텐셜에 위치한 시계에서는 서로 다른 빠르기로 시침이 움직인다는 뜻이다
진동수는 그 곳의 고유 시간에 반비례 하므로, formula_7이며, 이를 중력 적색편이 식에 집어넣으면, formula_8의 식을 얻을 수 있다
일반 상대성 이론에서는 시공을 특수 상대성 이론의 민코프스키 공간에서 임의의 (로런츠 계량 부호수 −+++를 가진) 준 리만 다양체로 확장한다
다양체의 계량 텐서 formula_9로서 시공간의 곡률을 정의하고, 이 곡률을 중력으로 재해석한다
뉴턴 역학에서 중력은 (중력적) 질량의 밀도에 의하여 결정된다
질량의 밀도를 자연스럽게 상대화하면 에너지-운동량 텐서를 얻는다
아인슈타인과 다비트 힐베르트는 아인슈타인-힐베르트 작용을 통해 다음과 같은 장 방정식을 얻었으며, 이는 오늘날 아인슈타인 방정식으로 알려져 있다
formula_21와 formula_22는 시간과 공간의 좌표를 나타내는 인덱스로 0은 시간, 1,2,3은 공간 성분을 표시한다
formula_9는 시공간 사이의 변환을 나타내는 계량 텐서이다
예를 들어 가장 평탄한 시공간을 나타내는 민코프스키 계량 텐서의 경우
일반 상대성 이론에서, 중력 밖의 다른 힘이 작용하지 않고, 그 무게가 무시할 만큼 작은 입자는 시공간의 측지선을 따라 움직인다
측지선은 시공에서 고유 시간을 극대화하는 경로이다
일반적으로 중력에 의해 시공간이 휘어지는 것을 알 수 있다
질량이 큰 물체는 시공간을 휘게 할 수 있고 그것이 중력을 제공하는 역할을 한다
일반 상대성 이론은 실험적으로 성공적이나, 이를 주로 양자장론과 관련하여 여러 가지로 확장할 수 있다
일반상대론에 비틀림을 더한 이론은 아인슈타인-카르탕 이론이고, 중력상수를 스칼라장으로 승진시키면 브랜스-딕 이론을 얻는다
일반 상대성 이론에 추가 차원을 도입하여 다른 상호작용을 포함시키는 이론은 칼루차-클라인 이론이며, 초대칭을 도입하면 초중력 이론을 얻는다
또한 초끈이론에서는 아인슈타인-힐베르트 작용을 자연스럽게 얻을 수 있으며, 고리 양자 중력에서는 아인슈타인-힐베르트 작용을 가지고 이를 양자화 한다는 것에서 시작한다
데니스 매캘리스터 리치(, 1941년 9월 9일~2011년 10월 12일)는 미국의 저명한 전산학자이자 현대 컴퓨터의 선구자이다
미국의 뉴욕주 브롱크스빌(Bronxville)에서 태어났으며, 1967년 하버드 대학교에서 물리학과 응용수학 학위를 얻었다
1968년부터 벨 연구소 컴퓨터 연구 센터에서 일했다
2007년 루슨트 테크놀로지의 시스템 소프트웨어 연구부장으로 은퇴했다
홀로 살고 있던 그는 미국 시각으로 2011년 10월 12일 뉴저지주 버클리 헤이츠의 자택에서 사망한 채로 발견되었다 (향년 71세)
켄 톰슨(Ken Thompson) 등과 함께 최초의 유닉스(Unix) 시스템을 개발했고, 1971년 최초의 〈Unix Programmer's Manual〉을 썼다
또한 C 언어를 개발한 후 브라이언 커니핸과 함께 〈C 프로그래밍 언어〉(The C Programming Language)를 기술했다
커니핸과 〈C 프로그래밍 언어〉책을 썼기에 커니핸이 C 언어 개발에 참여한 것으로 종종 오해받으나 커니핸의 말에 따르면 자신은 C언어 개발에 참여하지 않았다고 한다
미국의 경제 전문지 '비즈니스 인사이더'에서는 '현재의 애플 컴퓨터는 거의 모두 데니스 리치의 업적에 기반하고 있다'이라며 그의 업적을 평가했다
현재 애플 매킨토시의 MacOS와 아이폰의 iOS는 모두 유닉스 운영체제를 기반으로 만들어져 있다
주기율표(週期律表, , ) 또는 주기표(週期表)는 원소를 구분하기 쉽게 성질에 따라 배열한 표로, 러시아의 드미트리 멘델레예프가 처음 제안했다
1915년 헨리 모즐리는 멘델레예프의 주기율표를 개량시켜서 원자번호순으로 배열했는데, 이는 현대의 원소 주기율표와 유사하다
가장 많이 쓰이는 주기율표에는 단주기형과 장주기형이 있다
단주기형 주기율표는 1주기와 3주기를 기준으로 하고, 4주기 아래로는 전형원소와 전이원소가 같은 칸에 있다
이 단주기형 주기율표는 초기에 쓴 모델로 원자가 많이 알려지지 않았을 때 많이 사용하였다
장주기형 주기율표는 현재 가장 많이 쓰고 있는 주기율표이다
주기율표의 역사는 요한 볼프강 되베라이너의 "세 쌍 원소"로부터 시작된다
그는 실험을 통해 세 개의 원소로 이루어진 무리 중 어떤 원소들은 첫 번째 원소와 세 번째 원소의 물리량 평균이 두 번째 원소의 물리량과 같음을 확인했다
그 구체적인 예로는 '칼슘(Ca), 스트론튬(Sr), 바륨(Ba)'의 세 원소가 있다 여기서 스트론튬(Sr)의 물리량은 칼슘(Ca)과 바륨(Ba) 원소의 물리량을 합하여 2로 나눈 평균값과 비슷하거나 같다
되베라이너는 이들을 세 쌍의 원소라고 불렀다
이러한 세 쌍 원소 관계를 만족하는 원소들은 칼슘-스트론튬-바륨, 염소-브로민-아이오딘, 그리고 리튬-나트륨-칼륨이 대표적인데 이를 만족하는 원소수가 적어 인정받지 못하였다
세 쌍 원소는 현대 주기율표에서 같은 족에 해당된다
영국의 과학자 존 뉴랜즈는 원소들을 원자량의 순으로 배열하면 8번째 원소마다 비슷한 성질의 원소가 나타나는 것을 발견하였고, 이를 피아노의 개념에 대입하여
하지만 이 대응성은 3번째 줄에서부터 어긋나기 시작했고, 처음 이 이론이 발표되었을 때만 해도 그는 웃음거리가 되었으나 이후 여러가지 실험이 뉴랜즈의 법칙의 중요성을 보였다
현대 주기율표에서 주기개념의 시초가 되었다
멘델레예프는 원소의 규칙을 밝히기 위해 이런저런 시도를 하다가 결국 원소들을 원자량순으로 나열하면 되베라이너의 세쌍원소, 뉴랜즈의 옥타브 법칙을 만족하게 된다는 것을 알게 되었다
그는 원소가 어떤 함수의 결과라는 것을 확실히 믿었지만 비활성 기체가 발견되면서 그의 주기율표는 바뀌기 시작했다
멘델레예프가 만든 주기율표에는 빈자리가 있었다
그리고 그 빈자리에 언젠가는 빈 칸을 채울 원소가 발견될 것이라고 주장했다
멘델레예프의 문제는 영국의 모즐리에 의해 풀렸다
그는 음극선관을 이용하여 생성되는 X선의 파장을 연구하여 양성자 수에 따라 화학적 성질이 달라진다는 것을 밝혀냈다