id_nergrit_corpus / README.md
albertvillanova's picture
Replace YAML keys from int to str (#2)
5a4737b
metadata
annotations_creators:
  - expert-generated
language_creators:
  - expert-generated
language:
  - id
license:
  - other
multilinguality:
  - monolingual
size_categories:
  - 10K<n<100K
source_datasets:
  - original
task_categories:
  - token-classification
task_ids:
  - named-entity-recognition
paperswithcode_id: nergrit-corpus
pretty_name: Nergrit Corpus
dataset_info:
  - config_name: ner
    features:
      - name: id
        dtype: string
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': B-CRD
              '1': B-DAT
              '2': B-EVT
              '3': B-FAC
              '4': B-GPE
              '5': B-LAN
              '6': B-LAW
              '7': B-LOC
              '8': B-MON
              '9': B-NOR
              '10': B-ORD
              '11': B-ORG
              '12': B-PER
              '13': B-PRC
              '14': B-PRD
              '15': B-QTY
              '16': B-REG
              '17': B-TIM
              '18': B-WOA
              '19': I-CRD
              '20': I-DAT
              '21': I-EVT
              '22': I-FAC
              '23': I-GPE
              '24': I-LAN
              '25': I-LAW
              '26': I-LOC
              '27': I-MON
              '28': I-NOR
              '29': I-ORD
              '30': I-ORG
              '31': I-PER
              '32': I-PRC
              '33': I-PRD
              '34': I-QTY
              '35': I-REG
              '36': I-TIM
              '37': I-WOA
              '38': O
    splits:
      - name: train
        num_bytes: 5428411
        num_examples: 12532
      - name: test
        num_bytes: 1135577
        num_examples: 2399
      - name: validation
        num_bytes: 1086437
        num_examples: 2521
    download_size: 14988232
    dataset_size: 7650425
  - config_name: sentiment
    features:
      - name: id
        dtype: string
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': B-NEG
              '1': B-NET
              '2': B-POS
              '3': I-NEG
              '4': I-NET
              '5': I-POS
              '6': O
    splits:
      - name: train
        num_bytes: 3167972
        num_examples: 7485
      - name: test
        num_bytes: 1097517
        num_examples: 2317
      - name: validation
        num_bytes: 337679
        num_examples: 782
    download_size: 14988232
    dataset_size: 4603168
  - config_name: statement
    features:
      - name: id
        dtype: string
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': B-BREL
              '1': B-FREL
              '2': B-STAT
              '3': B-WHO
              '4': I-BREL
              '5': I-FREL
              '6': I-STAT
              '7': I-WHO
              '8': O
    splits:
      - name: train
        num_bytes: 1469081
        num_examples: 2405
      - name: test
        num_bytes: 182553
        num_examples: 335
      - name: validation
        num_bytes: 105119
        num_examples: 176
    download_size: 14988232
    dataset_size: 1756753

Dataset Card for [Dataset Name]

Table of Contents

Dataset Description

Dataset Summary

Nergrit Corpus is a dataset collection of Indonesian Named Entity Recognition, Statement Extraction, and Sentiment Analysis developed by PT Gria Inovasi Teknologi (GRIT).

Supported Tasks and Leaderboards

[More Information Needed]

Languages

Indonesian

Dataset Structure

A data point consists of sentences seperated by empty line and tab-seperated tokens and tags.

{'id': '0',
 'tokens': ['Gubernur', 'Bank', 'Indonesia', 'menggelar', 'konferensi', 'pers'],
 'ner_tags': [9, 28, 28, 38, 38, 38],
}

Data Instances

[More Information Needed]

Data Fields

  • id: id of the sample
  • tokens: the tokens of the example text
  • ner_tags: the NER tags of each token

Named Entity Recognition

The ner_tags correspond to this list:

"B-CRD", "B-DAT", "B-EVT", "B-FAC", "B-GPE", "B-LAN", "B-LAW", "B-LOC", "B-MON", "B-NOR", 
"B-ORD", "B-ORG", "B-PER", "B-PRC", "B-PRD", "B-QTY", "B-REG", "B-TIM", "B-WOA",
"I-CRD", "I-DAT", "I-EVT", "I-FAC", "I-GPE", "I-LAN", "I-LAW", "I-LOC", "I-MON", "I-NOR",
"I-ORD", "I-ORG", "I-PER", "I-PRC", "I-PRD", "I-QTY", "I-REG", "I-TIM", "I-WOA", "O",

The ner_tags have the same format as in the CoNLL shared task: a B denotes the first item of a phrase and an I any non-initial word. The dataset contains 19 following entities

    'CRD': Cardinal
    'DAT': Date
    'EVT': Event
    'FAC': Facility
    'GPE': Geopolitical Entity
    'LAW': Law Entity (such as Undang-Undang)
    'LOC': Location
    'MON': Money
    'NOR': Political Organization
    'ORD': Ordinal
    'ORG': Organization
    'PER': Person
    'PRC': Percent
    'PRD': Product
    'QTY': Quantity
    'REG': Religion
    'TIM': Time
    'WOA': Work of Art
    'LAN': Language

Sentiment Analysis

The ner_tags correspond to this list:

"B-NEG", "B-NET", "B-POS",
"I-NEG", "I-NET", "I-POS",
"O",

Statement Extraction

The ner_tags correspond to this list:

"B-BREL", "B-FREL", "B-STAT", "B-WHO",
"I-BREL", "I-FREL", "I-STAT", "I-WHO", 
"O"

The ner_tags have the same format as in the CoNLL shared task: a B denotes the first item of a phrase and an I any non-initial word.

Data Splits

The dataset is splitted in to train, validation and test sets.

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

The annotators are listed in the Nergrit Corpus repository

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

[More Information Needed]

Contributions

Thanks to @cahya-wirawan for adding this dataset.