Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Indonesian
Size:
10K<n<100K
License:
annotations_creators: | |
- expert-generated | |
language_creators: | |
- expert-generated | |
language: | |
- id | |
license: | |
- other | |
multilinguality: | |
- monolingual | |
size_categories: | |
- 10K<n<100K | |
source_datasets: | |
- original | |
task_categories: | |
- token-classification | |
task_ids: | |
- named-entity-recognition | |
paperswithcode_id: nergrit-corpus | |
pretty_name: Nergrit Corpus | |
dataset_info: | |
- config_name: ner | |
features: | |
- name: id | |
dtype: string | |
- name: tokens | |
sequence: string | |
- name: ner_tags | |
sequence: | |
class_label: | |
names: | |
'0': B-CRD | |
'1': B-DAT | |
'2': B-EVT | |
'3': B-FAC | |
'4': B-GPE | |
'5': B-LAN | |
'6': B-LAW | |
'7': B-LOC | |
'8': B-MON | |
'9': B-NOR | |
'10': B-ORD | |
'11': B-ORG | |
'12': B-PER | |
'13': B-PRC | |
'14': B-PRD | |
'15': B-QTY | |
'16': B-REG | |
'17': B-TIM | |
'18': B-WOA | |
'19': I-CRD | |
'20': I-DAT | |
'21': I-EVT | |
'22': I-FAC | |
'23': I-GPE | |
'24': I-LAN | |
'25': I-LAW | |
'26': I-LOC | |
'27': I-MON | |
'28': I-NOR | |
'29': I-ORD | |
'30': I-ORG | |
'31': I-PER | |
'32': I-PRC | |
'33': I-PRD | |
'34': I-QTY | |
'35': I-REG | |
'36': I-TIM | |
'37': I-WOA | |
'38': O | |
splits: | |
- name: train | |
num_bytes: 5428411 | |
num_examples: 12532 | |
- name: test | |
num_bytes: 1135577 | |
num_examples: 2399 | |
- name: validation | |
num_bytes: 1086437 | |
num_examples: 2521 | |
download_size: 14988232 | |
dataset_size: 7650425 | |
- config_name: sentiment | |
features: | |
- name: id | |
dtype: string | |
- name: tokens | |
sequence: string | |
- name: ner_tags | |
sequence: | |
class_label: | |
names: | |
'0': B-NEG | |
'1': B-NET | |
'2': B-POS | |
'3': I-NEG | |
'4': I-NET | |
'5': I-POS | |
'6': O | |
splits: | |
- name: train | |
num_bytes: 3167972 | |
num_examples: 7485 | |
- name: test | |
num_bytes: 1097517 | |
num_examples: 2317 | |
- name: validation | |
num_bytes: 337679 | |
num_examples: 782 | |
download_size: 14988232 | |
dataset_size: 4603168 | |
- config_name: statement | |
features: | |
- name: id | |
dtype: string | |
- name: tokens | |
sequence: string | |
- name: ner_tags | |
sequence: | |
class_label: | |
names: | |
'0': B-BREL | |
'1': B-FREL | |
'2': B-STAT | |
'3': B-WHO | |
'4': I-BREL | |
'5': I-FREL | |
'6': I-STAT | |
'7': I-WHO | |
'8': O | |
splits: | |
- name: train | |
num_bytes: 1469081 | |
num_examples: 2405 | |
- name: test | |
num_bytes: 182553 | |
num_examples: 335 | |
- name: validation | |
num_bytes: 105119 | |
num_examples: 176 | |
download_size: 14988232 | |
dataset_size: 1756753 | |
# Dataset Card for [Dataset Name] | |
## Table of Contents | |
- [Dataset Description](#dataset-description) | |
- [Dataset Summary](#dataset-summary) | |
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) | |
- [Languages](#languages) | |
- [Dataset Structure](#dataset-structure) | |
- [Data Instances](#data-instances) | |
- [Data Fields](#data-fields) | |
- [Data Splits](#data-splits) | |
- [Dataset Creation](#dataset-creation) | |
- [Curation Rationale](#curation-rationale) | |
- [Source Data](#source-data) | |
- [Annotations](#annotations) | |
- [Personal and Sensitive Information](#personal-and-sensitive-information) | |
- [Considerations for Using the Data](#considerations-for-using-the-data) | |
- [Social Impact of Dataset](#social-impact-of-dataset) | |
- [Discussion of Biases](#discussion-of-biases) | |
- [Other Known Limitations](#other-known-limitations) | |
- [Additional Information](#additional-information) | |
- [Dataset Curators](#dataset-curators) | |
- [Licensing Information](#licensing-information) | |
- [Citation Information](#citation-information) | |
- [Contributions](#contributions) | |
## Dataset Description | |
- **Homepage:** [PT Gria Inovasi Teknologi](https://grit.id/) | |
- **Repository:** [Nergrit Corpus](https://github.com/grit-id/nergrit-corpus) | |
- **Paper:** | |
- **Leaderboard:** | |
- **Point of Contact:** [Taufiqur Rohman](mailto:taufiq@grit.id) | |
### Dataset Summary | |
Nergrit Corpus is a dataset collection of Indonesian Named Entity Recognition, Statement Extraction, | |
and Sentiment Analysis developed by [PT Gria Inovasi Teknologi (GRIT)](https://grit.id/). | |
### Supported Tasks and Leaderboards | |
[More Information Needed] | |
### Languages | |
Indonesian | |
## Dataset Structure | |
A data point consists of sentences seperated by empty line and tab-seperated tokens and tags. | |
``` | |
{'id': '0', | |
'tokens': ['Gubernur', 'Bank', 'Indonesia', 'menggelar', 'konferensi', 'pers'], | |
'ner_tags': [9, 28, 28, 38, 38, 38], | |
} | |
``` | |
### Data Instances | |
[More Information Needed] | |
### Data Fields | |
- `id`: id of the sample | |
- `tokens`: the tokens of the example text | |
- `ner_tags`: the NER tags of each token | |
#### Named Entity Recognition | |
The ner_tags correspond to this list: | |
``` | |
"B-CRD", "B-DAT", "B-EVT", "B-FAC", "B-GPE", "B-LAN", "B-LAW", "B-LOC", "B-MON", "B-NOR", | |
"B-ORD", "B-ORG", "B-PER", "B-PRC", "B-PRD", "B-QTY", "B-REG", "B-TIM", "B-WOA", | |
"I-CRD", "I-DAT", "I-EVT", "I-FAC", "I-GPE", "I-LAN", "I-LAW", "I-LOC", "I-MON", "I-NOR", | |
"I-ORD", "I-ORG", "I-PER", "I-PRC", "I-PRD", "I-QTY", "I-REG", "I-TIM", "I-WOA", "O", | |
``` | |
The ner_tags have the same format as in the CoNLL shared task: a B denotes the first item of a phrase and an I any | |
non-initial word. The dataset contains 19 following entities | |
``` | |
'CRD': Cardinal | |
'DAT': Date | |
'EVT': Event | |
'FAC': Facility | |
'GPE': Geopolitical Entity | |
'LAW': Law Entity (such as Undang-Undang) | |
'LOC': Location | |
'MON': Money | |
'NOR': Political Organization | |
'ORD': Ordinal | |
'ORG': Organization | |
'PER': Person | |
'PRC': Percent | |
'PRD': Product | |
'QTY': Quantity | |
'REG': Religion | |
'TIM': Time | |
'WOA': Work of Art | |
'LAN': Language | |
``` | |
#### Sentiment Analysis | |
The ner_tags correspond to this list: | |
``` | |
"B-NEG", "B-NET", "B-POS", | |
"I-NEG", "I-NET", "I-POS", | |
"O", | |
``` | |
#### Statement Extraction | |
The ner_tags correspond to this list: | |
``` | |
"B-BREL", "B-FREL", "B-STAT", "B-WHO", | |
"I-BREL", "I-FREL", "I-STAT", "I-WHO", | |
"O" | |
``` | |
The ner_tags have the same format as in the CoNLL shared task: a B denotes the first item of a phrase and an I any | |
non-initial word. | |
### Data Splits | |
The dataset is splitted in to train, validation and test sets. | |
## Dataset Creation | |
### Curation Rationale | |
[More Information Needed] | |
### Source Data | |
#### Initial Data Collection and Normalization | |
[More Information Needed] | |
#### Who are the source language producers? | |
[More Information Needed] | |
### Annotations | |
#### Annotation process | |
[More Information Needed] | |
#### Who are the annotators? | |
The annotators are listed in the | |
[Nergrit Corpus repository](https://github.com/grit-id/nergrit-corpus) | |
### Personal and Sensitive Information | |
[More Information Needed] | |
## Considerations for Using the Data | |
### Social Impact of Dataset | |
[More Information Needed] | |
### Discussion of Biases | |
[More Information Needed] | |
### Other Known Limitations | |
[More Information Needed] | |
## Additional Information | |
### Dataset Curators | |
[More Information Needed] | |
### Licensing Information | |
[More Information Needed] | |
### Citation Information | |
[More Information Needed] | |
### Contributions | |
Thanks to [@cahya-wirawan](https://github.com/cahya-wirawan) for adding this dataset. |