code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_317_044_064_679_887_385_961_981 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ = [ 2_047, 1_373_653, 25_326_001, 3_215_031_751, 2_152_302_898_747, 3_474_749_660_383, 341_550_071_728_321, 1, 3_825_123_056_546_413_051, 1, 1, 318_665_857_834_031_151_167_461, 3_317_044_064_679_887_385_961_981, ] snake_case_ = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(SCREAMING_SNAKE_CASE_ , 1 ): if n < _p: # then we have our last prime to check snake_case_ = primes[:idx] break snake_case_ , snake_case_ = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ = False for r in range(SCREAMING_SNAKE_CASE_ ): snake_case_ = pow(SCREAMING_SNAKE_CASE_ , d * 2**r , SCREAMING_SNAKE_CASE_ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _a ( ) -> None: assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838_201 ) assert miller_rabin(838_207 ) # 1_373_653 assert not miller_rabin(17_316_001 ) assert miller_rabin(17_316_017 ) # 25_326_001 assert not miller_rabin(3_078_386_641 ) assert miller_rabin(3_078_386_653 ) # 3_215_031_751 assert not miller_rabin(1_713_045_574_801 ) assert miller_rabin(1_713_045_574_819 ) # 2_152_302_898_747 assert not miller_rabin(2_779_799_728_307 ) assert miller_rabin(2_779_799_728_327 ) # 3_474_749_660_383 assert not miller_rabin(113_850_023_909_441 ) assert miller_rabin(113_850_023_909_527 ) # 341_550_071_728_321 assert not miller_rabin(1_275_041_018_848_804_351 ) assert miller_rabin(1_275_041_018_848_804_391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79_666_464_458_507_787_791_867 ) assert miller_rabin(79_666_464_458_507_787_791_951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552_840_677_446_647_897_660_333 ) assert miller_rabin(552_840_677_446_647_897_660_359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
700
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case__) class __A (snake_case__): '''simple docstring''' __lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) __lowercase: ClassVar[Features] = Features({"""audio""": Audio()}) __lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")}) __lowercase: str = "audio" __lowercase: str = "transcription" def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int: """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , UpperCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) snake_case_ = copy.deepcopy(self ) snake_case_ = self.input_schema.copy() snake_case_ = features[self.audio_column] snake_case_ = input_schema return task_template @property def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]: """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
2
0
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __A (_snake_case): '''simple docstring''' __lowercase: List[str] = """""" __lowercase: List[Any] = """hf-legacy""" # "hf://"" is reserved for hffs def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[DatasetInfo] = None , UpperCAmelCase_ : Optional[str] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->Optional[Any]: """simple docstring""" super().__init__(self , **lowerCAmelCase__ ) snake_case_ = repo_info snake_case_ = token snake_case_ = None def lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" if self.dir_cache is None: snake_case_ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes snake_case_ = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(lowerCAmelCase__ ): {"""name""": str(lowerCAmelCase__ ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str = "rb" , **UpperCAmelCase_ : List[str] , ) ->Dict: """simple docstring""" if not isinstance(self.repo_info , lowerCAmelCase__ ): raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) snake_case_ = hf_hub_url(self.repo_info.id , lowerCAmelCase__ , revision=self.repo_info.sha ) return fsspec.open( lowerCAmelCase__ , mode=lowerCAmelCase__ , headers=get_authentication_headers_for_url(lowerCAmelCase__ , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int ) ->Optional[int]: """simple docstring""" self._get_dirs() snake_case_ = self._strip_protocol(lowerCAmelCase__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(lowerCAmelCase__ ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Any ) ->Union[str, Any]: """simple docstring""" self._get_dirs() snake_case_ = PurePosixPath(path.strip("""/""" ) ) snake_case_ = {} for p, f in self.dir_cache.items(): snake_case_ = PurePosixPath(p.strip("""/""" ) ) snake_case_ = p.parent if root == path: snake_case_ = f snake_case_ = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
701
"""simple docstring""" from functools import reduce __SCREAMING_SNAKE_CASE : Tuple = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _a ( _SCREAMING_SNAKE_CASE = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) ) for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
2
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class __A (_SCREAMING_SNAKE_CASE): '''simple docstring''' __lowercase: Optional[int] = "mctct" def __init__( self : str , UpperCAmelCase_ : Union[str, Any]=8_065 , UpperCAmelCase_ : Dict=1_536 , UpperCAmelCase_ : Tuple=36 , UpperCAmelCase_ : List[str]=6_144 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int=384 , UpperCAmelCase_ : str=920 , UpperCAmelCase_ : int=1E-5 , UpperCAmelCase_ : int=0.3 , UpperCAmelCase_ : List[str]="relu" , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=0.3 , UpperCAmelCase_ : List[str]=1 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Optional[Any]=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=(7,) , UpperCAmelCase_ : List[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Optional[Any]=False , **UpperCAmelCase_ : Any , ) ->int: """simple docstring""" super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = num_attention_heads snake_case_ = attention_head_dim snake_case_ = max_position_embeddings snake_case_ = layer_norm_eps snake_case_ = layerdrop snake_case_ = hidden_act snake_case_ = initializer_range snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = pad_token_id snake_case_ = bos_token_id snake_case_ = eos_token_id snake_case_ = conv_glu_dim snake_case_ = conv_dropout snake_case_ = num_conv_layers snake_case_ = input_feat_per_channel snake_case_ = input_channels snake_case_ = conv_channels snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # prevents config testing fail with exporting to json snake_case_ = list(A_ ) snake_case_ = list(A_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
702
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class __A (snake_case__): '''simple docstring''' __lowercase: Any = """mctct""" def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict: """simple docstring""" super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = num_attention_heads snake_case_ = attention_head_dim snake_case_ = max_position_embeddings snake_case_ = layer_norm_eps snake_case_ = layerdrop snake_case_ = hidden_act snake_case_ = initializer_range snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = pad_token_id snake_case_ = bos_token_id snake_case_ = eos_token_id snake_case_ = conv_glu_dim snake_case_ = conv_dropout snake_case_ = num_conv_layers snake_case_ = input_feat_per_channel snake_case_ = input_channels snake_case_ = conv_channels snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # prevents config testing fail with exporting to json snake_case_ = list(UpperCAmelCase_ ) snake_case_ = list(UpperCAmelCase_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
2
0
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> str: return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
703
"""simple docstring""" from math import factorial def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int: return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
2
0
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class __A (lowercase__): '''simple docstring''' __lowercase: Tuple = """mvp""" __lowercase: Union[str, Any] = ["""past_key_values"""] __lowercase: Tuple = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any=50_267 , UpperCAmelCase_ : str=1_024 , UpperCAmelCase_ : Dict=12 , UpperCAmelCase_ : Any=4_096 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : List[Any]=4_096 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[int]=1_024 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : str=False , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Dict=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : int=100 , UpperCAmelCase_ : Optional[Any]=800 , **UpperCAmelCase_ : List[str] , ) ->List[Any]: """simple docstring""" snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = d_model snake_case_ = encoder_ffn_dim snake_case_ = encoder_layers snake_case_ = encoder_attention_heads snake_case_ = decoder_ffn_dim snake_case_ = decoder_layers snake_case_ = decoder_attention_heads snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = activation_function snake_case_ = init_std snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = classifier_dropout snake_case_ = use_cache snake_case_ = encoder_layers snake_case_ = scale_embedding # scale factor will be sqrt(d_model) if True snake_case_ = use_prompt snake_case_ = prompt_length snake_case_ = prompt_mid_dim super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __lowerCamelCase ): snake_case_ = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ """The config can simply be saved and uploaded again to be fixed.""" )
704
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: str = VQModel __lowercase: Union[str, Any] = """sample""" @property def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple: """simple docstring""" snake_case_ = 4 snake_case_ = 3 snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) return {"sample": image} @property def lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" return (3, 32, 32) def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } snake_case_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCAmelCase_ ) snake_case_ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(UpperCAmelCase_ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) snake_case_ = image.to(UpperCAmelCase_ ) with torch.no_grad(): snake_case_ = model(UpperCAmelCase_ ).sample snake_case_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] ) # fmt: on self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
2
0
"""simple docstring""" __SCREAMING_SNAKE_CASE : Dict = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __SCREAMING_SNAKE_CASE : Union[str, Any] = concatenate_datasets __SCREAMING_SNAKE_CASE : Dict = DownloadConfig __SCREAMING_SNAKE_CASE : Optional[int] = DownloadManager __SCREAMING_SNAKE_CASE : Tuple = DownloadMode __SCREAMING_SNAKE_CASE : Union[str, Any] = DownloadConfig __SCREAMING_SNAKE_CASE : Tuple = DownloadMode __SCREAMING_SNAKE_CASE : int = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
705
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Dict = KandinskyVaaControlnetPipeline __lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowercase: Union[str, Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowercase: Tuple = False @property def lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" return 32 @property def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" return 32 @property def lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" return self.time_input_dim @property def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" return 100 @property def lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" torch.manual_seed(0 ) snake_case_ = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : Any ) ->int: """simple docstring""" torch.manual_seed(0 ) snake_case_ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" snake_case_ = self.dummy_unet snake_case_ = self.dummy_movq snake_case_ = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , ) snake_case_ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]: """simple docstring""" snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase_ ) # create hint snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) if str(UpperCAmelCase_ ).startswith("""mps""" ): snake_case_ = torch.manual_seed(UpperCAmelCase_ ) else: snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) snake_case_ = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" snake_case_ = """cpu""" snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**UpperCAmelCase_ ) snake_case_ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) snake_case_ = output.images snake_case_ = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array( [0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" snake_case_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) snake_case_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0 snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case_ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case_ = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = """A robot, 4k photo""" snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 ) snake_case_ , snake_case_ = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 ) snake_case_ = pipeline( image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __SCREAMING_SNAKE_CASE : Optional[int] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : int = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
706
"""simple docstring""" from __future__ import annotations from collections import deque class __A : '''simple docstring''' def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]: """simple docstring""" snake_case_ = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(UpperCAmelCase_ ) self.set_fail_transitions() def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None: """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None: """simple docstring""" snake_case_ = 0 for character in keyword: snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) snake_case_ = len(self.adlist ) - 1 else: snake_case_ = next_state self.adlist[current_state]["output"].append(UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->None: """simple docstring""" snake_case_ = deque() for node in self.adlist[0]["next_states"]: q.append(UpperCAmelCase_ ) snake_case_ = 0 while q: snake_case_ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(UpperCAmelCase_ ) snake_case_ = self.adlist[r]["""fail_state"""] while ( self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None and state != 0 ): snake_case_ = self.adlist[state]["""fail_state"""] snake_case_ = self.find_next_state( UpperCAmelCase_ , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: snake_case_ = 0 snake_case_ = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]: """simple docstring""" snake_case_ = {} # returns a dict with keywords and list of its occurrences snake_case_ = 0 for i in range(len(UpperCAmelCase_ ) ): while ( self.find_next_state(UpperCAmelCase_ , string[i] ) is None and current_state != 0 ): snake_case_ = self.adlist[current_state]["""fail_state"""] snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] ) if next_state is None: snake_case_ = 0 else: snake_case_ = next_state for key in self.adlist[current_state]["output"]: if key not in result: snake_case_ = [] result[key].append(i - len(UpperCAmelCase_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __SCREAMING_SNAKE_CASE : List[Any] = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def _a ( _SCREAMING_SNAKE_CASE = "mumbai" ) -> Generator[tuple[str, str], None, None]: snake_case_ = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): snake_case_ = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() snake_case_ = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
707
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = num_channels snake_case_ = num_stages snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = is_training snake_case_ = use_labels snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_labels snake_case_ = initializer_range snake_case_ = out_features snake_case_ = out_indices snake_case_ = scope def lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]: """simple docstring""" snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any: """simple docstring""" snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple: """simple docstring""" snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case_ = None snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""pixel_values""": pixel_values} return config, inputs_dict def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Optional[Any] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __lowercase: Union[str, Any] = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) __lowercase: Union[str, Any] = False __lowercase: Optional[Any] = False __lowercase: Any = False __lowercase: Union[str, Any] = False __lowercase: Dict = False def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple: """simple docstring""" snake_case_ = ConvNextVaModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels() snake_case_ = True if model_class.__name__ in [ *get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ ), ]: continue snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.train() snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) snake_case_ = model(**UpperCAmelCase_ ).loss loss.backward() def lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels() snake_case_ = False snake_case_ = True if ( model_class.__name__ in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )] or not model_class.supports_gradient_checkpointing ): continue snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.gradient_checkpointing_enable() model.train() snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) snake_case_ = model(**UpperCAmelCase_ ).loss loss.backward() def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ): snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case_ = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def _a ( ) -> str: snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __A (unittest.TestCase): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): snake_case_ = model(**UpperCAmelCase_ ) # verify the logits snake_case_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
2
0
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart __SCREAMING_SNAKE_CASE : int = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } __SCREAMING_SNAKE_CASE : Optional[Any] = { 'facebook/bart-base': 1_024, 'facebook/bart-large': 1_024, 'facebook/bart-large-mnli': 1_024, 'facebook/bart-large-cnn': 1_024, 'facebook/bart-large-xsum': 1_024, 'yjernite/bart_eli5': 1_024, } @lru_cache() def _a ( ) -> Dict: snake_case_ = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) snake_case_ = bs[:] snake_case_ = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCAmelCase ) cs.append(2**8 + n ) n += 1 snake_case_ = [chr(__lowerCAmelCase ) for n in cs] return dict(zip(__lowerCAmelCase , __lowerCAmelCase ) ) def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = set() snake_case_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case_ = char return pairs class __A (snake_case__): '''simple docstring''' __lowercase: Optional[int] = VOCAB_FILES_NAMES __lowercase: List[str] = PRETRAINED_VOCAB_FILES_MAP __lowercase: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase: Dict = ["""input_ids""", """attention_mask"""] def __init__( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any]="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : int="<unk>" , UpperCAmelCase_ : List[str]="<pad>" , UpperCAmelCase_ : Union[str, Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Tuple , ) ->Optional[int]: """simple docstring""" snake_case_ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else bos_token snake_case_ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else eos_token snake_case_ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else sep_token snake_case_ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else cls_token snake_case_ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else unk_token snake_case_ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token super().__init__( errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) with open(_lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: snake_case_ = json.load(_lowerCAmelCase ) snake_case_ = {v: k for k, v in self.encoder.items()} snake_case_ = errors # how to handle errors in decoding snake_case_ = bytes_to_unicode() snake_case_ = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCAmelCase , encoding="""utf-8""" ) as merges_handle: snake_case_ = merges_handle.read().split("""\n""" )[1:-1] snake_case_ = [tuple(merge.split() ) for merge in bpe_merges] snake_case_ = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) snake_case_ = {} snake_case_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case_ = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def lowerCAmelCase ( self : Tuple ) ->Tuple: """simple docstring""" return len(self.encoder ) def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Union[str, Any] ) ->int: """simple docstring""" if token in self.cache: return self.cache[token] snake_case_ = tuple(_lowerCAmelCase ) snake_case_ = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: snake_case_ = min(_lowerCAmelCase , key=lambda UpperCAmelCase_ : self.bpe_ranks.get(_lowerCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break snake_case_ , snake_case_ = bigram snake_case_ = [] snake_case_ = 0 while i < len(_lowerCAmelCase ): try: snake_case_ = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case_ = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case_ = tuple(_lowerCAmelCase ) snake_case_ = new_word if len(_lowerCAmelCase ) == 1: break else: snake_case_ = get_pairs(_lowerCAmelCase ) snake_case_ = """ """.join(_lowerCAmelCase ) snake_case_ = word return word def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : int ) ->Optional[Any]: """simple docstring""" snake_case_ = [] for token in re.findall(self.pat , _lowerCAmelCase ): snake_case_ = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCAmelCase ).split(""" """ ) ) return bpe_tokens def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple ) ->List[Any]: """simple docstring""" return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : int , UpperCAmelCase_ : int ) ->List[str]: """simple docstring""" return self.decoder.get(_lowerCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[str] ) ->Tuple: """simple docstring""" snake_case_ = """""".join(_lowerCAmelCase ) snake_case_ = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple = None ) ->Dict: """simple docstring""" if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case_ = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + """\n""" ) snake_case_ = 0 with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) snake_case_ = token_index writer.write(""" """.join(_lowerCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] = None ) ->Optional[Any]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] = None , UpperCAmelCase_ : List[str] = False ) ->List[Any]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] = None ) ->Tuple: """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any]=False , **UpperCAmelCase_ : Optional[int] ) ->str: """simple docstring""" snake_case_ = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowerCAmelCase ) > 0 and not text[0].isspace()): snake_case_ = """ """ + text return (text, kwargs)
708
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights'] def _a ( _SCREAMING_SNAKE_CASE ) -> str: if "emb" in name: snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: snake_case_ = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: snake_case_ = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: snake_case_ = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: snake_case_ = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: snake_case_ = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]: snake_case_ = list(state_dict.keys() ) snake_case_ = {} for key in keys: snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE ) snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE ) if "in_proj_weight" in key: # split fused qkv proj snake_case_ = val[:hidden_size, :] snake_case_ = val[hidden_size : 2 * hidden_size, :] snake_case_ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: snake_case_ = val else: snake_case_ = val return state_dict, enc_dec_proj_state_dict def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values snake_case_ = 1_024 snake_case_ = 24 snake_case_ = 16 elif checkpoint == "medium": snake_case_ = 1_536 snake_case_ = 48 snake_case_ = 24 elif checkpoint == "large": snake_case_ = 2_048 snake_case_ = 48 snake_case_ = 32 else: raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) snake_case_ = MusicgenDecoderConfig( hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , ) return config @torch.no_grad() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple: snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE ) snake_case_ = fairseq_model.lm.state_dict() snake_case_ , snake_case_ = rename_state_dict( _SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size ) snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" ) snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" ) if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE ) # check we can do a forward pass snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) snake_case_ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits if logits.shape != (8, 1, 2_048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" ) snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) # set the appropriate bos/pad token ids snake_case_ = 2_048 snake_case_ = 2_048 # set other default generation config params snake_case_ = int(30 * audio_encoder.config.frame_rate ) snake_case_ = True snake_case_ = 3.0 if pytorch_dump_folder is not None: Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if repo_id: logger.info(f"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) processor.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
2
0
"""simple docstring""" from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
709
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if index == number_of_items: return 0 snake_case_ = 0 snake_case_ = 0 snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 ) if weights[index] <= max_weight: snake_case_ = values[index] + knapsack( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 ) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __SCREAMING_SNAKE_CASE : List[str] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __SCREAMING_SNAKE_CASE : List[Any] = {'facebook/blenderbot-3B': 128} class __A (snake_case__): '''simple docstring''' __lowercase: List[str] = VOCAB_FILES_NAMES __lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowercase: int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase: Any = ["""input_ids""", """attention_mask"""] __lowercase: Optional[Any] = BlenderbotTokenizer def __init__( self : Dict , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[Any]="replace" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : str="</s>" , UpperCAmelCase_ : List[str]="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : Union[str, Any]="<unk>" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Dict="<mask>" , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Tuple=True , **UpperCAmelCase_ : Dict , ) ->int: """simple docstring""" super().__init__( __A , __A , tokenizer_file=__A , errors=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , trim_offsets=__A , **__A , ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __A ) != add_prefix_space: snake_case_ = getattr(__A , pre_tok_state.pop("""type""" ) ) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**__A ) snake_case_ = add_prefix_space snake_case_ = "post_processor" snake_case_ = getattr(self.backend_tokenizer , __A , __A ) if tokenizer_component_instance: snake_case_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ = tuple(state["""sep"""] ) if "cls" in state: snake_case_ = tuple(state["""cls"""] ) snake_case_ = False if state.get("""add_prefix_space""" , __A ) != add_prefix_space: snake_case_ = add_prefix_space snake_case_ = True if state.get("""trim_offsets""" , __A ) != trim_offsets: snake_case_ = trim_offsets snake_case_ = True if changes_to_apply: snake_case_ = getattr(__A , state.pop("""type""" ) ) snake_case_ = component_class(**__A ) setattr(self.backend_tokenizer , __A , __A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : List[Any] ) ->str: """simple docstring""" snake_case_ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else value snake_case_ = value def lowerCAmelCase ( self : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[str] ) ->str: """simple docstring""" snake_case_ = kwargs.get("""is_split_into_words""" , __A ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A , **__A ) def lowerCAmelCase ( self : str , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = kwargs.get("""is_split_into_words""" , __A ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__A , **__A ) def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->List[str]: """simple docstring""" snake_case_ = self._tokenizer.model.save(__A , name=__A ) return tuple(__A ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[str]: """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->int: """simple docstring""" return token_ids_a + [self.eos_token_id] def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : "Conversation" ) ->Dict: """simple docstring""" snake_case_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(__A ) snake_case_ = " ".join(__A ) snake_case_ = self.encode(__A ) if len(__A ) > self.model_max_length: snake_case_ = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
710
"""simple docstring""" from math import factorial def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int: snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case_ = n // 2 return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: __SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
2
0
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A (UpperCamelCase_ , unittest.TestCase): __lowercase: List[str] = CodeGenTokenizer __lowercase: Union[str, Any] = CodeGenTokenizerFast __lowercase: Tuple = True __lowercase: Optional[int] = {"""add_prefix_space""": True} __lowercase: int = False def lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] snake_case_ = dict(zip(_a , range(len(_a ) ) ) ) snake_case_ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case_ = {"""unk_token""": """<unk>"""} snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def lowerCAmelCase ( self : Optional[int] , **UpperCAmelCase_ : str ) ->Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **_a ) def lowerCAmelCase ( self : Optional[int] , **UpperCAmelCase_ : List[str] ) ->Union[str, Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Dict ) ->List[str]: """simple docstring""" snake_case_ = """lower newer""" snake_case_ = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" snake_case_ = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case_ = """lower newer""" snake_case_ = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] snake_case_ = tokenizer.tokenize(_a , add_prefix_space=_a ) self.assertListEqual(_a , _a ) snake_case_ = tokens + [tokenizer.unk_token] snake_case_ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) def lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer(add_prefix_space=_a ) snake_case_ = """lower newer""" # Testing tokenization snake_case_ = tokenizer.tokenize(_a , add_prefix_space=_a ) snake_case_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) # Testing conversion to ids without special tokens snake_case_ = tokenizer.encode(_a , add_special_tokens=_a , add_prefix_space=_a ) snake_case_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) # Testing conversion to ids with special tokens snake_case_ = self.get_rust_tokenizer(add_prefix_space=_a ) snake_case_ = tokenizer.encode(_a , add_prefix_space=_a ) snake_case_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # Testing the unknown token snake_case_ = tokens + [rust_tokenizer.unk_token] snake_case_ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_a ) , _a ) def lowerCAmelCase ( self : List[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : int ) ->Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Optional[Any]=15 ) ->Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) # Simple input snake_case_ = """This is a simple input""" snake_case_ = ["""This is a simple input 1""", """This is a simple input 2"""] snake_case_ = ("""This is a simple input""", """This is a pair""") snake_case_ = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(_a , tokenizer_r.encode , _a , max_length=_a , padding="""max_length""" ) # Simple input self.assertRaises(_a , tokenizer_r.encode_plus , _a , max_length=_a , padding="""max_length""" ) # Simple input self.assertRaises( _a , tokenizer_r.batch_encode_plus , _a , max_length=_a , padding="""max_length""" , ) # Pair input self.assertRaises(_a , tokenizer_r.encode , _a , max_length=_a , padding="""max_length""" ) # Pair input self.assertRaises(_a , tokenizer_r.encode_plus , _a , max_length=_a , padding="""max_length""" ) # Pair input self.assertRaises( _a , tokenizer_r.batch_encode_plus , _a , max_length=_a , padding="""max_length""" , ) def lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" snake_case_ = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input snake_case_ = """This is a simple input""" snake_case_ = ["""This is a simple input looooooooong""", """This is a simple input"""] snake_case_ = ("""This is a simple input""", """This is a pair""") snake_case_ = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] snake_case_ = tokenizer.pad_token_id snake_case_ = tokenizer(_a , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) snake_case_ = tokenizer(_a , padding=_a , truncate=_a , return_tensors="""np""" ) snake_case_ = tokenizer(*_a , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) snake_case_ = tokenizer(_a , padding=_a , truncate=_a , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" snake_case_ = """$$$""" snake_case_ = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=_a , add_bos_token=_a ) snake_case_ = """This is a simple input""" snake_case_ = ["""This is a simple input 1""", """This is a simple input 2"""] snake_case_ = tokenizer.bos_token_id snake_case_ = tokenizer(_a ) snake_case_ = tokenizer(_a ) self.assertEqual(out_s.input_ids[0] , _a ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) snake_case_ = tokenizer.decode(out_s.input_ids ) snake_case_ = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , _a ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCAmelCase ( self : Tuple ) ->Union[str, Any]: """simple docstring""" snake_case_ = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) snake_case_ = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" snake_case_ = """\nif len_a > len_b: result = a\nelse: result = b""" snake_case_ = tokenizer.encode(_a ) snake_case_ = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] snake_case_ = tokenizer.decode(_a , truncate_before_pattern=_a ) self.assertEqual(_a , _a ) def lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" pass
711
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str: snake_case_ = ascii_letters + digits + punctuation return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(_SCREAMING_SNAKE_CASE ) snake_case_ = i // 3 snake_case_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) snake_case_ = ( chars_incl + random(_SCREAMING_SNAKE_CASE , quotient + remainder ) + random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) + random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) snake_case_ = list(_SCREAMING_SNAKE_CASE ) shuffle(_SCREAMING_SNAKE_CASE ) return "".join(_SCREAMING_SNAKE_CASE ) # random is a generalised function for letters, characters and numbers def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool: if len(_SCREAMING_SNAKE_CASE ) < min_length: # Your Password must be at least 8 characters long return False snake_case_ = any(char in ascii_uppercase for char in password ) snake_case_ = any(char in ascii_lowercase for char in password ) snake_case_ = any(char in digits for char in password ) snake_case_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _a ( ) -> str: snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() ) snake_case_ = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) ) print( """Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
2
0
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __SCREAMING_SNAKE_CASE : str = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Any: if rng is None: snake_case_ = random.Random() snake_case_ = 1 for dim in shape: total_dims *= dim snake_case_ = [] for _ in range(__UpperCAmelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) snake_case_ = np.array(__UpperCAmelCase , dtype=jnp.intaa ).reshape(__UpperCAmelCase ) return output def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Dict: snake_case_ = ids_tensor(__UpperCAmelCase , vocab_size=2 , rng=__UpperCAmelCase ) # make sure that at least one token is attended to for each batch snake_case_ = 1 return attn_mask @require_flax class __A : '''simple docstring''' __lowercase: int = None __lowercase: Dict = () def lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 snake_case_ = 2 snake_case_ = inputs["""input_ids"""].shape[-1] // 2 snake_case_ = inputs["""input_ids"""][:max_batch_size, :sequence_length] snake_case_ = jnp.ones_like(UpperCAmelCase_ ) snake_case_ = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens snake_case_ = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` snake_case_ = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" snake_case_ , snake_case_ , snake_case_ , snake_case_ = self._get_input_ids_and_config() snake_case_ = False snake_case_ = max_length snake_case_ = 0 for model_class in self.all_generative_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case_ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = pt_model_class(UpperCAmelCase_ ).eval() snake_case_ = load_flax_weights_in_pytorch_model(UpperCAmelCase_ , flax_model.params ) snake_case_ = flax_model.generate(UpperCAmelCase_ ).sequences snake_case_ = pt_model.generate(torch.tensor(UpperCAmelCase_ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: snake_case_ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" snake_case_ , snake_case_ , snake_case_ , snake_case_ = self._get_input_ids_and_config() snake_case_ = False snake_case_ = max_length for model_class in self.all_generative_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = model.generate(UpperCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase_ ) snake_case_ = jit(model.generate ) snake_case_ = jit_generate(UpperCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" snake_case_ , snake_case_ , snake_case_ , snake_case_ = self._get_input_ids_and_config() snake_case_ = True snake_case_ = max_length for model_class in self.all_generative_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = model.generate(UpperCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase_ ) snake_case_ = jit(model.generate ) snake_case_ = jit_generate(UpperCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" snake_case_ , snake_case_ , snake_case_ , snake_case_ = self._get_input_ids_and_config() snake_case_ = False snake_case_ = max_length snake_case_ = 2 for model_class in self.all_generative_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = model.generate(UpperCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase_ ) snake_case_ = jit(model.generate ) snake_case_ = jit_generate(UpperCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" snake_case_ , snake_case_ , snake_case_ , snake_case_ = self._get_input_ids_and_config() snake_case_ = False snake_case_ = max_length snake_case_ = 2 snake_case_ = 2 for model_class in self.all_generative_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = model.generate(UpperCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" snake_case_ , snake_case_ , snake_case_ , snake_case_ = self._get_input_ids_and_config() snake_case_ = True snake_case_ = max_length snake_case_ = 0.8 snake_case_ = 10 snake_case_ = 0.3 snake_case_ = 1 snake_case_ = 8 snake_case_ = 9 for model_class in self.all_generative_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = model.generate(UpperCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase_ ) snake_case_ = jit(model.generate ) snake_case_ = jit_generate(UpperCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" snake_case_ , snake_case_ , snake_case_ , snake_case_ = self._get_input_ids_and_config() snake_case_ = max_length snake_case_ = 1 snake_case_ = 8 snake_case_ = 9 for model_class in self.all_generative_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = model.generate(UpperCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase_ ) snake_case_ = jit(model.generate ) snake_case_ = jit_generate(UpperCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" snake_case_ , snake_case_ , snake_case_ , snake_case_ = self._get_input_ids_and_config() snake_case_ = max_length snake_case_ = 2 snake_case_ = 1 snake_case_ = 8 snake_case_ = 9 for model_class in self.all_generative_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = model.generate(UpperCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase_ ) snake_case_ = jit(model.generate ) snake_case_ = jit_generate(UpperCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" snake_case_ , snake_case_ , snake_case_ , snake_case_ = self._get_input_ids_and_config() # pad attention mask on the left snake_case_ = attention_mask.at[(0, 0)].set(0 ) snake_case_ = False snake_case_ = max_length for model_class in self.all_generative_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = model.generate(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase_ ) snake_case_ = jit(model.generate ) snake_case_ = jit_generate(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" snake_case_ , snake_case_ , snake_case_ , snake_case_ = self._get_input_ids_and_config() # pad attention mask on the left snake_case_ = attention_mask.at[(0, 0)].set(0 ) snake_case_ = True snake_case_ = max_length for model_class in self.all_generative_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = model.generate(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase_ ) snake_case_ = jit(model.generate ) snake_case_ = jit_generate(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCAmelCase ( self : str ) ->List[str]: """simple docstring""" snake_case_ , snake_case_ , snake_case_ , snake_case_ = self._get_input_ids_and_config() # pad attention mask on the left snake_case_ = attention_mask.at[(0, 0)].set(0 ) snake_case_ = 2 snake_case_ = max_length for model_class in self.all_generative_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = model.generate(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase_ ) snake_case_ = jit(model.generate ) snake_case_ = jit_generate(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : List[Any] ) ->int: """simple docstring""" snake_case_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) snake_case_ = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) snake_case_ = """Hello world""" snake_case_ = tokenizer(UpperCAmelCase_ , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(UpperCAmelCase_ , """do_samples""" ): model.generate(UpperCAmelCase_ , do_samples=UpperCAmelCase_ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(UpperCAmelCase_ , """foo""" ): snake_case_ = {"""foo""": """bar"""} model.generate(UpperCAmelCase_ , **UpperCAmelCase_ )
712
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __A (unittest.TestCase): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]: """simple docstring""" snake_case_ = size if size is not None else {"""height""": 18, """width""": 18} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = image_size snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = do_normalize def lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804], [-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" snake_case_ = ImageGPTImageProcessingTester(self ) @property def lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) ) def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) snake_case_ = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) ) else: self.assertEqual(obj[key] , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" ) image_processor_first.to_json_file(UpperCAmelCase_ ) snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict() snake_case_ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(UpperCAmelCase_ ) snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict() snake_case_ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , UpperCAmelCase_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" pass def _a ( ) -> str: snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) snake_case_ = Image.open(dataset[4]["""file"""] ) snake_case_ = Image.open(dataset[5]["""file"""] ) snake_case_ = [imagea, imagea] return images @require_vision @require_torch class __A (unittest.TestCase): '''simple docstring''' @slow def lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) snake_case_ = prepare_images() # test non-batched snake_case_ = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_024) ) snake_case_ = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ ) # test batched snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_024) ) snake_case_ = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
2
0
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" snake_case_ = 1 snake_case_ = 3 snake_case_ = (32, 32) snake_case_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_UpperCAmelCase ) return image @property def lowerCAmelCase ( self : Dict ) ->Dict: """simple docstring""" torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def lowerCAmelCase ( self : Any ) ->str: """simple docstring""" torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(_UpperCAmelCase ) @property def lowerCAmelCase ( self : str ) ->str: """simple docstring""" def extract(*UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any] ): class __A : '''simple docstring''' def __init__( self : Optional[Any] ) ->str: """simple docstring""" snake_case_ = torch.ones([0] ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] ) ->List[Any]: """simple docstring""" self.pixel_values.to(_UpperCAmelCase ) return self return Out() return extract def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" snake_case_ = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ = self.dummy_cond_unet snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) snake_case_ = self.dummy_vae snake_case_ = self.dummy_text_encoder snake_case_ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) snake_case_ = 77 snake_case_ = self.dummy_image.to(_UpperCAmelCase ) snake_case_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionImgaImgPipeline( unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=self.dummy_extractor , ) snake_case_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_UpperCAmelCase ) snake_case_ = alt_pipe.to(_UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = """A painting of a squirrel eating a burger""" snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) snake_case_ = alt_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=_UpperCAmelCase , ) snake_case_ = output.images snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) snake_case_ = alt_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=_UpperCAmelCase , return_dict=_UpperCAmelCase , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" snake_case_ = self.dummy_cond_unet snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) snake_case_ = self.dummy_vae snake_case_ = self.dummy_text_encoder snake_case_ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) snake_case_ = 77 snake_case_ = self.dummy_image.to(_UpperCAmelCase ) # put models in fp16 snake_case_ = unet.half() snake_case_ = vae.half() snake_case_ = bert.half() # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionImgaImgPipeline( unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=self.dummy_extractor , ) snake_case_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_UpperCAmelCase ) snake_case_ = alt_pipe.to(_UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = """A painting of a squirrel eating a burger""" snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe( [prompt] , generator=_UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , image=_UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" snake_case_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 snake_case_ = init_image.resize((760, 504) ) snake_case_ = """BAAI/AltDiffusion""" snake_case_ = AltDiffusionImgaImgPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() snake_case_ = """A fantasy landscape, trending on artstation""" snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_UpperCAmelCase , output_type="""np""" , ) snake_case_ = output.images[0] snake_case_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) snake_case_ = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" snake_case_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) snake_case_ = init_image.resize((768, 512) ) snake_case_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) snake_case_ = """BAAI/AltDiffusion""" snake_case_ = AltDiffusionImgaImgPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() snake_case_ = """A fantasy landscape, trending on artstation""" snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_UpperCAmelCase , output_type="""np""" , ) snake_case_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
713
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __A : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = scope snake_case_ = range_bbox def lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case_ = bbox[i, j, 3] snake_case_ = bbox[i, j, 1] snake_case_ = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case_ = bbox[i, j, 2] snake_case_ = bbox[i, j, 0] snake_case_ = t snake_case_ = None if self.use_input_mask: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str: """simple docstring""" snake_case_ = LiltModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict: """simple docstring""" snake_case_ = self.num_labels snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict: """simple docstring""" snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Optional[int] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __lowercase: Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __lowercase: Union[str, Any] = False __lowercase: List[str] = False def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]: """simple docstring""" return True def lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" snake_case_ = LiltModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[str] ) ->int: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) @slow def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_torch @slow class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ ) snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ ) snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ ) # forward pass with torch.no_grad(): snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ ) snake_case_ = torch.Size([1, 2, 768] ) snake_case_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , ) self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
2
0
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __SCREAMING_SNAKE_CASE : List[Any] = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: if args.student_type == "roberta": snake_case_ = False elif args.student_type == "gpt2": snake_case_ = False def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: if args.student_type == "roberta": snake_case_ = False def _a ( ) -> Union[str, Any]: snake_case_ = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=__A , required=__A , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=__A , required=__A , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=__A , choices=["""distilbert""", """roberta""", """gpt2"""] , required=__A , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=__A , required=__A , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=__A , type=__A , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=__A , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=__A , required=__A , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=__A , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=__A , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=__A , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=__A , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=__A , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=__A , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=__A , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=__A , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=__A , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=__A , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=__A , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=__A , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=__A , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=__A , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=__A , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=__A , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=__A , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5E-4 , type=__A , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-6 , type=__A , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=__A , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=__A , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=__A , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=__A , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=__A , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=__A , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=__A , default=500 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=__A , default=4_000 , help="""Checkpoint interval.""" ) snake_case_ = parser.parse_args() sanity_checks(__A ) # ARGS # init_gpu_params(__A ) set_seed(__A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(__A ) , __A , indent=4 ) git_log(args.dump_path ) snake_case_ = MODEL_CLASSES[args.student_type] snake_case_ = MODEL_CLASSES[args.teacher_type] # TOKENIZER # snake_case_ = teacher_tokenizer_class.from_pretrained(args.teacher_name ) snake_case_ = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): snake_case_ = tokenizer.all_special_tokens.index(__A ) snake_case_ = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) snake_case_ = special_tok_ids snake_case_ = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , """rb""" ) as fp: snake_case_ = pickle.load(__A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , """rb""" ) as fp: snake_case_ = pickle.load(__A ) snake_case_ = np.maximum(__A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): snake_case_ = 0.0 # do not predict special tokens snake_case_ = torch.from_numpy(__A ) else: snake_case_ = None snake_case_ = LmSeqsDataset(params=__A , data=__A ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) snake_case_ = student_config_class.from_pretrained(args.student_config ) snake_case_ = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) snake_case_ = student_model_class.from_pretrained(args.student_pretrained_weights , config=__A ) else: snake_case_ = student_model_class(__A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info("""Student loaded.""" ) # TEACHER # snake_case_ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__A , __A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__A , __A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() snake_case_ = Distiller( params=__A , dataset=__A , token_probs=__A , student=__A , teacher=__A ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
714
"""simple docstring""" from __future__ import annotations def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]: snake_case_ = 0 snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: snake_case_ = i + 1 else: snake_case_ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
2
0
"""simple docstring""" from __future__ import annotations def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> int: if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case_ = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() snake_case_ = False __SCREAMING_SNAKE_CASE : List[Any] = [3, 1, 2, 4] generate_all_permutations(sequence) __SCREAMING_SNAKE_CASE : List[Any] = ['A', 'B', 'C'] generate_all_permutations(sequence_a)
715
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
0
"""simple docstring""" from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function __SCREAMING_SNAKE_CASE : Tuple = 1.0_54_57_18_17E-34 # unit of ℏ : J * s __SCREAMING_SNAKE_CASE : Dict = 3E8 # unit of c : m * s^-1 def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: snake_case_ = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: snake_case_ = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: snake_case_ = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
716
"""simple docstring""" __SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter' __SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE' def _a ( _SCREAMING_SNAKE_CASE ) -> bool: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}""" raise TypeError(_SCREAMING_SNAKE_CASE ) snake_case_ = spanish_id.replace("""-""" , """""" ).upper() if len(_SCREAMING_SNAKE_CASE ) != 9: raise ValueError(_SCREAMING_SNAKE_CASE ) try: snake_case_ = int(spanish_id_clean[0:8] ) snake_case_ = spanish_id_clean[8] except ValueError as ex: raise ValueError(_SCREAMING_SNAKE_CASE ) from ex if letter.isdigit(): raise ValueError(_SCREAMING_SNAKE_CASE ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" snake_case_ = 10 def lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" snake_case_ = [1, 2, 3, 4] snake_case_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowerCamelCase_ , self.block_size , 0 ) , lowerCamelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" snake_case_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] snake_case_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCamelCase_ , self.block_size , 0 ) , lowerCamelCase_ ) def lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" snake_case_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] snake_case_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCamelCase_ , self.block_size , 0 ) , lowerCamelCase_ ) def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" snake_case_ = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' snake_case_ = process_story(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , [] ) def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" snake_case_ = '''''' snake_case_ = process_story(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , [] ) self.assertEqual(lowerCamelCase_ , [] ) def lowerCAmelCase ( self : Tuple ) ->Tuple: """simple docstring""" snake_case_ = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) snake_case_ = process_story(lowerCamelCase_ ) snake_case_ = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) snake_case_ = ['''It was the best of times.'''] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" snake_case_ = torch.tensor([1, 2, 3, 4] ) snake_case_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowerCamelCase_ , 0 ).numpy() , expected.numpy() ) def lowerCAmelCase ( self : Tuple ) ->Tuple: """simple docstring""" snake_case_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) snake_case_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCamelCase_ , 23 ).numpy() , expected.numpy() ) def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) snake_case_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCamelCase_ , 1 ).numpy() , expected.numpy() ) def lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" snake_case_ = 101 snake_case_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) snake_case_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) snake_case_ = compute_token_type_ids(lowerCamelCase_ , lowerCamelCase_ ) np.testing.assert_array_equal(lowerCamelCase_ , lowerCamelCase_ )
717
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'} __SCREAMING_SNAKE_CASE : List[str] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } __SCREAMING_SNAKE_CASE : List[str] = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } __SCREAMING_SNAKE_CASE : int = '▁' class __A (snake_case__): '''simple docstring''' __lowercase: Optional[Any] = VOCAB_FILES_NAMES __lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None: """simple docstring""" snake_case_ = ( AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token ) snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) snake_case_ = do_lower_case snake_case_ = remove_space snake_case_ = keep_accents snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) @property def lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" return len(self.sp_model ) def lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) ->List[str]: """simple docstring""" snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]: """simple docstring""" snake_case_ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str: """simple docstring""" if self.remove_space: snake_case_ = """ """.join(inputs.strip().split() ) else: snake_case_ = inputs snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ ) snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] ) if self.do_lower_case: snake_case_ = outputs.lower() return outputs def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]: """simple docstring""" snake_case_ = self.preprocess_text(UpperCAmelCase_ ) snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) snake_case_ = [] for piece in pieces: if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case_ = cur_pieces[1:] else: snake_case_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase_ ) else: new_pieces.append(UpperCAmelCase_ ) return new_pieces def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict: """simple docstring""" return self.sp_model.PieceToId(UpperCAmelCase_ ) def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]: """simple docstring""" return self.sp_model.IdToPiece(UpperCAmelCase_ ) def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any: """simple docstring""" snake_case_ = [] snake_case_ = """""" snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase_ ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(UpperCAmelCase_ ) snake_case_ = False out_string += self.sp_model.decode(UpperCAmelCase_ ) return out_string.strip() def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]: """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1] return [1] + ([0] * len(UpperCAmelCase_ )) + [1] def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]: """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case_ = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , """wb""" ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
2
0
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _a ( ) -> Dict: snake_case_ = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=_A , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=_A , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=_A ) return parser.parse_args() def _a ( ) -> Optional[int]: snake_case_ = parse_args() # Import training_script as a module. snake_case_ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case_ = script_fpath.stem snake_case_ = importlib.import_module(_A ) # Patch sys.argv snake_case_ = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
718
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("""The given input must be positive""" ) # get the generated string sequence snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): snake_case_ = int(sequence[i] , 2 ) return sequence def _a ( _SCREAMING_SNAKE_CASE ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] snake_case_ = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits snake_case_ = gray_code_sequence_string(bit_count - 1 ) snake_case_ = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): snake_case_ = """0""" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): snake_case_ = """1""" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
2
0
def _a ( _SCREAMING_SNAKE_CASE = 2_000_000 ) -> int: snake_case_ = [0 for i in range(n + 1 )] snake_case_ = 1 snake_case_ = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , _SCREAMING_SNAKE_CASE ): snake_case_ = 1 snake_case_ = 0 for i in range(_SCREAMING_SNAKE_CASE ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f"""{solution() = }""")
719
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
0
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __A (SCREAMING_SNAKE_CASE__): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] ) ->int: """simple docstring""" snake_case_ = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" with self.assertRaises(_lowercase ): snake_case_ = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" with self.assertRaises(_lowercase ): snake_case_ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) ) def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" snake_case_ = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case_ = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) ) def lowerCAmelCase ( self : List[Any] ) ->Optional[int]: """simple docstring""" snake_case_ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" snake_case_ = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) def lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" snake_case_ = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case_ = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) ) def lowerCAmelCase ( self : int ) ->Union[str, Any]: """simple docstring""" snake_case_ = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" snake_case_ = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def lowerCAmelCase ( self : Any ) ->List[str]: """simple docstring""" import PIL.Image snake_case_ = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( """datasets.arrow_writer.cast_to_python_objects""" , side_effect=_lowercase ) as mock_cast_to_python_objects: snake_case_ = pa.array(TypedSequence([{"""path""": None, """bytes""": B"""image_bytes"""}, pil_image] , type=Image() ) ) snake_case_ = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("""optimize_list_casting""" , _lowercase ) self.assertFalse(kwargs["""optimize_list_casting"""] ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: snake_case_ = pa.BufferReader(__UpperCamelCase ) if isinstance(__UpperCamelCase , pa.Buffer ) else pa.memory_map(__UpperCamelCase ) snake_case_ = pa.ipc.open_stream(__UpperCamelCase ) snake_case_ = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: snake_case_ = pa.BufferOutputStream() snake_case_ = pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _a ( ) -> List[str]: snake_case_ = pa.BufferOutputStream() snake_case_ = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} ) with ArrowWriter(stream=__UpperCamelCase , features=__UpperCamelCase ) as writer: writer.write({"""labels""": 0} ) writer.write({"""labels""": 1} ) snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata snake_case_ = pa.BufferReader(output.getvalue() ) snake_case_ = pa.ipc.open_stream(__UpperCamelCase ) snake_case_ = f.read_all() snake_case_ = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__UpperCamelCase ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]: snake_case_ = pa.BufferOutputStream() with ArrowWriter( stream=__UpperCamelCase , writer_batch_size=__UpperCamelCase , hash_salt="""split_name""" , check_duplicates=__UpperCamelCase , ) as writer: with pytest.raises(__UpperCamelCase ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] ) snake_case_ = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] ) def _a ( _SCREAMING_SNAKE_CASE ) -> int: snake_case_ = pa.BufferOutputStream() with ArrowWriter( stream=__UpperCamelCase , writer_batch_size=__UpperCamelCase , hash_salt="""split_name""" , check_duplicates=__UpperCamelCase , ) as writer: with pytest.raises(__UpperCamelCase ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=10 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=10 ) snake_case_ = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] ) def _a ( _SCREAMING_SNAKE_CASE ) -> str: snake_case_ = pa.BufferOutputStream() with ArrowWriter( stream=__UpperCamelCase , writer_batch_size=__UpperCamelCase , hash_salt="""split_name""" , check_duplicates=__UpperCamelCase , ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 ) snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: snake_case_ = pa.BufferOutputStream() snake_case_ = pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) writer.write_batch({"""col_1""": [], """col_2""": []} ) snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: snake_case_ = pa.BufferOutputStream() snake_case_ = pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) ) snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: snake_case_ = pa.BufferOutputStream() snake_case_ = pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) ) writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) ) snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _a ( ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} snake_case_ = os.path.join(__UpperCamelCase , """test.arrow""" ) with ArrowWriter(path=__UpperCamelCase , schema=pa.schema(__UpperCamelCase ) ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(__UpperCamelCase , 1 ) def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: if pa.types.is_list(__UpperCamelCase ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: if isinstance(lst[0] , __UpperCamelCase ): change_first_primitive_element_in_list(lst[0] , __UpperCamelCase ) else: snake_case_ = value @pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: snake_case_ = pa.array(TypedSequence(__UpperCamelCase , optimized_int_type=__UpperCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( """col, expected_dtype""" , [ ("""attention_mask""", pa.inta()), ("""special_tokens_mask""", pa.inta()), ("""token_type_ids""", pa.inta()), ("""input_ids""", pa.intaa()), ("""other""", pa.intaa()), ] , ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: snake_case_ = pa.array(OptimizedTypedSequence(__UpperCamelCase , col=__UpperCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications snake_case_ = copy.deepcopy(__UpperCamelCase ) snake_case_ = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__UpperCamelCase , __UpperCamelCase ) snake_case_ = pa.array(OptimizedTypedSequence(__UpperCamelCase , col=__UpperCamelCase ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("""raise_exception""" , [False, True] ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: snake_case_ = str(tmp_path / """dataset-train.arrow""" ) try: with ArrowWriter(path=__UpperCamelCase ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: snake_case_ = """mock://dataset-train.arrow""" with ArrowWriter(path=__UpperCamelCase , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(__UpperCamelCase ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__UpperCamelCase ) def _a ( ) -> Optional[Any]: snake_case_ = pa.BufferOutputStream() with ParquetWriter(stream=__UpperCamelCase ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 snake_case_ = pa.BufferReader(output.getvalue() ) snake_case_ = pq.read_table(__UpperCamelCase ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("""embed_local_files""" , [False, True] ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: import PIL.Image snake_case_ = str(tmp_path / """test_image_rgb.jpg""" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(__UpperCamelCase , format="""png""" ) snake_case_ = pa.BufferOutputStream() with ParquetWriter( stream=__UpperCamelCase , features=Features({"""image""": Image()} ) , embed_local_files=__UpperCamelCase ) as writer: writer.write({"""image""": image_path} ) writer.finalize() snake_case_ = pa.BufferReader(output.getvalue() ) snake_case_ = pq.read_table(__UpperCamelCase ) snake_case_ = pa_table.to_pydict() if embed_local_files: assert isinstance(out["""image"""][0]["""path"""] , __UpperCamelCase ) with open(__UpperCamelCase , """rb""" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _a ( ) -> Union[str, Any]: snake_case_ = pa.schema([pa.field("""col_1""" , pa.string() , nullable=__UpperCamelCase )] ) snake_case_ = pa.BufferOutputStream() with ArrowWriter(stream=__UpperCamelCase ) as writer: writer._build_writer(inferred_schema=__UpperCamelCase ) assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] )
720
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/' __SCREAMING_SNAKE_CASE : List[Any] = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def _a ( _SCREAMING_SNAKE_CASE ) -> int: if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: snake_case_ = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: snake_case_ = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = {} import re snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) snake_case_ = re.compile( r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) snake_case_ = re.compile( r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) snake_case_ = re.compile( r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]] snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case_ = prefix + resnet_block snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]] snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case_ = prefix + resnet_block snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]] snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case_ = prefix + resnet_block snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # keep original key else: snake_case_ = original_key snake_case_ = replace_key(_SCREAMING_SNAKE_CASE ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) snake_case_ = original_key snake_case_ = original_key snake_case_ = value return new_dict @torch.no_grad() def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE ) open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content ) snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]] snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE ) snake_case_ = [] snake_case_ = {} for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ): snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""] snake_case_ = {} for k in old_dic.keys(): if k.endswith(""".b""" ): snake_case_ = old_dic[k] elif k.endswith(""".w""" ): snake_case_ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: snake_case_ = old_dic[k] else: snake_case_ = old_dic[k] snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}""" snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) weight_dict.append(_SCREAMING_SNAKE_CASE ) snake_case_ = weight_dict.pop(0 ) model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) return weight_dict if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) __SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
2
0
"""simple docstring""" from __future__ import annotations import bisect def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ) -> Any: if hi < 0: snake_case_ = len(snake_case__ ) while lo < hi: snake_case_ = lo + (hi - lo) // 2 if sorted_collection[mid] < item: snake_case_ = mid + 1 else: snake_case_ = mid return lo def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ) -> Any: if hi < 0: snake_case_ = len(snake_case__ ) while lo < hi: snake_case_ = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: snake_case_ = mid + 1 else: snake_case_ = mid return lo def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ) -> Any: sorted_collection.insert(bisect_left(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) , snake_case__ ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ) -> int: sorted_collection.insert(bisect_right(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) , snake_case__ ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: snake_case_ = 0 snake_case_ = len(snake_case__ ) - 1 while left <= right: snake_case_ = left + (right - left) // 2 snake_case_ = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: snake_case_ = midpoint - 1 else: snake_case_ = midpoint + 1 return None def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: snake_case_ = bisect.bisect_left(snake_case__ , snake_case__ ) if index != len(snake_case__ ) and sorted_collection[index] == item: return index return None def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: if right < left: return None snake_case_ = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(snake_case__ , snake_case__ , snake_case__ , midpoint - 1 ) else: return binary_search_by_recursion(snake_case__ , snake_case__ , midpoint + 1 , snake_case__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = input('Enter numbers separated by comma:\n').strip() __SCREAMING_SNAKE_CASE : Union[str, Any] = sorted(int(item) for item in user_input.split(',')) __SCREAMING_SNAKE_CASE : Any = int(input('Enter a single number to be found in the list:\n')) __SCREAMING_SNAKE_CASE : int = binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
721
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path __SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) __SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} __SCREAMING_SNAKE_CASE : Dict = 'zero2' __SCREAMING_SNAKE_CASE : List[Any] = 'zero3' __SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa] def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test __SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __A (snake_case__): '''simple docstring''' @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any: """simple docstring""" self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]: """simple docstring""" self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]: """simple docstring""" self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]: """simple docstring""" self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]: """simple docstring""" pass def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]: """simple docstring""" snake_case_ = models[model] snake_case_ = self.run_trainer( stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) self.do_checks(UpperCAmelCase_ ) return output_dir def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]: """simple docstring""" snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ ) snake_case_ = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(UpperCAmelCase_ )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(["""--fp16"""] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] snake_case_ = self.get_launcher(UpperCAmelCase_ ) snake_case_ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() ) return output_dir def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple: """simple docstring""" snake_case_ = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
2
0
"""simple docstring""" import math def _a ( _SCREAMING_SNAKE_CASE ) -> list[int]: snake_case_ = [] snake_case_ = 2 snake_case_ = int(math.sqrt(__SCREAMING_SNAKE_CASE ) ) # Size of every segment snake_case_ = [True] * (end + 1) snake_case_ = [] while start <= end: if temp[start] is True: in_prime.append(__SCREAMING_SNAKE_CASE ) for i in range(start * start , end + 1 , __SCREAMING_SNAKE_CASE ): snake_case_ = False start += 1 prime += in_prime snake_case_ = end + 1 snake_case_ = min(2 * end , __SCREAMING_SNAKE_CASE ) while low <= n: snake_case_ = [True] * (high - low + 1) for each in in_prime: snake_case_ = math.floor(low / each ) * each if t < low: t += each for j in range(__SCREAMING_SNAKE_CASE , high + 1 , __SCREAMING_SNAKE_CASE ): snake_case_ = False for j in range(len(__SCREAMING_SNAKE_CASE ) ): if temp[j] is True: prime.append(j + low ) snake_case_ = high + 1 snake_case_ = min(high + end , __SCREAMING_SNAKE_CASE ) return prime print(sieve(10**6))
700
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case__) class __A (snake_case__): '''simple docstring''' __lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) __lowercase: ClassVar[Features] = Features({"""audio""": Audio()}) __lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")}) __lowercase: str = "audio" __lowercase: str = "transcription" def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int: """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , UpperCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) snake_case_ = copy.deepcopy(self ) snake_case_ = self.input_schema.copy() snake_case_ = features[self.audio_column] snake_case_ = input_schema return task_template @property def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]: """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
2
0
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def _a ( _SCREAMING_SNAKE_CASE ) -> Dict: snake_case_ = SwinConfig() snake_case_ = swin_name.split("""_""" ) snake_case_ = name_split[1] snake_case_ = int(name_split[4] ) snake_case_ = int(name_split[3][-1] ) if model_size == "tiny": snake_case_ = 96 snake_case_ = (2, 2, 6, 2) snake_case_ = (3, 6, 12, 24) elif model_size == "small": snake_case_ = 96 snake_case_ = (2, 2, 18, 2) snake_case_ = (3, 6, 12, 24) elif model_size == "base": snake_case_ = 128 snake_case_ = (2, 2, 18, 2) snake_case_ = (4, 8, 16, 32) else: snake_case_ = 192 snake_case_ = (2, 2, 18, 2) snake_case_ = (6, 12, 24, 48) if "in22k" in swin_name: snake_case_ = 21_841 else: snake_case_ = 1_000 snake_case_ = """huggingface/label-files""" snake_case_ = """imagenet-1k-id2label.json""" snake_case_ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) snake_case_ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = img_size snake_case_ = num_classes snake_case_ = embed_dim snake_case_ = depths snake_case_ = num_heads snake_case_ = window_size return config def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: if "patch_embed.proj" in name: snake_case_ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: snake_case_ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: snake_case_ = """encoder.""" + name if "attn.proj" in name: snake_case_ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: snake_case_ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: snake_case_ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case_ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: snake_case_ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case_ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": snake_case_ = """layernorm.weight""" if name == "norm.bias": snake_case_ = """layernorm.bias""" if "head" in name: snake_case_ = name.replace("""head""" , """classifier""" ) else: snake_case_ = """swin.""" + name return name def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: snake_case_ = key.split(""".""" ) snake_case_ = int(key_split[1] ) snake_case_ = int(key_split[3] ) snake_case_ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[ dim : dim * 2, : ] snake_case_ = val[-dim:, :] else: snake_case_ = val[ :dim ] snake_case_ = val[ dim : dim * 2 ] snake_case_ = val[ -dim: ] else: snake_case_ = val return orig_state_dict def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: snake_case_ = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() snake_case_ = get_swin_config(_SCREAMING_SNAKE_CASE ) snake_case_ = SwinForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) snake_case_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) snake_case_ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) snake_case_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) snake_case_ = timm_model(inputs["""pixel_values"""] ) snake_case_ = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(f"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
701
"""simple docstring""" from functools import reduce __SCREAMING_SNAKE_CASE : Tuple = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _a ( _SCREAMING_SNAKE_CASE = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) ) for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
2
0
"""simple docstring""" import mpmath # for roots of unity import numpy as np class __A : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=None ) ->Optional[int]: """simple docstring""" snake_case_ = list(poly_a or [0] )[:] snake_case_ = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() snake_case_ = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() snake_case_ = len(self.polyB ) # Add 0 to make lengths equal a power of 2 snake_case_ = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform snake_case_ = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product snake_case_ = self.__multiply() def lowerCAmelCase ( self : str , UpperCAmelCase_ : str ) ->int: """simple docstring""" snake_case_ = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB] # Corner case if len(__A ) <= 1: return dft[0] # snake_case_ = self.c_max_length // 2 while next_ncol > 0: snake_case_ = [[] for i in range(__A )] snake_case_ = self.root**next_ncol # First half of next step snake_case_ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__A ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step snake_case_ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__A ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update snake_case_ = new_dft snake_case_ = next_ncol // 2 return dft[0] def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" snake_case_ = self.__dft("""A""" ) snake_case_ = self.__dft("""B""" ) snake_case_ = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT snake_case_ = 2 while next_ncol <= self.c_max_length: snake_case_ = [[] for i in range(__A )] snake_case_ = self.root ** (next_ncol // 2) snake_case_ = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update snake_case_ = new_inverse_c next_ncol *= 2 # Unpack snake_case_ = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : List[Any] ) ->int: """simple docstring""" snake_case_ = "A = " + " + ".join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) ) snake_case_ = "B = " + " + ".join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) ) snake_case_ = "A*B = " + " + ".join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) ) return F"""{a}\n{b}\n{c}""" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
702
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class __A (snake_case__): '''simple docstring''' __lowercase: Any = """mctct""" def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict: """simple docstring""" super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = num_attention_heads snake_case_ = attention_head_dim snake_case_ = max_position_embeddings snake_case_ = layer_norm_eps snake_case_ = layerdrop snake_case_ = hidden_act snake_case_ = initializer_range snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = pad_token_id snake_case_ = bos_token_id snake_case_ = eos_token_id snake_case_ = conv_glu_dim snake_case_ = conv_dropout snake_case_ = num_conv_layers snake_case_ = input_feat_per_channel snake_case_ = input_channels snake_case_ = conv_channels snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # prevents config testing fail with exporting to json snake_case_ = list(UpperCAmelCase_ ) snake_case_ = list(UpperCAmelCase_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
2
0
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: while a != 0: snake_case_ = b % a, a return b def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: if gcd(_lowerCamelCase , _lowerCamelCase ) != 1: snake_case_ = f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(_lowerCamelCase ) snake_case_ = 1, 0, a snake_case_ = 0, 1, m while va != 0: snake_case_ = ua // va snake_case_ = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
703
"""simple docstring""" from math import factorial def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int: return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
2
0
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any = Dict[str, Any] __SCREAMING_SNAKE_CASE : List[Any] = List[Prediction] @add_end_docstrings(__SCREAMING_SNAKE_CASE) class __A (__SCREAMING_SNAKE_CASE): '''simple docstring''' def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[str] ) ->Any: """simple docstring""" super().__init__(*_a , **_a ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def lowerCAmelCase ( self : List[Any] , **UpperCAmelCase_ : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = {} if "threshold" in kwargs: snake_case_ = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Tuple ) ->int: """simple docstring""" return super().__call__(*_a , **_a ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Any ) ->str: """simple docstring""" snake_case_ = load_image(_a ) snake_case_ = torch.IntTensor([[image.height, image.width]] ) snake_case_ = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: snake_case_ = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) snake_case_ = target_size return inputs def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] ) ->List[str]: """simple docstring""" snake_case_ = model_inputs.pop("""target_size""" ) snake_case_ = self.model(**_a ) snake_case_ = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: snake_case_ = model_inputs["""bbox"""] return model_outputs def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict=0.9 ) ->str: """simple docstring""" snake_case_ = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. snake_case_ = target_size[0].tolist() def unnormalize(UpperCAmelCase_ : List[Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_000), (height * bbox[1] / 1_000), (width * bbox[2] / 1_000), (height * bbox[3] / 1_000), ] ) ) snake_case_ = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) snake_case_ = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] snake_case_ = [unnormalize(_a ) for bbox in model_outputs["""bbox"""].squeeze(0 )] snake_case_ = ["""score""", """label""", """box"""] snake_case_ = [dict(zip(_a , _a ) ) for vals in zip(scores.tolist() , _a , _a ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel snake_case_ = self.image_processor.post_process_object_detection(_a , _a , _a ) snake_case_ = raw_annotations[0] snake_case_ = raw_annotation["""scores"""] snake_case_ = raw_annotation["""labels"""] snake_case_ = raw_annotation["""boxes"""] snake_case_ = scores.tolist() snake_case_ = [self.model.config.idalabel[label.item()] for label in labels] snake_case_ = [self._get_bounding_box(_a ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] snake_case_ = ["""score""", """label""", """box"""] snake_case_ = [ dict(zip(_a , _a ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def lowerCAmelCase ( self : int , UpperCAmelCase_ : "torch.Tensor" ) ->Tuple: """simple docstring""" if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) snake_case_ = box.int().tolist() snake_case_ = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
704
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: str = VQModel __lowercase: Union[str, Any] = """sample""" @property def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple: """simple docstring""" snake_case_ = 4 snake_case_ = 3 snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) return {"sample": image} @property def lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" return (3, 32, 32) def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } snake_case_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCAmelCase_ ) snake_case_ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(UpperCAmelCase_ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) snake_case_ = image.to(UpperCAmelCase_ ) with torch.no_grad(): snake_case_ = model(UpperCAmelCase_ ).sample snake_case_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] ) # fmt: on self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __SCREAMING_SNAKE_CASE : List[str] = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = ['OwlViTFeatureExtractor'] __SCREAMING_SNAKE_CASE : int = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
705
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Dict = KandinskyVaaControlnetPipeline __lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowercase: Union[str, Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowercase: Tuple = False @property def lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" return 32 @property def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" return 32 @property def lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" return self.time_input_dim @property def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" return 100 @property def lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" torch.manual_seed(0 ) snake_case_ = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : Any ) ->int: """simple docstring""" torch.manual_seed(0 ) snake_case_ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" snake_case_ = self.dummy_unet snake_case_ = self.dummy_movq snake_case_ = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , ) snake_case_ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]: """simple docstring""" snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase_ ) # create hint snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) if str(UpperCAmelCase_ ).startswith("""mps""" ): snake_case_ = torch.manual_seed(UpperCAmelCase_ ) else: snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) snake_case_ = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" snake_case_ = """cpu""" snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**UpperCAmelCase_ ) snake_case_ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) snake_case_ = output.images snake_case_ = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array( [0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" snake_case_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) snake_case_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0 snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case_ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case_ = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = """A robot, 4k photo""" snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 ) snake_case_ , snake_case_ = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 ) snake_case_ = pipeline( image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
2
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __SCREAMING_SNAKE_CASE : Optional[Any] = False class __A (unittest.TestCase): '''simple docstring''' pass @slow @require_torch_gpu class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" snake_case_ = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) snake_case_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( image=__lowerCAmelCase , generator=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images snake_case_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) snake_case_ = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
706
"""simple docstring""" from __future__ import annotations from collections import deque class __A : '''simple docstring''' def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]: """simple docstring""" snake_case_ = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(UpperCAmelCase_ ) self.set_fail_transitions() def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None: """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None: """simple docstring""" snake_case_ = 0 for character in keyword: snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) snake_case_ = len(self.adlist ) - 1 else: snake_case_ = next_state self.adlist[current_state]["output"].append(UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->None: """simple docstring""" snake_case_ = deque() for node in self.adlist[0]["next_states"]: q.append(UpperCAmelCase_ ) snake_case_ = 0 while q: snake_case_ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(UpperCAmelCase_ ) snake_case_ = self.adlist[r]["""fail_state"""] while ( self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None and state != 0 ): snake_case_ = self.adlist[state]["""fail_state"""] snake_case_ = self.find_next_state( UpperCAmelCase_ , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: snake_case_ = 0 snake_case_ = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]: """simple docstring""" snake_case_ = {} # returns a dict with keywords and list of its occurrences snake_case_ = 0 for i in range(len(UpperCAmelCase_ ) ): while ( self.find_next_state(UpperCAmelCase_ , string[i] ) is None and current_state != 0 ): snake_case_ = self.adlist[current_state]["""fail_state"""] snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] ) if next_state is None: snake_case_ = 0 else: snake_case_ = next_state for key in self.adlist[current_state]["output"]: if key not in result: snake_case_ = [] result[key].append(i - len(UpperCAmelCase_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" from collections import deque from .hash_table import HashTable class __A (_UpperCAmelCase): '''simple docstring''' def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple ) ->Dict: """simple docstring""" super().__init__(*lowercase_ , **lowercase_ ) def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int ) ->Union[str, Any]: """simple docstring""" snake_case_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(lowercase_ ) snake_case_ = self.values[key] def lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" return ( sum(self.charge_factor - len(lowercase_ ) for slot in self.values ) / self.size_table * self.charge_factor ) def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str=None ) ->Dict: """simple docstring""" if not ( len(self.values[key] ) == self.charge_factor and self.values.count(lowercase_ ) == 0 ): return key return super()._collision_resolution(lowercase_ , lowercase_ )
707
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = num_channels snake_case_ = num_stages snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = is_training snake_case_ = use_labels snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_labels snake_case_ = initializer_range snake_case_ = out_features snake_case_ = out_indices snake_case_ = scope def lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]: """simple docstring""" snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any: """simple docstring""" snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple: """simple docstring""" snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case_ = None snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""pixel_values""": pixel_values} return config, inputs_dict def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Optional[Any] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __lowercase: Union[str, Any] = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) __lowercase: Union[str, Any] = False __lowercase: Optional[Any] = False __lowercase: Any = False __lowercase: Union[str, Any] = False __lowercase: Dict = False def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple: """simple docstring""" snake_case_ = ConvNextVaModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels() snake_case_ = True if model_class.__name__ in [ *get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ ), ]: continue snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.train() snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) snake_case_ = model(**UpperCAmelCase_ ).loss loss.backward() def lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels() snake_case_ = False snake_case_ = True if ( model_class.__name__ in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )] or not model_class.supports_gradient_checkpointing ): continue snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.gradient_checkpointing_enable() model.train() snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) snake_case_ = model(**UpperCAmelCase_ ).loss loss.backward() def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ): snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case_ = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def _a ( ) -> str: snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __A (unittest.TestCase): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): snake_case_ = model(**UpperCAmelCase_ ) # verify the logits snake_case_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
2
0
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil __SCREAMING_SNAKE_CASE : int = 100 __SCREAMING_SNAKE_CASE : str = set(range(3, NUM_PRIMES, 2)) primes.add(2) __SCREAMING_SNAKE_CASE : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def _a ( _SCREAMING_SNAKE_CASE ) -> set[int]: if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} snake_case_ = set() snake_case_ = 42 snake_case_ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _a ( _SCREAMING_SNAKE_CASE = 5_000 ) -> int | None: for number_to_partition in range(1 , _lowercase ): if len(partition(_lowercase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"""{solution() = }""")
708
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights'] def _a ( _SCREAMING_SNAKE_CASE ) -> str: if "emb" in name: snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: snake_case_ = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: snake_case_ = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: snake_case_ = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: snake_case_ = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: snake_case_ = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]: snake_case_ = list(state_dict.keys() ) snake_case_ = {} for key in keys: snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE ) snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE ) if "in_proj_weight" in key: # split fused qkv proj snake_case_ = val[:hidden_size, :] snake_case_ = val[hidden_size : 2 * hidden_size, :] snake_case_ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: snake_case_ = val else: snake_case_ = val return state_dict, enc_dec_proj_state_dict def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values snake_case_ = 1_024 snake_case_ = 24 snake_case_ = 16 elif checkpoint == "medium": snake_case_ = 1_536 snake_case_ = 48 snake_case_ = 24 elif checkpoint == "large": snake_case_ = 2_048 snake_case_ = 48 snake_case_ = 32 else: raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) snake_case_ = MusicgenDecoderConfig( hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , ) return config @torch.no_grad() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple: snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE ) snake_case_ = fairseq_model.lm.state_dict() snake_case_ , snake_case_ = rename_state_dict( _SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size ) snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" ) snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" ) if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE ) # check we can do a forward pass snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) snake_case_ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits if logits.shape != (8, 1, 2_048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" ) snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) # set the appropriate bos/pad token ids snake_case_ = 2_048 snake_case_ = 2_048 # set other default generation config params snake_case_ = int(30 * audio_encoder.config.frame_rate ) snake_case_ = True snake_case_ = 3.0 if pytorch_dump_folder is not None: Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if repo_id: logger.info(f"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) processor.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
2
0
"""simple docstring""" from math import isclose, sqrt def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: snake_case_ = point_y / 4 / point_x snake_case_ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) snake_case_ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) snake_case_ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 snake_case_ = outgoing_gradient**2 + 4 snake_case_ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) snake_case_ = (point_y - outgoing_gradient * point_x) ** 2 - 100 snake_case_ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) snake_case_ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point snake_case_ = x_minus if isclose(UpperCAmelCase__ , UpperCAmelCase__ ) else x_plus snake_case_ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _a ( _SCREAMING_SNAKE_CASE = 1.4 , _SCREAMING_SNAKE_CASE = -9.6 ) -> str: snake_case_ = 0 snake_case_ = first_x_coord snake_case_ = first_y_coord snake_case_ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): snake_case_ , snake_case_ , snake_case_ = next_point(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f"""{solution() = }""")
709
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if index == number_of_items: return 0 snake_case_ = 0 snake_case_ = 0 snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 ) if weights[index] <= max_weight: snake_case_ = values[index] + knapsack( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 ) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" print((lambda quine: quine % quine)('print((lambda quine: quine %% quine)(%r))'))
710
"""simple docstring""" from math import factorial def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int: snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case_ = n // 2 return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: __SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
2
0
"""simple docstring""" from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: snake_case_ = [] for part_id in partition_order: snake_case_ = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(_lowercase ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _a ( ) -> Dict: snake_case_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() snake_case_ = spark.range(100 ).repartition(1 ) snake_case_ = Spark(_lowercase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _a ( ) -> Union[str, Any]: snake_case_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() snake_case_ = spark.range(10 ).repartition(2 ) snake_case_ = [1, 0] snake_case_ = _generate_iterable_examples(_lowercase , _lowercase ) # Reverse the partitions. snake_case_ = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , _lowercase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case_ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _a ( ) -> Dict: snake_case_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() snake_case_ = spark.range(10 ).repartition(1 ) snake_case_ = SparkExamplesIterable(_lowercase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_lowercase ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _a ( ) -> Dict: snake_case_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() snake_case_ = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: snake_case_ = lambda _SCREAMING_SNAKE_CASE : x.reverse() snake_case_ = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , [2, 1, 0] ) snake_case_ = SparkExamplesIterable(_lowercase ).shuffle_data_sources(_lowercase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_lowercase ): snake_case_ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _a ( ) -> List[Any]: snake_case_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() snake_case_ = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case_ = SparkExamplesIterable(_lowercase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case_ = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , [0, 2] ) for i, (row_id, row_dict) in enumerate(_lowercase ): snake_case_ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case_ = SparkExamplesIterable(_lowercase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case_ = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , [1, 3] ) for i, (row_id, row_dict) in enumerate(_lowercase ): snake_case_ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _a ( ) -> Union[str, Any]: snake_case_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() snake_case_ = spark.range(100 ).repartition(1 ) snake_case_ = Spark(_lowercase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
711
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str: snake_case_ = ascii_letters + digits + punctuation return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(_SCREAMING_SNAKE_CASE ) snake_case_ = i // 3 snake_case_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) snake_case_ = ( chars_incl + random(_SCREAMING_SNAKE_CASE , quotient + remainder ) + random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) + random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) snake_case_ = list(_SCREAMING_SNAKE_CASE ) shuffle(_SCREAMING_SNAKE_CASE ) return "".join(_SCREAMING_SNAKE_CASE ) # random is a generalised function for letters, characters and numbers def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool: if len(_SCREAMING_SNAKE_CASE ) < min_length: # Your Password must be at least 8 characters long return False snake_case_ = any(char in ascii_uppercase for char in password ) snake_case_ = any(char in ascii_lowercase for char in password ) snake_case_ = any(char in digits for char in password ) snake_case_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _a ( ) -> str: snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() ) snake_case_ = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) ) print( """Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
2
0
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A (unittest.TestCase): '''simple docstring''' __lowercase: Optional[Any] = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING __lowercase: Dict = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ) ->int: """simple docstring""" snake_case_ = AudioClassificationPipeline(model=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) # test with a raw waveform snake_case_ = np.zeros((34_000,) ) snake_case_ = np.zeros((14_000,) ) return audio_classifier, [audioa, audio] def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ) ->Optional[int]: """simple docstring""" snake_case_ , snake_case_ = examples snake_case_ = audio_classifier(_SCREAMING_SNAKE_CASE ) # by default a model is initialized with num_labels=2 self.assertEqual( _SCREAMING_SNAKE_CASE , [ {"""score""": ANY(_SCREAMING_SNAKE_CASE ), """label""": ANY(_SCREAMING_SNAKE_CASE )}, {"""score""": ANY(_SCREAMING_SNAKE_CASE ), """label""": ANY(_SCREAMING_SNAKE_CASE )}, ] , ) snake_case_ = audio_classifier(_SCREAMING_SNAKE_CASE , top_k=1 ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ {"""score""": ANY(_SCREAMING_SNAKE_CASE ), """label""": ANY(_SCREAMING_SNAKE_CASE )}, ] , ) self.run_torchaudio(_SCREAMING_SNAKE_CASE ) @require_torchaudio def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" import datasets # test with a local file snake_case_ = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) snake_case_ = dataset[0]["""audio"""]["""array"""] snake_case_ = audio_classifier(_SCREAMING_SNAKE_CASE ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ {"""score""": ANY(_SCREAMING_SNAKE_CASE ), """label""": ANY(_SCREAMING_SNAKE_CASE )}, {"""score""": ANY(_SCREAMING_SNAKE_CASE ), """label""": ANY(_SCREAMING_SNAKE_CASE )}, ] , ) @require_torch def lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" snake_case_ = """anton-l/wav2vec2-random-tiny-classifier""" snake_case_ = pipeline("""audio-classification""" , model=_SCREAMING_SNAKE_CASE ) snake_case_ = np.ones((8_000,) ) snake_case_ = audio_classifier(_SCREAMING_SNAKE_CASE , top_k=4 ) snake_case_ = [ {"""score""": 0.0_842, """label""": """no"""}, {"""score""": 0.0_838, """label""": """up"""}, {"""score""": 0.0_837, """label""": """go"""}, {"""score""": 0.0_834, """label""": """right"""}, ] snake_case_ = [ {"""score""": 0.0_845, """label""": """stop"""}, {"""score""": 0.0_844, """label""": """on"""}, {"""score""": 0.0_841, """label""": """right"""}, {"""score""": 0.0_834, """label""": """left"""}, ] self.assertIn(nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) snake_case_ = {"""array""": np.ones((8_000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} snake_case_ = audio_classifier(_SCREAMING_SNAKE_CASE , top_k=4 ) self.assertIn(nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def lowerCAmelCase ( self : List[str] ) ->int: """simple docstring""" import datasets snake_case_ = """superb/wav2vec2-base-superb-ks""" snake_case_ = pipeline("""audio-classification""" , model=_SCREAMING_SNAKE_CASE ) snake_case_ = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) snake_case_ = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) snake_case_ = audio_classifier(_SCREAMING_SNAKE_CASE , top_k=4 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=3 ) , [ {"""score""": 0.981, """label""": """go"""}, {"""score""": 0.007, """label""": """up"""}, {"""score""": 0.006, """label""": """_unknown_"""}, {"""score""": 0.001, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def lowerCAmelCase ( self : Dict ) ->Dict: """simple docstring""" pass
712
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __A (unittest.TestCase): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]: """simple docstring""" snake_case_ = size if size is not None else {"""height""": 18, """width""": 18} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = image_size snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = do_normalize def lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804], [-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" snake_case_ = ImageGPTImageProcessingTester(self ) @property def lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) ) def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) snake_case_ = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) ) else: self.assertEqual(obj[key] , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" ) image_processor_first.to_json_file(UpperCAmelCase_ ) snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict() snake_case_ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(UpperCAmelCase_ ) snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict() snake_case_ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , UpperCAmelCase_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" pass def _a ( ) -> str: snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) snake_case_ = Image.open(dataset[4]["""file"""] ) snake_case_ = Image.open(dataset[5]["""file"""] ) snake_case_ = [imagea, imagea] return images @require_vision @require_torch class __A (unittest.TestCase): '''simple docstring''' @slow def lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) snake_case_ = prepare_images() # test non-batched snake_case_ = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_024) ) snake_case_ = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ ) # test batched snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_024) ) snake_case_ = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
2
0
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
713
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __A : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = scope snake_case_ = range_bbox def lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case_ = bbox[i, j, 3] snake_case_ = bbox[i, j, 1] snake_case_ = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case_ = bbox[i, j, 2] snake_case_ = bbox[i, j, 0] snake_case_ = t snake_case_ = None if self.use_input_mask: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str: """simple docstring""" snake_case_ = LiltModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict: """simple docstring""" snake_case_ = self.num_labels snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict: """simple docstring""" snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Optional[int] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __lowercase: Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __lowercase: Union[str, Any] = False __lowercase: List[str] = False def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]: """simple docstring""" return True def lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" snake_case_ = LiltModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[str] ) ->int: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) @slow def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_torch @slow class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ ) snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ ) snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ ) # forward pass with torch.no_grad(): snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ ) snake_case_ = torch.Size([1, 2, 768] ) snake_case_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , ) self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
2
0
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __A (lowercase__): '''simple docstring''' __lowercase: List[Any] = """""" __lowercase: str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __lowercase: str = None # compression type in fsspec. ex: "gzip" __lowercase: str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : Any , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[dict] = None , **UpperCAmelCase_ : int ) ->Optional[int]: """simple docstring""" super().__init__(self , **__lowercase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case_ = fsspec.open( __lowercase , mode="""rb""" , protocol=__lowercase , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) snake_case_ = os.path.basename(self.file.path.split("""::""" )[0] ) snake_case_ = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) snake_case_ = None @classmethod def lowerCAmelCase ( cls : Any , UpperCAmelCase_ : List[str] ) ->Any: """simple docstring""" return super()._strip_protocol(__lowercase ).lstrip("""/""" ) def lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" if self.dir_cache is None: snake_case_ = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} snake_case_ = {f["""name"""]: f} def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->int: """simple docstring""" return self.file.open().read() def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : str = "rb" , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=None , **UpperCAmelCase_ : Dict , ) ->Optional[Any]: """simple docstring""" snake_case_ = self._strip_protocol(__lowercase ) if mode != "rb": raise ValueError(F"""Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'""" ) return self.file.open() class __A (lowercase__): '''simple docstring''' __lowercase: Any = """bz2""" __lowercase: Dict = """bz2""" __lowercase: Optional[int] = """.bz2""" class __A (lowercase__): '''simple docstring''' __lowercase: int = """gzip""" __lowercase: List[str] = """gzip""" __lowercase: Optional[Any] = """.gz""" class __A (lowercase__): '''simple docstring''' __lowercase: Any = """lz4""" __lowercase: Union[str, Any] = """lz4""" __lowercase: List[str] = """.lz4""" class __A (lowercase__): '''simple docstring''' __lowercase: Optional[int] = """xz""" __lowercase: Any = """xz""" __lowercase: str = """.xz""" class __A (lowercase__): '''simple docstring''' __lowercase: List[Any] = """zstd""" __lowercase: List[str] = """zstd""" __lowercase: Any = """.zst""" def __init__( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : str = "rb" , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[dict] = None , UpperCAmelCase_ : int = DEFAULT_BLOCK_SIZE , **UpperCAmelCase_ : int , ) ->Any: """simple docstring""" super().__init__( fo=__lowercase , mode=__lowercase , target_protocol=__lowercase , target_options=__lowercase , block_size=__lowercase , **__lowercase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case_ = self.file.__enter__ class __A : '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : List[str] ) ->Dict: """simple docstring""" snake_case_ = file_ def __enter__( self : Optional[Any] ) ->Any: """simple docstring""" self._file.__enter__() return self def __exit__( self : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Any ) ->Dict: """simple docstring""" self._file.__exit__(*__lowercase , **__lowercase ) def __iter__( self : Dict ) ->List[Any]: """simple docstring""" return iter(self._file ) def lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" return next(self._file ) def __getattr__( self : Union[str, Any] , UpperCAmelCase_ : Tuple ) ->int: """simple docstring""" return getattr(self._file , __lowercase ) def fixed_enter(*UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Dict ): return WrappedFile(_enter(*__lowercase , **__lowercase ) ) snake_case_ = fixed_enter
714
"""simple docstring""" from __future__ import annotations def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]: snake_case_ = 0 snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: snake_case_ = i + 1 else: snake_case_ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
715
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
0
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> Any: if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) snake_case_ = sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
716
"""simple docstring""" __SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter' __SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE' def _a ( _SCREAMING_SNAKE_CASE ) -> bool: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}""" raise TypeError(_SCREAMING_SNAKE_CASE ) snake_case_ = spanish_id.replace("""-""" , """""" ).upper() if len(_SCREAMING_SNAKE_CASE ) != 9: raise ValueError(_SCREAMING_SNAKE_CASE ) try: snake_case_ = int(spanish_id_clean[0:8] ) snake_case_ = spanish_id_clean[8] except ValueError as ex: raise ValueError(_SCREAMING_SNAKE_CASE ) from ex if letter.isdigit(): raise ValueError(_SCREAMING_SNAKE_CASE ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __SCREAMING_SNAKE_CASE : Tuple = Lock() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__lowerCAmelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() snake_case_ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left snake_case_ = min(__lowerCAmelCase , __lowerCAmelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__lowerCAmelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() snake_case_ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right snake_case_ = max(__lowerCAmelCase , __lowerCAmelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(__lowerCAmelCase ) def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = [] snake_case_ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop snake_case_ = Pipe() snake_case_ = Pipe() process_array_.append( Process( target=__lowerCAmelCase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) snake_case_ = temp_rs snake_case_ = temp_rr for i in range(1 , len(__lowerCAmelCase ) - 1 ): snake_case_ = Pipe() snake_case_ = Pipe() process_array_.append( Process( target=__lowerCAmelCase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) snake_case_ = temp_rs snake_case_ = temp_rr process_array_.append( Process( target=__lowerCAmelCase , args=( len(__lowerCAmelCase ) - 1, arr[len(__lowerCAmelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__lowerCAmelCase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__lowerCAmelCase ) ): snake_case_ = result_pipe[p][0].recv() process_array_[p].join() return arr def _a ( ) -> Tuple: snake_case_ = list(range(10 , 0 , -1 ) ) print("""Initial List""" ) print(*__lowerCAmelCase ) snake_case_ = odd_even_transposition(__lowerCAmelCase ) print("""Sorted List\n""" ) print(*__lowerCAmelCase ) if __name__ == "__main__": main()
717
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'} __SCREAMING_SNAKE_CASE : List[str] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } __SCREAMING_SNAKE_CASE : List[str] = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } __SCREAMING_SNAKE_CASE : int = '▁' class __A (snake_case__): '''simple docstring''' __lowercase: Optional[Any] = VOCAB_FILES_NAMES __lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None: """simple docstring""" snake_case_ = ( AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token ) snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) snake_case_ = do_lower_case snake_case_ = remove_space snake_case_ = keep_accents snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) @property def lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" return len(self.sp_model ) def lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) ->List[str]: """simple docstring""" snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]: """simple docstring""" snake_case_ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str: """simple docstring""" if self.remove_space: snake_case_ = """ """.join(inputs.strip().split() ) else: snake_case_ = inputs snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ ) snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] ) if self.do_lower_case: snake_case_ = outputs.lower() return outputs def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]: """simple docstring""" snake_case_ = self.preprocess_text(UpperCAmelCase_ ) snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) snake_case_ = [] for piece in pieces: if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case_ = cur_pieces[1:] else: snake_case_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase_ ) else: new_pieces.append(UpperCAmelCase_ ) return new_pieces def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict: """simple docstring""" return self.sp_model.PieceToId(UpperCAmelCase_ ) def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]: """simple docstring""" return self.sp_model.IdToPiece(UpperCAmelCase_ ) def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any: """simple docstring""" snake_case_ = [] snake_case_ = """""" snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase_ ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(UpperCAmelCase_ ) snake_case_ = False out_string += self.sp_model.decode(UpperCAmelCase_ ) return out_string.strip() def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]: """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1] return [1] + ([0] * len(UpperCAmelCase_ )) + [1] def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]: """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case_ = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , """wb""" ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
2
0
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# __SCREAMING_SNAKE_CASE : Any = [ # (stable-diffusion, HF Diffusers) ('time_embed.0.weight', 'time_embedding.linear_1.weight'), ('time_embed.0.bias', 'time_embedding.linear_1.bias'), ('time_embed.2.weight', 'time_embedding.linear_2.weight'), ('time_embed.2.bias', 'time_embedding.linear_2.bias'), ('input_blocks.0.0.weight', 'conv_in.weight'), ('input_blocks.0.0.bias', 'conv_in.bias'), ('out.0.weight', 'conv_norm_out.weight'), ('out.0.bias', 'conv_norm_out.bias'), ('out.2.weight', 'conv_out.weight'), ('out.2.bias', 'conv_out.bias'), ] __SCREAMING_SNAKE_CASE : Dict = [ # (stable-diffusion, HF Diffusers) ('in_layers.0', 'norm1'), ('in_layers.2', 'conv1'), ('out_layers.0', 'norm2'), ('out_layers.3', 'conv2'), ('emb_layers.1', 'time_emb_proj'), ('skip_connection', 'conv_shortcut'), ] __SCREAMING_SNAKE_CASE : Union[str, Any] = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks __SCREAMING_SNAKE_CASE : int = f"""down_blocks.{i}.resnets.{j}.""" __SCREAMING_SNAKE_CASE : str = f"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 __SCREAMING_SNAKE_CASE : Optional[int] = f"""down_blocks.{i}.attentions.{j}.""" __SCREAMING_SNAKE_CASE : Dict = f"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks __SCREAMING_SNAKE_CASE : Any = f"""up_blocks.{i}.resnets.{j}.""" __SCREAMING_SNAKE_CASE : Tuple = f"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 __SCREAMING_SNAKE_CASE : Optional[Any] = f"""up_blocks.{i}.attentions.{j}.""" __SCREAMING_SNAKE_CASE : str = f"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 __SCREAMING_SNAKE_CASE : Optional[int] = f"""down_blocks.{i}.downsamplers.0.conv.""" __SCREAMING_SNAKE_CASE : Any = f"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 __SCREAMING_SNAKE_CASE : Optional[Any] = f"""up_blocks.{i}.upsamplers.0.""" __SCREAMING_SNAKE_CASE : Union[str, Any] = f"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) __SCREAMING_SNAKE_CASE : Dict = 'mid_block.attentions.0.' __SCREAMING_SNAKE_CASE : List[Any] = 'middle_block.1.' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): __SCREAMING_SNAKE_CASE : Union[str, Any] = f"""mid_block.resnets.{j}.""" __SCREAMING_SNAKE_CASE : str = f"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: snake_case_ = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: snake_case_ = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: snake_case_ = v.replace(lowercase__ , lowercase__ ) snake_case_ = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: snake_case_ = v.replace(lowercase__ , lowercase__ ) snake_case_ = v snake_case_ = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# __SCREAMING_SNAKE_CASE : List[Any] = [ # (stable-diffusion, HF Diffusers) ('nin_shortcut', 'conv_shortcut'), ('norm_out', 'conv_norm_out'), ('mid.attn_1.', 'mid_block.attentions.0.'), ] for i in range(4): # down_blocks have two resnets for j in range(2): __SCREAMING_SNAKE_CASE : List[Any] = f"""encoder.down_blocks.{i}.resnets.{j}.""" __SCREAMING_SNAKE_CASE : Tuple = f"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: __SCREAMING_SNAKE_CASE : List[Any] = f"""down_blocks.{i}.downsamplers.0.""" __SCREAMING_SNAKE_CASE : List[Any] = f"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) __SCREAMING_SNAKE_CASE : Optional[Any] = f"""up_blocks.{i}.upsamplers.0.""" __SCREAMING_SNAKE_CASE : str = f"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): __SCREAMING_SNAKE_CASE : str = f"""decoder.up_blocks.{i}.resnets.{j}.""" __SCREAMING_SNAKE_CASE : Dict = f"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): __SCREAMING_SNAKE_CASE : Tuple = f"""mid_block.resnets.{i}.""" __SCREAMING_SNAKE_CASE : Optional[Any] = f"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) __SCREAMING_SNAKE_CASE : List[Any] = [ # (stable-diffusion, HF Diffusers) ('norm.', 'group_norm.'), ('q.', 'query.'), ('k.', 'key.'), ('v.', 'value.'), ('proj_out.', 'proj_attn.'), ] def _a ( _SCREAMING_SNAKE_CASE ) -> int: return w.reshape(*w.shape , 1 , 1 ) def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: snake_case_ = v.replace(lowercase__ , lowercase__ ) snake_case_ = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: snake_case_ = v.replace(lowercase__ , lowercase__ ) snake_case_ = v snake_case_ = {v: vae_state_dict[k] for k, v in mapping.items()} snake_case_ = ["""q""", """k""", """v""", """proj_out"""] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"""mid.attn_1.{weight_name}.weight""" in k: print(f"""Reshaping {k} for SD format""" ) snake_case_ = reshape_weight_for_sd(lowercase__ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# __SCREAMING_SNAKE_CASE : Any = [ # (stable-diffusion, HF Diffusers) ('resblocks.', 'text_model.encoder.layers.'), ('ln_1', 'layer_norm1'), ('ln_2', 'layer_norm2'), ('.c_fc.', '.fc1.'), ('.c_proj.', '.fc2.'), ('.attn', '.self_attn'), ('ln_final.', 'transformer.text_model.final_layer_norm.'), ('token_embedding.weight', 'transformer.text_model.embeddings.token_embedding.weight'), ('positional_embedding', 'transformer.text_model.embeddings.position_embedding.weight'), ] __SCREAMING_SNAKE_CASE : Any = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} __SCREAMING_SNAKE_CASE : Any = re.compile('|'.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp __SCREAMING_SNAKE_CASE : Optional[int] = {'q': 0, 'k': 1, 'v': 2} def _a ( _SCREAMING_SNAKE_CASE ) -> int: snake_case_ = {} snake_case_ = {} snake_case_ = {} for k, v in text_enc_dict.items(): if ( k.endswith(""".self_attn.q_proj.weight""" ) or k.endswith(""".self_attn.k_proj.weight""" ) or k.endswith(""".self_attn.v_proj.weight""" ) ): snake_case_ = k[: -len(""".q_proj.weight""" )] snake_case_ = k[-len("""q_proj.weight""" )] if k_pre not in capture_qkv_weight: snake_case_ = [None, None, None] snake_case_ = v continue if ( k.endswith(""".self_attn.q_proj.bias""" ) or k.endswith(""".self_attn.k_proj.bias""" ) or k.endswith(""".self_attn.v_proj.bias""" ) ): snake_case_ = k[: -len(""".q_proj.bias""" )] snake_case_ = k[-len("""q_proj.bias""" )] if k_pre not in capture_qkv_bias: snake_case_ = [None, None, None] snake_case_ = v continue snake_case_ = textenc_pattern.sub(lambda _SCREAMING_SNAKE_CASE : protected[re.escape(m.group(0 ) )] , lowercase__ ) snake_case_ = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) snake_case_ = textenc_pattern.sub(lambda _SCREAMING_SNAKE_CASE : protected[re.escape(m.group(0 ) )] , lowercase__ ) snake_case_ = torch.cat(lowercase__ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) snake_case_ = textenc_pattern.sub(lambda _SCREAMING_SNAKE_CASE : protected[re.escape(m.group(0 ) )] , lowercase__ ) snake_case_ = torch.cat(lowercase__ ) return new_state_dict def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: return text_enc_dict if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--use_safetensors', action='store_true', help='Save weights use safetensors, default is ckpt.' ) __SCREAMING_SNAKE_CASE : Dict = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors __SCREAMING_SNAKE_CASE : List[str] = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.safetensors') __SCREAMING_SNAKE_CASE : Optional[int] = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.safetensors') __SCREAMING_SNAKE_CASE : Tuple = osp.join(args.model_path, 'text_encoder', 'model.safetensors') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): __SCREAMING_SNAKE_CASE : Optional[int] = load_file(unet_path, device='cpu') else: __SCREAMING_SNAKE_CASE : str = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.bin') __SCREAMING_SNAKE_CASE : Tuple = torch.load(unet_path, map_location='cpu') if osp.exists(vae_path): __SCREAMING_SNAKE_CASE : Optional[int] = load_file(vae_path, device='cpu') else: __SCREAMING_SNAKE_CASE : Optional[Any] = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.bin') __SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(vae_path, map_location='cpu') if osp.exists(text_enc_path): __SCREAMING_SNAKE_CASE : List[str] = load_file(text_enc_path, device='cpu') else: __SCREAMING_SNAKE_CASE : str = osp.join(args.model_path, 'text_encoder', 'pytorch_model.bin') __SCREAMING_SNAKE_CASE : List[str] = torch.load(text_enc_path, map_location='cpu') # Convert the UNet model __SCREAMING_SNAKE_CASE : Tuple = convert_unet_state_dict(unet_state_dict) __SCREAMING_SNAKE_CASE : Optional[Any] = {'model.diffusion_model.' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model __SCREAMING_SNAKE_CASE : int = convert_vae_state_dict(vae_state_dict) __SCREAMING_SNAKE_CASE : List[Any] = {'first_stage_model.' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper __SCREAMING_SNAKE_CASE : str = 'text_model.encoder.layers.22.layer_norm2.bias' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm __SCREAMING_SNAKE_CASE : Dict = {'transformer.' + k: v for k, v in text_enc_dict.items()} __SCREAMING_SNAKE_CASE : str = convert_text_enc_state_dict_vaa(text_enc_dict) __SCREAMING_SNAKE_CASE : List[str] = {'cond_stage_model.model.' + k: v for k, v in text_enc_dict.items()} else: __SCREAMING_SNAKE_CASE : List[Any] = convert_text_enc_state_dict(text_enc_dict) __SCREAMING_SNAKE_CASE : List[Any] = {'cond_stage_model.transformer.' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint __SCREAMING_SNAKE_CASE : Tuple = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: __SCREAMING_SNAKE_CASE : List[str] = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: __SCREAMING_SNAKE_CASE : Any = {'state_dict': state_dict} torch.save(state_dict, args.checkpoint_path)
718
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("""The given input must be positive""" ) # get the generated string sequence snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): snake_case_ = int(sequence[i] , 2 ) return sequence def _a ( _SCREAMING_SNAKE_CASE ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] snake_case_ = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits snake_case_ = gray_code_sequence_string(bit_count - 1 ) snake_case_ = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): snake_case_ = """0""" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): snake_case_ = """1""" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
2
0
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration __SCREAMING_SNAKE_CASE : Tuple = 'facebook/wmt19-en-de' __SCREAMING_SNAKE_CASE : Any = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model __SCREAMING_SNAKE_CASE : List[Any] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = FSMTForConditionalGeneration(config) print(f"""num of params {tiny_model.num_parameters()}""") # Test __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(['Making tiny model'], return_tensors='pt') __SCREAMING_SNAKE_CASE : List[Any] = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save __SCREAMING_SNAKE_CASE : List[str] = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-de
719
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType __SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class __A (snake_case__): '''simple docstring''' __lowercase: int = """layoutlmv3""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple=50_265 , UpperCAmelCase_ : Union[str, Any]=768 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : List[str]=1_024 , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : List[Any]=128 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : List[Any]=128 , UpperCAmelCase_ : str=64 , UpperCAmelCase_ : Optional[Any]=256 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Union[str, Any]=224 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=16 , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Any , ) ->Optional[Any]: """simple docstring""" super().__init__( vocab_size=UpperCAmelCase__ , hidden_size=UpperCAmelCase__ , num_hidden_layers=UpperCAmelCase__ , num_attention_heads=UpperCAmelCase__ , intermediate_size=UpperCAmelCase__ , hidden_act=UpperCAmelCase__ , hidden_dropout_prob=UpperCAmelCase__ , attention_probs_dropout_prob=UpperCAmelCase__ , max_position_embeddings=UpperCAmelCase__ , type_vocab_size=UpperCAmelCase__ , initializer_range=UpperCAmelCase__ , layer_norm_eps=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , ) snake_case_ = max_ad_position_embeddings snake_case_ = coordinate_size snake_case_ = shape_size snake_case_ = has_relative_attention_bias snake_case_ = rel_pos_bins snake_case_ = max_rel_pos snake_case_ = has_spatial_attention_bias snake_case_ = rel_ad_pos_bins snake_case_ = max_rel_ad_pos snake_case_ = text_embed snake_case_ = visual_embed snake_case_ = input_size snake_case_ = num_channels snake_case_ = patch_size snake_case_ = classifier_dropout class __A (snake_case__): '''simple docstring''' __lowercase: Any = version.parse("""1.12""") @property def lowerCAmelCase ( self : Union[str, Any] ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase ( self : List[Any] ) ->float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : List[str] ) ->int: """simple docstring""" return 12 def lowerCAmelCase ( self : str , UpperCAmelCase_ : "ProcessorMixin" , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , ) ->Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , UpperCAmelCase__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case_ = compute_effective_axis_dimension( UpperCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case_ = processor.tokenizer.num_special_tokens_to_add(UpperCAmelCase__ ) snake_case_ = compute_effective_axis_dimension( UpperCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase__ ) # Generate dummy inputs according to compute batch and sequence snake_case_ = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes snake_case_ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) snake_case_ = self._generate_dummy_images(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) snake_case_ = dict( processor( UpperCAmelCase__ , text=UpperCAmelCase__ , boxes=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , ) ) return inputs
720
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/' __SCREAMING_SNAKE_CASE : List[Any] = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def _a ( _SCREAMING_SNAKE_CASE ) -> int: if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: snake_case_ = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: snake_case_ = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = {} import re snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) snake_case_ = re.compile( r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) snake_case_ = re.compile( r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) snake_case_ = re.compile( r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]] snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case_ = prefix + resnet_block snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]] snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case_ = prefix + resnet_block snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]] snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case_ = prefix + resnet_block snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # keep original key else: snake_case_ = original_key snake_case_ = replace_key(_SCREAMING_SNAKE_CASE ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) snake_case_ = original_key snake_case_ = original_key snake_case_ = value return new_dict @torch.no_grad() def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE ) open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content ) snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]] snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE ) snake_case_ = [] snake_case_ = {} for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ): snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""] snake_case_ = {} for k in old_dic.keys(): if k.endswith(""".b""" ): snake_case_ = old_dic[k] elif k.endswith(""".w""" ): snake_case_ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: snake_case_ = old_dic[k] else: snake_case_ = old_dic[k] snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}""" snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) weight_dict.append(_SCREAMING_SNAKE_CASE ) snake_case_ = weight_dict.pop(0 ) model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) return weight_dict if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) __SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
2
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class __A (__a): '''simple docstring''' __lowercase: int = """gptsan-japanese""" __lowercase: Dict = [ """past_key_values""", ] __lowercase: List[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Dict , UpperCAmelCase_ : List[str]=36_000 , UpperCAmelCase_ : Any=1_280 , UpperCAmelCase_ : List[Any]=1_024 , UpperCAmelCase_ : Union[str, Any]=8_192 , UpperCAmelCase_ : List[Any]=4_096 , UpperCAmelCase_ : List[Any]=128 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : Optional[int]=1E-5 , UpperCAmelCase_ : int=False , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Any="float32" , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : int=False , UpperCAmelCase_ : str=False , UpperCAmelCase_ : List[Any]=0.002 , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=35_998 , UpperCAmelCase_ : Optional[Any]=35_995 , UpperCAmelCase_ : List[Any]=35_999 , **UpperCAmelCase_ : Optional[Any] , ) ->List[Any]: """simple docstring""" snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = d_model snake_case_ = d_ff snake_case_ = d_ext snake_case_ = d_spout snake_case_ = num_switch_layers snake_case_ = num_ext_layers snake_case_ = num_switch_layers + num_ext_layers snake_case_ = num_heads snake_case_ = num_experts snake_case_ = expert_capacity snake_case_ = dropout_rate snake_case_ = layer_norm_epsilon snake_case_ = router_bias snake_case_ = router_jitter_noise snake_case_ = router_dtype snake_case_ = router_ignore_padding_tokens snake_case_ = output_hidden_states snake_case_ = output_attentions snake_case_ = initializer_factor snake_case_ = output_router_logits snake_case_ = use_cache super().__init__( separator_token_id=A__ , pad_token_id=A__ , eos_token_id=A__ , **A__ , )
721
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path __SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) __SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} __SCREAMING_SNAKE_CASE : Dict = 'zero2' __SCREAMING_SNAKE_CASE : List[Any] = 'zero3' __SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa] def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test __SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __A (snake_case__): '''simple docstring''' @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any: """simple docstring""" self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]: """simple docstring""" self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]: """simple docstring""" self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]: """simple docstring""" self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]: """simple docstring""" pass def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]: """simple docstring""" snake_case_ = models[model] snake_case_ = self.run_trainer( stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) self.do_checks(UpperCAmelCase_ ) return output_dir def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]: """simple docstring""" snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ ) snake_case_ = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(UpperCAmelCase_ )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(["""--fp16"""] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] snake_case_ = self.get_launcher(UpperCAmelCase_ ) snake_case_ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() ) return output_dir def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple: """simple docstring""" snake_case_ = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
2
0
"""simple docstring""" import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = os.path.abspath(_SCREAMING_SNAKE_CASE ) logger.info(f"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model snake_case_ = tf.train.list_variables(_SCREAMING_SNAKE_CASE ) snake_case_ = [] snake_case_ = [] snake_case_ = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") snake_case_ = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(f"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' snake_case_ = name[1:] # figure out how many levels deep the name is snake_case_ = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(_SCREAMING_SNAKE_CASE ) # read data snake_case_ = tf.train.load_variable(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) names.append("""/""".join(_SCREAMING_SNAKE_CASE ) ) arrays.append(_SCREAMING_SNAKE_CASE ) logger.info(f"""Read a total of {len(_SCREAMING_SNAKE_CASE ):,} layers""" ) # Sanity check if len(set(_SCREAMING_SNAKE_CASE ) ) != 1: raise ValueError(f"""Found layer names with different depths (layer depth {list(set(_SCREAMING_SNAKE_CASE ) )})""" ) snake_case_ = list(set(_SCREAMING_SNAKE_CASE ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ = full_name.split("""/""" ) snake_case_ = model snake_case_ = [] for i, m_name in enumerate(_SCREAMING_SNAKE_CASE ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): snake_case_ = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """embeddings""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """encoder""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """layer""" ) snake_case_ = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """pooler""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """token_type_embeddings""" ) else: raise ValueError(f"""Unknown embedding layer with name {full_name}""" ) trace.append("""weight""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """attention""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """attention""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """output""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """attention""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """output""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """output""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """output""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """intermediate""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """weight""" ) else: logger.warning(f"""Ignored {m_name}""" ) # for certain layers reshape is necessary snake_case_ = """.""".join(_SCREAMING_SNAKE_CASE ) if re.match(r"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , _SCREAMING_SNAKE_CASE ) or re.match( r"""(\S+)\.attention\.output\.dense\.weight""" , _SCREAMING_SNAKE_CASE ): snake_case_ = array.reshape(pointer.data.shape ) if "kernel" in full_name: snake_case_ = array.transpose() if pointer.shape == array.shape: snake_case_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) else: raise ValueError( f"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" f""" {array.shape}""" ) logger.info(f"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: # Instantiate model logger.info(f"""Loading model based on config from {config_path}...""" ) snake_case_ = BertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) snake_case_ = BertModel(_SCREAMING_SNAKE_CASE ) # Load weights from checkpoint logger.info(f"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model logger.info(f"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow 2.x checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model (must include filename).', ) __SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
700
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case__) class __A (snake_case__): '''simple docstring''' __lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) __lowercase: ClassVar[Features] = Features({"""audio""": Audio()}) __lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")}) __lowercase: str = "audio" __lowercase: str = "transcription" def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int: """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , UpperCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) snake_case_ = copy.deepcopy(self ) snake_case_ = self.input_schema.copy() snake_case_ = features[self.audio_column] snake_case_ = input_schema return task_template @property def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]: """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Tuple = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
701
"""simple docstring""" from functools import reduce __SCREAMING_SNAKE_CASE : Tuple = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _a ( _SCREAMING_SNAKE_CASE = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) ) for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : List[Any] = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : int = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys __SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
702
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class __A (snake_case__): '''simple docstring''' __lowercase: Any = """mctct""" def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict: """simple docstring""" super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = num_attention_heads snake_case_ = attention_head_dim snake_case_ = max_position_embeddings snake_case_ = layer_norm_eps snake_case_ = layerdrop snake_case_ = hidden_act snake_case_ = initializer_range snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = pad_token_id snake_case_ = bos_token_id snake_case_ = eos_token_id snake_case_ = conv_glu_dim snake_case_ = conv_dropout snake_case_ = num_conv_layers snake_case_ = input_feat_per_channel snake_case_ = input_channels snake_case_ = conv_channels snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # prevents config testing fail with exporting to json snake_case_ = list(UpperCAmelCase_ ) snake_case_ = list(UpperCAmelCase_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
2
0
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __SCREAMING_SNAKE_CASE : Tuple = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. __SCREAMING_SNAKE_CASE : Optional[int] = importlib.util.spec_from_file_location( 'transformers', os.path.join(PATH_TO_TRANSFORMERS, '__init__.py'), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __SCREAMING_SNAKE_CASE : int = spec.loader.load_module() __SCREAMING_SNAKE_CASE : Tuple = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __SCREAMING_SNAKE_CASE : Dict = re.compile('\[(.+?)\]\((https://huggingface\.co/.+?)\)') __SCREAMING_SNAKE_CASE : Dict = { 'CLIPConfigMixin', 'DecisionTransformerConfigMixin', 'EncoderDecoderConfigMixin', 'RagConfigMixin', 'SpeechEncoderDecoderConfigMixin', 'VisionEncoderDecoderConfigMixin', 'VisionTextDualEncoderConfigMixin', } def _a ( ) -> Union[str, Any]: snake_case_ = [] for config_class in list(CONFIG_MAPPING.values() ): snake_case_ = False # source code of `config_class` snake_case_ = inspect.getsource(SCREAMING_SNAKE_CASE__ ) snake_case_ = _re_checkpoint.findall(SCREAMING_SNAKE_CASE__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` snake_case_ = checkpoint # verify the checkpoint name corresponds to the checkpoint link snake_case_ = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: snake_case_ = True break snake_case_ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: snake_case_ = """\n""".join(sorted(SCREAMING_SNAKE_CASE__ ) ) raise ValueError(f"""The following configurations don\'t contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
703
"""simple docstring""" from math import factorial def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int: return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
2
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __SCREAMING_SNAKE_CASE : List[Any] = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class __A (unittest.TestCase): '''simple docstring''' __lowercase: Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __lowercase: Any = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __lowercase: Optional[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __lowercase: str = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict ) ->List[str]: """simple docstring""" snake_case_ = ZeroShotClassificationPipeline( model=__snake_case , tokenizer=__snake_case , candidate_labels=["""polics""", """health"""] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Any: """simple docstring""" snake_case_ = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics""" ) self.assertEqual(__snake_case , {"""sequence""": ANY(__snake_case ), """labels""": [ANY(__snake_case )], """scores""": [ANY(__snake_case )]} ) # No kwarg snake_case_ = classifier("""Who are you voting for in 2020?""" , ["""politics"""] ) self.assertEqual(__snake_case , {"""sequence""": ANY(__snake_case ), """labels""": [ANY(__snake_case )], """scores""": [ANY(__snake_case )]} ) snake_case_ = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics"""] ) self.assertEqual(__snake_case , {"""sequence""": ANY(__snake_case ), """labels""": [ANY(__snake_case )], """scores""": [ANY(__snake_case )]} ) snake_case_ = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics, public health""" ) self.assertEqual( __snake_case , {"""sequence""": ANY(__snake_case ), """labels""": [ANY(__snake_case ), ANY(__snake_case )], """scores""": [ANY(__snake_case ), ANY(__snake_case )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) snake_case_ = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health"""] ) self.assertEqual( __snake_case , {"""sequence""": ANY(__snake_case ), """labels""": [ANY(__snake_case ), ANY(__snake_case )], """scores""": [ANY(__snake_case ), ANY(__snake_case )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) snake_case_ = classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""This text is about {}""" ) self.assertEqual(__snake_case , {"""sequence""": ANY(__snake_case ), """labels""": [ANY(__snake_case )], """scores""": [ANY(__snake_case )]} ) # https://github.com/huggingface/transformers/issues/13846 snake_case_ = classifier(["""I am happy"""] , ["""positive""", """negative"""] ) self.assertEqual( __snake_case , [ {"""sequence""": ANY(__snake_case ), """labels""": [ANY(__snake_case ), ANY(__snake_case )], """scores""": [ANY(__snake_case ), ANY(__snake_case )]} for i in range(1 ) ] , ) snake_case_ = classifier(["""I am happy""", """I am sad"""] , ["""positive""", """negative"""] ) self.assertEqual( __snake_case , [ {"""sequence""": ANY(__snake_case ), """labels""": [ANY(__snake_case ), ANY(__snake_case )], """scores""": [ANY(__snake_case ), ANY(__snake_case )]} for i in range(2 ) ] , ) with self.assertRaises(__snake_case ): classifier("""""" , candidate_labels="""politics""" ) with self.assertRaises(__snake_case ): classifier(__snake_case , candidate_labels="""politics""" ) with self.assertRaises(__snake_case ): classifier("""Who are you voting for in 2020?""" , candidate_labels="""""" ) with self.assertRaises(__snake_case ): classifier("""Who are you voting for in 2020?""" , candidate_labels=__snake_case ) with self.assertRaises(__snake_case ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""Not formatting template""" , ) with self.assertRaises(__snake_case ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template=__snake_case , ) self.run_entailment_id(__snake_case ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Pipeline ) ->int: """simple docstring""" snake_case_ = zero_shot_classifier.model.config snake_case_ = config.labelaid snake_case_ = zero_shot_classifier.entailment_id snake_case_ = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) snake_case_ = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) snake_case_ = original_labelaid self.assertEqual(__snake_case , zero_shot_classifier.entailment_id ) @require_torch def lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" snake_case_ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 100 , candidate_labels=["""politics""", """public health""", """science"""] ) @require_torch def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) snake_case_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__snake_case ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } , ) @require_tf def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" snake_case_ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""tf""" , ) snake_case_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__snake_case ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } , ) @slow @require_torch def lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" snake_case_ = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""pt""" ) snake_case_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__snake_case ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } , ) snake_case_ = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=__snake_case , ) self.assertEqual( nested_simplify(__snake_case ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" snake_case_ = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""tf""" ) snake_case_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__snake_case ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } , ) snake_case_ = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=__snake_case , ) self.assertEqual( nested_simplify(__snake_case ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } , )
704
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: str = VQModel __lowercase: Union[str, Any] = """sample""" @property def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple: """simple docstring""" snake_case_ = 4 snake_case_ = 3 snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) return {"sample": image} @property def lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" return (3, 32, 32) def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } snake_case_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCAmelCase_ ) snake_case_ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(UpperCAmelCase_ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) snake_case_ = image.to(UpperCAmelCase_ ) with torch.no_grad(): snake_case_ = model(UpperCAmelCase_ ).sample snake_case_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] ) # fmt: on self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
2
0
"""simple docstring""" import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Optional[int] = ProphetNetTokenizer __lowercase: List[str] = False def lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" super().setUp() snake_case_ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[Any] ) ->Optional[int]: """simple docstring""" snake_case_ = """UNwant\u00E9d,running""" snake_case_ = """unwanted, running""" return input_text, output_text def lowerCAmelCase ( self : int ) ->List[Any]: """simple docstring""" snake_case_ = self.tokenizer_class(self.vocab_file ) snake_case_ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(UpperCAmelCase_ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [9, 6, 7, 12, 10, 11] ) def lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" snake_case_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" snake_case_ = BasicTokenizer(do_lower_case=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" snake_case_ = BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def lowerCAmelCase ( self : Any ) ->Any: """simple docstring""" snake_case_ = BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCAmelCase ( self : Any ) ->int: """simple docstring""" snake_case_ = BasicTokenizer(do_lower_case=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" snake_case_ = BasicTokenizer(do_lower_case=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" snake_case_ = BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" snake_case_ = BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" snake_case_ = BasicTokenizer(do_lower_case=UpperCAmelCase_ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def lowerCAmelCase ( self : Optional[Any] ) ->int: """simple docstring""" snake_case_ = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] snake_case_ = {} for i, token in enumerate(UpperCAmelCase_ ): snake_case_ = i snake_case_ = WordpieceTokenizer(vocab=UpperCAmelCase_ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) @require_torch def lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" snake_case_ = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) snake_case_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] snake_case_ = [1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102] snake_case_ = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = list(batch.input_ids.numpy()[0] ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def lowerCAmelCase ( self : int ) ->Tuple: """simple docstring""" self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def lowerCAmelCase ( self : str ) ->int: """simple docstring""" self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def lowerCAmelCase ( self : Tuple ) ->Any: """simple docstring""" self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) @slow def lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" snake_case_ = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) snake_case_ = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCAmelCase_ ) snake_case_ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCAmelCase_ ) snake_case_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) snake_case_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
705
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Dict = KandinskyVaaControlnetPipeline __lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowercase: Union[str, Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowercase: Tuple = False @property def lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" return 32 @property def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" return 32 @property def lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" return self.time_input_dim @property def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" return 100 @property def lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" torch.manual_seed(0 ) snake_case_ = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : Any ) ->int: """simple docstring""" torch.manual_seed(0 ) snake_case_ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" snake_case_ = self.dummy_unet snake_case_ = self.dummy_movq snake_case_ = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , ) snake_case_ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]: """simple docstring""" snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase_ ) # create hint snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) if str(UpperCAmelCase_ ).startswith("""mps""" ): snake_case_ = torch.manual_seed(UpperCAmelCase_ ) else: snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) snake_case_ = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" snake_case_ = """cpu""" snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**UpperCAmelCase_ ) snake_case_ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) snake_case_ = output.images snake_case_ = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array( [0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" snake_case_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) snake_case_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0 snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case_ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case_ = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = """A robot, 4k photo""" snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 ) snake_case_ , snake_case_ = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 ) snake_case_ = pipeline( image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
2
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __A (_UpperCamelCase): '''simple docstring''' __lowercase: Tuple = "yolos" def __init__( self : Dict , UpperCAmelCase_ : Optional[Any]=768 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : List[Any]=3_072 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : Optional[int]=1E-12 , UpperCAmelCase_ : List[Any]=[512, 864] , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Optional[Any]=100 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : List[str]=1 , UpperCAmelCase_ : str=5 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Tuple=5 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , **UpperCAmelCase_ : List[str] , ) ->List[str]: """simple docstring""" super().__init__(**__a ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = num_detection_tokens snake_case_ = use_mid_position_embeddings snake_case_ = auxiliary_loss # Hungarian matcher snake_case_ = class_cost snake_case_ = bbox_cost snake_case_ = giou_cost # Loss coefficients snake_case_ = bbox_loss_coefficient snake_case_ = giou_loss_coefficient snake_case_ = eos_coefficient class __A (_UpperCamelCase): '''simple docstring''' __lowercase: List[str] = version.parse("""1.11""") @property def lowerCAmelCase ( self : str ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase ( self : Optional[Any] ) ->float: """simple docstring""" return 1E-4 @property def lowerCAmelCase ( self : Dict ) ->int: """simple docstring""" return 12
706
"""simple docstring""" from __future__ import annotations from collections import deque class __A : '''simple docstring''' def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]: """simple docstring""" snake_case_ = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(UpperCAmelCase_ ) self.set_fail_transitions() def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None: """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None: """simple docstring""" snake_case_ = 0 for character in keyword: snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) snake_case_ = len(self.adlist ) - 1 else: snake_case_ = next_state self.adlist[current_state]["output"].append(UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->None: """simple docstring""" snake_case_ = deque() for node in self.adlist[0]["next_states"]: q.append(UpperCAmelCase_ ) snake_case_ = 0 while q: snake_case_ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(UpperCAmelCase_ ) snake_case_ = self.adlist[r]["""fail_state"""] while ( self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None and state != 0 ): snake_case_ = self.adlist[state]["""fail_state"""] snake_case_ = self.find_next_state( UpperCAmelCase_ , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: snake_case_ = 0 snake_case_ = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]: """simple docstring""" snake_case_ = {} # returns a dict with keywords and list of its occurrences snake_case_ = 0 for i in range(len(UpperCAmelCase_ ) ): while ( self.find_next_state(UpperCAmelCase_ , string[i] ) is None and current_state != 0 ): snake_case_ = self.adlist[current_state]["""fail_state"""] snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] ) if next_state is None: snake_case_ = 0 else: snake_case_ = next_state for key in self.adlist[current_state]["output"]: if key not in result: snake_case_ = [] result[key].append(i - len(UpperCAmelCase_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[str] = { 'facebook/convnextv2-tiny-1k-224': 'https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json', } class __A (UpperCAmelCase_ , UpperCAmelCase_): '''simple docstring''' __lowercase: Optional[int] = "convnextv2" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : str=1E-12 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : List[str]=224 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : int=None , **UpperCAmelCase_ : Optional[int] , ) ->Optional[int]: """simple docstring""" super().__init__(**_snake_case ) snake_case_ = num_channels snake_case_ = patch_size snake_case_ = num_stages snake_case_ = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes snake_case_ = [3, 3, 9, 3] if depths is None else depths snake_case_ = hidden_act snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = drop_path_rate snake_case_ = image_size snake_case_ = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=_snake_case , out_indices=_snake_case , stage_names=self.stage_names )
707
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = num_channels snake_case_ = num_stages snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = is_training snake_case_ = use_labels snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_labels snake_case_ = initializer_range snake_case_ = out_features snake_case_ = out_indices snake_case_ = scope def lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]: """simple docstring""" snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any: """simple docstring""" snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple: """simple docstring""" snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case_ = None snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""pixel_values""": pixel_values} return config, inputs_dict def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Optional[Any] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __lowercase: Union[str, Any] = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) __lowercase: Union[str, Any] = False __lowercase: Optional[Any] = False __lowercase: Any = False __lowercase: Union[str, Any] = False __lowercase: Dict = False def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple: """simple docstring""" snake_case_ = ConvNextVaModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels() snake_case_ = True if model_class.__name__ in [ *get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ ), ]: continue snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.train() snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) snake_case_ = model(**UpperCAmelCase_ ).loss loss.backward() def lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels() snake_case_ = False snake_case_ = True if ( model_class.__name__ in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )] or not model_class.supports_gradient_checkpointing ): continue snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.gradient_checkpointing_enable() model.train() snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) snake_case_ = model(**UpperCAmelCase_ ).loss loss.backward() def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ): snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case_ = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def _a ( ) -> str: snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __A (unittest.TestCase): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): snake_case_ = model(**UpperCAmelCase_ ) # verify the logits snake_case_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
2
0
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __A (_lowerCAmelCase): '''simple docstring''' @slow @require_torch def lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" snake_case_ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) snake_case_ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) snake_case_ = bertabert.config.encoder.vocab_size snake_case_ = tokenizer.sep_token_id snake_case_ = tokenizer.cls_token_id snake_case_ = 128 snake_case_ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) snake_case_ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) snake_case_ = train_dataset.select(range(32 ) ) snake_case_ = val_dataset.select(range(16 ) ) snake_case_ = 4 def _map_to_encoder_decoder_inputs(UpperCAmelCase_ : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] snake_case_ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_lowerCAmelCase , max_length=512 ) snake_case_ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_lowerCAmelCase , max_length=128 ) snake_case_ = inputs.input_ids snake_case_ = inputs.attention_mask snake_case_ = outputs.input_ids snake_case_ = outputs.input_ids.copy() snake_case_ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] snake_case_ = outputs.attention_mask assert all(len(_lowerCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_lowerCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(UpperCAmelCase_ : Tuple ): snake_case_ = pred.label_ids snake_case_ = pred.predictions # all unnecessary tokens are removed snake_case_ = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) snake_case_ = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) snake_case_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_lowerCAmelCase ) )] ) / len(_lowerCAmelCase ) return {"accuracy": accuracy} # map train dataset snake_case_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_lowerCAmelCase , batch_size=_lowerCAmelCase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset snake_case_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_lowerCAmelCase , batch_size=_lowerCAmelCase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = SeqaSeqTrainingArguments( output_dir=_lowerCAmelCase , per_device_train_batch_size=_lowerCAmelCase , per_device_eval_batch_size=_lowerCAmelCase , predict_with_generate=_lowerCAmelCase , evaluation_strategy="""steps""" , do_train=_lowerCAmelCase , do_eval=_lowerCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer snake_case_ = SeqaSeqTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , compute_metrics=_compute_metrics , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) # start training trainer.train()
708
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights'] def _a ( _SCREAMING_SNAKE_CASE ) -> str: if "emb" in name: snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: snake_case_ = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: snake_case_ = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: snake_case_ = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: snake_case_ = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: snake_case_ = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]: snake_case_ = list(state_dict.keys() ) snake_case_ = {} for key in keys: snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE ) snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE ) if "in_proj_weight" in key: # split fused qkv proj snake_case_ = val[:hidden_size, :] snake_case_ = val[hidden_size : 2 * hidden_size, :] snake_case_ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: snake_case_ = val else: snake_case_ = val return state_dict, enc_dec_proj_state_dict def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values snake_case_ = 1_024 snake_case_ = 24 snake_case_ = 16 elif checkpoint == "medium": snake_case_ = 1_536 snake_case_ = 48 snake_case_ = 24 elif checkpoint == "large": snake_case_ = 2_048 snake_case_ = 48 snake_case_ = 32 else: raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) snake_case_ = MusicgenDecoderConfig( hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , ) return config @torch.no_grad() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple: snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE ) snake_case_ = fairseq_model.lm.state_dict() snake_case_ , snake_case_ = rename_state_dict( _SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size ) snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" ) snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" ) if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE ) # check we can do a forward pass snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) snake_case_ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits if logits.shape != (8, 1, 2_048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" ) snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) # set the appropriate bos/pad token ids snake_case_ = 2_048 snake_case_ = 2_048 # set other default generation config params snake_case_ = int(30 * audio_encoder.config.frame_rate ) snake_case_ = True snake_case_ = 3.0 if pytorch_dump_folder is not None: Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if repo_id: logger.info(f"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) processor.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
2
0
"""simple docstring""" import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) set_seed(770) __SCREAMING_SNAKE_CASE : str = { 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.dirname(os.path.abspath(__file__)) __SCREAMING_SNAKE_CASE : str = os.path.join(os.path.expanduser('~'), '.cache') __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: snake_case_ = model_type if use_small: key += "_small" return os.path.join(snake_case_ , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: os.makedirs(snake_case_ , exist_ok=snake_case_ ) hf_hub_download(repo_id=snake_case_ , filename=snake_case_ , local_dir=snake_case_ ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="text" ) -> Tuple: if model_type == "text": snake_case_ = BarkSemanticModel snake_case_ = BarkSemanticConfig snake_case_ = BarkSemanticGenerationConfig elif model_type == "coarse": snake_case_ = BarkCoarseModel snake_case_ = BarkCoarseConfig snake_case_ = BarkCoarseGenerationConfig elif model_type == "fine": snake_case_ = BarkFineModel snake_case_ = BarkFineConfig snake_case_ = BarkFineGenerationConfig else: raise NotImplementedError() snake_case_ = f"""{model_type}_small""" if use_small else model_type snake_case_ = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(snake_case_ ): logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) snake_case_ = torch.load(snake_case_ , map_location=snake_case_ ) # this is a hack snake_case_ = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: snake_case_ = model_args["""vocab_size"""] snake_case_ = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments snake_case_ = model_args.pop("""n_head""" ) snake_case_ = model_args.pop("""n_embd""" ) snake_case_ = model_args.pop("""n_layer""" ) snake_case_ = ConfigClass(**checkpoint["""model_args"""] ) snake_case_ = ModelClass(config=snake_case_ ) snake_case_ = GenerationConfigClass() snake_case_ = model_generation_config snake_case_ = checkpoint["""model"""] # fixup checkpoint snake_case_ = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(snake_case_ ): # replace part of the key with corresponding layer name in HF implementation snake_case_ = k[len(snake_case_ ) :] for old_layer_name in new_layer_name_dict: snake_case_ = new_k.replace(snake_case_ , new_layer_name_dict[old_layer_name] ) snake_case_ = state_dict.pop(snake_case_ ) snake_case_ = set(state_dict.keys() ) - set(model.state_dict().keys() ) snake_case_ = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} snake_case_ = set(model.state_dict().keys() ) - set(state_dict.keys() ) snake_case_ = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(snake_case_ ) != 0: raise ValueError(f"""extra keys found: {extra_keys}""" ) if len(snake_case_ ) != 0: raise ValueError(f"""missing keys: {missing_keys}""" ) model.load_state_dict(snake_case_ , strict=snake_case_ ) snake_case_ = model.num_parameters(exclude_embeddings=snake_case_ ) snake_case_ = checkpoint["""best_val_loss"""].item() logger.info(f"""model loaded: {round(n_params/1E6 , 1 )}M params, {round(snake_case_ , 3 )} loss""" ) model.eval() model.to(snake_case_ ) del checkpoint, state_dict return model def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="text" ) -> Dict: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() snake_case_ = """cpu""" # do conversion on cpu snake_case_ = _get_ckpt_path(snake_case_ , use_small=snake_case_ ) snake_case_ = _load_model(snake_case_ , snake_case_ , model_type=snake_case_ , use_small=snake_case_ ) # load bark initial model snake_case_ = _bark_load_model(snake_case_ , """cpu""" , model_type=snake_case_ , use_small=snake_case_ ) if model_type == "text": snake_case_ = bark_model["""model"""] if model.num_parameters(exclude_embeddings=snake_case_ ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model snake_case_ = 5 snake_case_ = 10 if model_type in ["text", "coarse"]: snake_case_ = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) snake_case_ = bark_model(snake_case_ )[0] snake_case_ = model(snake_case_ ) # take last logits snake_case_ = output_new_model_total.logits[:, [-1], :] else: snake_case_ = 3 snake_case_ = 8 snake_case_ = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) snake_case_ = model(snake_case_ , snake_case_ ) snake_case_ = bark_model(snake_case_ , snake_case_ ) snake_case_ = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("""initial and new outputs are not equal""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: snake_case_ = os.path.join(snake_case_ , snake_case_ ) snake_case_ = BarkSemanticConfig.from_pretrained(os.path.join(snake_case_ , """config.json""" ) ) snake_case_ = BarkCoarseConfig.from_pretrained(os.path.join(snake_case_ , """config.json""" ) ) snake_case_ = BarkFineConfig.from_pretrained(os.path.join(snake_case_ , """config.json""" ) ) snake_case_ = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) snake_case_ = BarkSemanticModel.from_pretrained(snake_case_ ) snake_case_ = BarkCoarseModel.from_pretrained(snake_case_ ) snake_case_ = BarkFineModel.from_pretrained(snake_case_ ) snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) snake_case_ = BarkConfig.from_sub_model_configs( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) snake_case_ = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) snake_case_ = BarkModel(snake_case_ ) snake_case_ = semantic snake_case_ = coarseAcoustic snake_case_ = fineAcoustic snake_case_ = codec snake_case_ = bark_generation_config Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) bark.save_pretrained(snake_case_ , repo_id=snake_case_ , push_to_hub=snake_case_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') __SCREAMING_SNAKE_CASE : str = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
709
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if index == number_of_items: return 0 snake_case_ = 0 snake_case_ = 0 snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 ) if weights[index] <= max_weight: snake_case_ = values[index] + knapsack( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 ) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Tuple: try: snake_case_ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. snake_case_ = default else: # KEY is set, convert it to True or False. try: snake_case_ = strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value __SCREAMING_SNAKE_CASE : Optional[Any] = parse_flag_from_env('RUN_SLOW', default=False) __SCREAMING_SNAKE_CASE : Tuple = parse_flag_from_env('RUN_REMOTE', default=False) __SCREAMING_SNAKE_CASE : List[Any] = parse_flag_from_env('RUN_LOCAL', default=True) __SCREAMING_SNAKE_CASE : Union[str, Any] = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression __SCREAMING_SNAKE_CASE : Dict = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') __SCREAMING_SNAKE_CASE : str = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') __SCREAMING_SNAKE_CASE : Optional[int] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio __SCREAMING_SNAKE_CASE : Optional[Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam __SCREAMING_SNAKE_CASE : Any = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility __SCREAMING_SNAKE_CASE : str = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows __SCREAMING_SNAKE_CASE : Any = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def _a ( _SCREAMING_SNAKE_CASE ) -> Dict: try: import faiss # noqa except ImportError: snake_case_ = unittest.skip("""test requires faiss""" )(__UpperCamelCase ) return test_case def _a ( _SCREAMING_SNAKE_CASE ) -> Tuple: try: import regex # noqa except ImportError: snake_case_ = unittest.skip("""test requires regex""" )(__UpperCamelCase ) return test_case def _a ( _SCREAMING_SNAKE_CASE ) -> int: try: import elasticsearch # noqa except ImportError: snake_case_ = unittest.skip("""test requires elasticsearch""" )(__UpperCamelCase ) return test_case def _a ( _SCREAMING_SNAKE_CASE ) -> int: try: import sqlalchemy # noqa except ImportError: snake_case_ = unittest.skip("""test requires sqlalchemy""" )(__UpperCamelCase ) return test_case def _a ( _SCREAMING_SNAKE_CASE ) -> Dict: if not config.TORCH_AVAILABLE: snake_case_ = unittest.skip("""test requires PyTorch""" )(__UpperCamelCase ) return test_case def _a ( _SCREAMING_SNAKE_CASE ) -> Tuple: if not config.TF_AVAILABLE: snake_case_ = unittest.skip("""test requires TensorFlow""" )(__UpperCamelCase ) return test_case def _a ( _SCREAMING_SNAKE_CASE ) -> str: if not config.JAX_AVAILABLE: snake_case_ = unittest.skip("""test requires JAX""" )(__UpperCamelCase ) return test_case def _a ( _SCREAMING_SNAKE_CASE ) -> int: if not config.PIL_AVAILABLE: snake_case_ = unittest.skip("""test requires Pillow""" )(__UpperCamelCase ) return test_case def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(__UpperCamelCase ) else: return test_case def _a ( _SCREAMING_SNAKE_CASE ) -> Any: try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(__UpperCamelCase ) else: return test_case def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]: try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(__UpperCamelCase ) else: return test_case def _a ( _SCREAMING_SNAKE_CASE ) -> Tuple: def _require_spacy_model(_SCREAMING_SNAKE_CASE ): try: import spacy # noqa F401 spacy.load(__UpperCamelCase ) except ImportError: return unittest.skip("""test requires spacy""" )(__UpperCamelCase ) except OSError: return unittest.skip("""test requires spacy model \'{}\'""".format(__UpperCamelCase ) )(__UpperCamelCase ) else: return test_case return _require_spacy_model def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]: try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(__UpperCamelCase ) else: return test_case def _a ( _SCREAMING_SNAKE_CASE ) -> int: try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(__UpperCamelCase ) else: return test_case def _a ( _SCREAMING_SNAKE_CASE ) -> Tuple: if not _run_slow_tests or _run_slow_tests == 0: snake_case_ = unittest.skip("""test is slow""" )(__UpperCamelCase ) return test_case def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: if not _run_local_tests or _run_local_tests == 0: snake_case_ = unittest.skip("""test is local""" )(__UpperCamelCase ) return test_case def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: if not _run_packaged_tests or _run_packaged_tests == 0: snake_case_ = unittest.skip("""test is packaged""" )(__UpperCamelCase ) return test_case def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: if not _run_remote_tests or _run_remote_tests == 0: snake_case_ = unittest.skip("""test requires remote""" )(__UpperCamelCase ) return test_case def _a ( *_SCREAMING_SNAKE_CASE ) -> Optional[int]: def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__UpperCamelCase ) and name.startswith("""test""" ): for decorator in decorators: snake_case_ = decorator(__UpperCamelCase ) setattr(cls , __UpperCamelCase , __UpperCamelCase ) return cls return decorate class __A (SCREAMING_SNAKE_CASE_): '''simple docstring''' pass class __A (SCREAMING_SNAKE_CASE_): '''simple docstring''' __lowercase: List[str] = 0 __lowercase: Union[str, Any] = 1 __lowercase: Tuple = 2 @contextmanager def _a ( _SCREAMING_SNAKE_CASE=OfflineSimulationMode.CONNECTION_FAILS , _SCREAMING_SNAKE_CASE=1E-1_6 ) -> Dict: snake_case_ = requests.Session().request def timeout_request(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): # Change the url to an invalid url so that the connection hangs snake_case_ = '''https://10.255.255.1''' if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( f"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) snake_case_ = timeout try: return online_request(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier snake_case_ = url snake_case_ = e.args[0] snake_case_ = (max_retry_error.args[0].replace("""10.255.255.1""" , f"""OfflineMock[{url}]""" ),) snake_case_ = (max_retry_error,) raise def raise_connection_error(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): raise requests.ConnectionError("""Offline mode is enabled.""" , request=__UpperCamelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" , __UpperCamelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" , __UpperCamelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" , __UpperCamelCase ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def _a ( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: snake_case_ = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCamelCase , **__UpperCamelCase ) as tmp_dir: try: os.chdir(__UpperCamelCase ) yield finally: os.chdir(__UpperCamelCase ) @contextmanager def _a ( ) -> int: import gc gc.collect() snake_case_ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _a ( ) -> Optional[int]: import gc gc.collect() snake_case_ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: return deepcopy(__UpperCamelCase ).integers(0 , 100 , 10 ).tolist() == deepcopy(__UpperCamelCase ).integers(0 , 100 , 10 ).tolist() def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: import decorator from requests.exceptions import HTTPError def _wrapper(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): try: return func(*__UpperCamelCase , **__UpperCamelCase ) except HTTPError as err: if str(__UpperCamelCase ).startswith("""500""" ) or str(__UpperCamelCase ).startswith("""502""" ): pytest.xfail(str(__UpperCamelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCamelCase ) class __A : '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] ) ->int: """simple docstring""" snake_case_ = returncode snake_case_ = stdout snake_case_ = stderr async def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: while True: snake_case_ = await stream.readline() if line: callback(__UpperCamelCase ) else: break async def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ) -> _RunOutput: if echo: print("""\nRunning: """ , """ """.join(__UpperCamelCase ) ) snake_case_ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) snake_case_ = [] snake_case_ = [] def tee(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="" ): snake_case_ = line.decode("""utf-8""" ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda _SCREAMING_SNAKE_CASE : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label="""stdout:""" ) ), _read_stream(p.stderr , lambda _SCREAMING_SNAKE_CASE : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label="""stderr:""" ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=180 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True ) -> _RunOutput: snake_case_ = asyncio.get_event_loop() snake_case_ = loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) snake_case_ = ''' '''.join(__UpperCamelCase ) if result.returncode > 0: snake_case_ = '''\n'''.join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"""'{cmd_str}' produced no output.""" ) return result def _a ( ) -> Optional[int]: snake_case_ = os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" ) snake_case_ = re.sub(r"""^gw""" , """""" , __UpperCamelCase , 0 , re.M ) return int(__UpperCamelCase ) def _a ( ) -> List[Any]: snake_case_ = 29_500 snake_case_ = pytest_xdist_worker_id() return port + uniq_delta
710
"""simple docstring""" from math import factorial def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int: snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case_ = n // 2 return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: __SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
2
0
"""simple docstring""" from __future__ import annotations import math def _a ( _SCREAMING_SNAKE_CASE ) -> int: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __SCREAMING_SNAKE_CASE : str = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) snake_case_ = [] for num in range(len(lowerCamelCase_ ) ): snake_case_ = 0 while 2 * i * i <= odd_composites[num]: snake_case_ = odd_composites[num] - 2 * i * i if is_prime(lowerCamelCase_ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCamelCase_ ) == n: return list_nums return [] def _a ( ) -> str: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
711
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str: snake_case_ = ascii_letters + digits + punctuation return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(_SCREAMING_SNAKE_CASE ) snake_case_ = i // 3 snake_case_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) snake_case_ = ( chars_incl + random(_SCREAMING_SNAKE_CASE , quotient + remainder ) + random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) + random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) snake_case_ = list(_SCREAMING_SNAKE_CASE ) shuffle(_SCREAMING_SNAKE_CASE ) return "".join(_SCREAMING_SNAKE_CASE ) # random is a generalised function for letters, characters and numbers def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool: if len(_SCREAMING_SNAKE_CASE ) < min_length: # Your Password must be at least 8 characters long return False snake_case_ = any(char in ascii_uppercase for char in password ) snake_case_ = any(char in ascii_lowercase for char in password ) snake_case_ = any(char in digits for char in password ) snake_case_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _a ( ) -> str: snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() ) snake_case_ = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) ) print( """Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
2
0
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: return number | (1 << position) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: return number & ~(1 << position) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: return number ^ (1 << position) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: return ((number >> position) & 1) == 1 def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
712
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __A (unittest.TestCase): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]: """simple docstring""" snake_case_ = size if size is not None else {"""height""": 18, """width""": 18} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = image_size snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = do_normalize def lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804], [-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" snake_case_ = ImageGPTImageProcessingTester(self ) @property def lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) ) def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) snake_case_ = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) ) else: self.assertEqual(obj[key] , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" ) image_processor_first.to_json_file(UpperCAmelCase_ ) snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict() snake_case_ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(UpperCAmelCase_ ) snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict() snake_case_ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , UpperCAmelCase_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" pass def _a ( ) -> str: snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) snake_case_ = Image.open(dataset[4]["""file"""] ) snake_case_ = Image.open(dataset[5]["""file"""] ) snake_case_ = [imagea, imagea] return images @require_vision @require_torch class __A (unittest.TestCase): '''simple docstring''' @slow def lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) snake_case_ = prepare_images() # test non-batched snake_case_ = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_024) ) snake_case_ = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ ) # test batched snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_024) ) snake_case_ = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
2
0
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __A (__lowercase , __lowercase): '''simple docstring''' @register_to_config def __init__( self : List[Any] , UpperCAmelCase_ : Optional[int] = 768 , ) ->Tuple: """simple docstring""" super().__init__() snake_case_ = nn.Parameter(torch.zeros(1 , __A ) ) snake_case_ = nn.Parameter(torch.ones(1 , __A ) ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any] = None , UpperCAmelCase_ : Tuple = None , ) ->int: """simple docstring""" snake_case_ = nn.Parameter(self.mean.to(__A ).to(__A ) ) snake_case_ = nn.Parameter(self.std.to(__A ).to(__A ) ) return self def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[Any] ) ->str: """simple docstring""" snake_case_ = (embeds - self.mean) * 1.0 / self.std return embeds def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->List[Any]: """simple docstring""" snake_case_ = (embeds * self.std) + self.mean return embeds
713
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __A : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = scope snake_case_ = range_bbox def lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case_ = bbox[i, j, 3] snake_case_ = bbox[i, j, 1] snake_case_ = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case_ = bbox[i, j, 2] snake_case_ = bbox[i, j, 0] snake_case_ = t snake_case_ = None if self.use_input_mask: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str: """simple docstring""" snake_case_ = LiltModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict: """simple docstring""" snake_case_ = self.num_labels snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict: """simple docstring""" snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Optional[int] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __lowercase: Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __lowercase: Union[str, Any] = False __lowercase: List[str] = False def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]: """simple docstring""" return True def lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" snake_case_ = LiltModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[str] ) ->int: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) @slow def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_torch @slow class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ ) snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ ) snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ ) # forward pass with torch.no_grad(): snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ ) snake_case_ = torch.Size([1, 2, 768] ) snake_case_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , ) self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
2
0
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase__) class __A (UpperCamelCase__): '''simple docstring''' def __init__( self : Union[str, Any] , **UpperCAmelCase_ : Dict ) ->Tuple: """simple docstring""" super().__init__(**__A ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] , UpperCAmelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCAmelCase_ : Any ) ->List[str]: """simple docstring""" return super().__call__(__A , **__A ) def lowerCAmelCase ( self : Optional[int] , **UpperCAmelCase_ : List[Any] ) ->List[Any]: """simple docstring""" snake_case_ = {} if "candidate_labels" in kwargs: snake_case_ = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: snake_case_ = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def lowerCAmelCase ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Any="This is a photo of {}." ) ->List[Any]: """simple docstring""" snake_case_ = load_image(__A ) snake_case_ = self.image_processor(images=[image] , return_tensors=self.framework ) snake_case_ = candidate_labels snake_case_ = [hypothesis_template.format(__A ) for x in candidate_labels] snake_case_ = self.tokenizer(__A , return_tensors=self.framework , padding=__A ) snake_case_ = [text_inputs] return inputs def lowerCAmelCase ( self : str , UpperCAmelCase_ : Optional[int] ) ->Union[str, Any]: """simple docstring""" snake_case_ = model_inputs.pop("""candidate_labels""" ) snake_case_ = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , __A ): snake_case_ = text_inputs[0] else: # Batching case. snake_case_ = text_inputs[0][0] snake_case_ = self.model(**__A , **__A ) snake_case_ = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : str ) ->Optional[Any]: """simple docstring""" snake_case_ = model_outputs.pop("""candidate_labels""" ) snake_case_ = model_outputs["""logits"""][0] if self.framework == "pt": snake_case_ = logits.softmax(dim=-1 ).squeeze(-1 ) snake_case_ = probs.tolist() if not isinstance(__A , __A ): snake_case_ = [scores] elif self.framework == "tf": snake_case_ = stable_softmax(__A , axis=-1 ) snake_case_ = probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) snake_case_ = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(__A , __A ) , key=lambda UpperCAmelCase_ : -x[0] ) ] return result
714
"""simple docstring""" from __future__ import annotations def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]: snake_case_ = 0 snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: snake_case_ = i + 1 else: snake_case_ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
2
0
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: snake_case_ = [False] * len(_UpperCAmelCase ) snake_case_ = [-1] * len(_UpperCAmelCase ) def dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ = True snake_case_ = c for u in graph[v]: if not visited[u]: dfs(_UpperCAmelCase , 1 - c ) for i in range(len(_UpperCAmelCase ) ): if not visited[i]: dfs(_UpperCAmelCase , 0 ) for i in range(len(_UpperCAmelCase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __SCREAMING_SNAKE_CASE : int = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
715
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" snake_case_ = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) snake_case_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) sd_pipe.set_scheduler("""sample_euler""" ) snake_case_ = 'A painting of a squirrel eating a burger' snake_case_ = torch.manual_seed(0 ) snake_case_ = sd_pipe([prompt] , generator=__a , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" snake_case_ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) snake_case_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) sd_pipe.set_scheduler("""sample_euler""" ) snake_case_ = 'A painting of a squirrel eating a burger' snake_case_ = torch.manual_seed(0 ) snake_case_ = sd_pipe([prompt] , generator=__a , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def lowerCAmelCase ( self : int ) ->List[Any]: """simple docstring""" snake_case_ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) snake_case_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) sd_pipe.set_scheduler("""sample_dpmpp_2m""" ) snake_case_ = 'A painting of a squirrel eating a burger' snake_case_ = torch.manual_seed(0 ) snake_case_ = sd_pipe( [prompt] , generator=__a , guidance_scale=7.5 , num_inference_steps=15 , output_type="""np""" , use_karras_sigmas=__a , ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
716
"""simple docstring""" __SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter' __SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE' def _a ( _SCREAMING_SNAKE_CASE ) -> bool: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}""" raise TypeError(_SCREAMING_SNAKE_CASE ) snake_case_ = spanish_id.replace("""-""" , """""" ).upper() if len(_SCREAMING_SNAKE_CASE ) != 9: raise ValueError(_SCREAMING_SNAKE_CASE ) try: snake_case_ = int(spanish_id_clean[0:8] ) snake_case_ = spanish_id_clean[8] except ValueError as ex: raise ValueError(_SCREAMING_SNAKE_CASE ) from ex if letter.isdigit(): raise ValueError(_SCREAMING_SNAKE_CASE ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" from __future__ import annotations from typing import Any class __A : '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : int = 6 ) ->None: """simple docstring""" snake_case_ = None snake_case_ = None self.create_linked_list(__A ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : int ) ->None: """simple docstring""" snake_case_ = Node() snake_case_ = current_node snake_case_ = current_node snake_case_ = current_node for _ in range(1 , __A ): snake_case_ = Node() snake_case_ = current_node snake_case_ = previous_node snake_case_ = current_node snake_case_ = self.front snake_case_ = previous_node def lowerCAmelCase ( self : int ) ->bool: """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def lowerCAmelCase ( self : Dict ) ->Any | None: """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Any ) ->None: """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): snake_case_ = self.rear.next if self.rear: snake_case_ = data def lowerCAmelCase ( self : List[str] ) ->Any: """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: snake_case_ = self.front.data snake_case_ = None return data snake_case_ = self.front snake_case_ = old_front.next snake_case_ = old_front.data snake_case_ = None return data def lowerCAmelCase ( self : Any ) ->None: """simple docstring""" if self.is_empty(): raise Exception("""Empty Queue""" ) def lowerCAmelCase ( self : List[str] ) ->None: """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __A : '''simple docstring''' def __init__( self : Dict ) ->None: """simple docstring""" snake_case_ = None snake_case_ = None snake_case_ = None if __name__ == "__main__": import doctest doctest.testmod()
717
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'} __SCREAMING_SNAKE_CASE : List[str] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } __SCREAMING_SNAKE_CASE : List[str] = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } __SCREAMING_SNAKE_CASE : int = '▁' class __A (snake_case__): '''simple docstring''' __lowercase: Optional[Any] = VOCAB_FILES_NAMES __lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None: """simple docstring""" snake_case_ = ( AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token ) snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) snake_case_ = do_lower_case snake_case_ = remove_space snake_case_ = keep_accents snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) @property def lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" return len(self.sp_model ) def lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) ->List[str]: """simple docstring""" snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]: """simple docstring""" snake_case_ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str: """simple docstring""" if self.remove_space: snake_case_ = """ """.join(inputs.strip().split() ) else: snake_case_ = inputs snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ ) snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] ) if self.do_lower_case: snake_case_ = outputs.lower() return outputs def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]: """simple docstring""" snake_case_ = self.preprocess_text(UpperCAmelCase_ ) snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) snake_case_ = [] for piece in pieces: if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case_ = cur_pieces[1:] else: snake_case_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase_ ) else: new_pieces.append(UpperCAmelCase_ ) return new_pieces def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict: """simple docstring""" return self.sp_model.PieceToId(UpperCAmelCase_ ) def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]: """simple docstring""" return self.sp_model.IdToPiece(UpperCAmelCase_ ) def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any: """simple docstring""" snake_case_ = [] snake_case_ = """""" snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase_ ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(UpperCAmelCase_ ) snake_case_ = False out_string += self.sp_model.decode(UpperCAmelCase_ ) return out_string.strip() def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]: """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1] return [1] + ([0] * len(UpperCAmelCase_ )) + [1] def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]: """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case_ = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , """wb""" ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
2
0
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __SCREAMING_SNAKE_CASE : Any = '\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n' __SCREAMING_SNAKE_CASE : int = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' __SCREAMING_SNAKE_CASE : List[Any] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __A (datasets.Metric): '''simple docstring''' def lowerCAmelCase ( self : Any ) ->int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[ """https://en.wikipedia.org/wiki/ROUGE_(metric)""", """https://github.com/google-research/google-research/tree/master/rouge""", ] , ) def lowerCAmelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=False ) ->Optional[int]: """simple docstring""" if rouge_types is None: snake_case_ = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""] snake_case_ = rouge_scorer.RougeScorer(rouge_types=_lowercase , use_stemmer=_lowercase ) if use_aggregator: snake_case_ = scoring.BootstrapAggregator() else: snake_case_ = [] for ref, pred in zip(_lowercase , _lowercase ): snake_case_ = scorer.score(_lowercase , _lowercase ) if use_aggregator: aggregator.add_scores(_lowercase ) else: scores.append(_lowercase ) if use_aggregator: snake_case_ = aggregator.aggregate() else: snake_case_ = {} for key in scores[0]: snake_case_ = [score[key] for score in scores] return result
718
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("""The given input must be positive""" ) # get the generated string sequence snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): snake_case_ = int(sequence[i] , 2 ) return sequence def _a ( _SCREAMING_SNAKE_CASE ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] snake_case_ = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits snake_case_ = gray_code_sequence_string(bit_count - 1 ) snake_case_ = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): snake_case_ = """0""" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): snake_case_ = """1""" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
2
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline __SCREAMING_SNAKE_CASE : Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class __A (datasets.BuilderConfig): '''simple docstring''' __lowercase: Optional[datasets.Features] = None __lowercase: str = "utf-8" __lowercase: Optional[str] = None __lowercase: Optional[str] = None __lowercase: bool = True # deprecated __lowercase: Optional[int] = None # deprecated __lowercase: int = 10 << 20 # 10MB __lowercase: Optional[bool] = None class __A (datasets.ArrowBasedBuilder): '''simple docstring''' __lowercase: List[str] = JsonConfig def lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]: """simple docstring""" if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) snake_case_ = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[int] ) ->Optional[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) snake_case_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A__ , (str, list, tuple) ): snake_case_ = data_files if isinstance(A__ , A__ ): snake_case_ = [files] snake_case_ = [dl_manager.iter_files(A__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] snake_case_ = [] for split_name, files in data_files.items(): if isinstance(A__ , A__ ): snake_case_ = [files] snake_case_ = [dl_manager.iter_files(A__ ) for file in files] splits.append(datasets.SplitGenerator(name=A__ , gen_kwargs={"""files""": files} ) ) return splits def lowerCAmelCase ( self : int , UpperCAmelCase_ : Dict ) ->Optional[int]: """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): snake_case_ = self.config.features.arrow_schema.field(A__ ).type snake_case_ = pa_table.append_column(A__ , pa.array([None] * len(A__ ) , type=A__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example snake_case_ = table_cast(A__ , self.config.features.arrow_schema ) return pa_table def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Tuple ) ->Any: """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(A__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(A__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: snake_case_ = json.load(A__ ) # We keep only the field we are interested in snake_case_ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(A__ , (list, tuple) ): snake_case_ = set().union(*[row.keys() for row in dataset] ) snake_case_ = {col: [row.get(A__ ) for row in dataset] for col in keys} else: snake_case_ = dataset snake_case_ = pa.Table.from_pydict(A__ ) yield file_idx, self._cast_table(A__ ) # If the file has one json object per line else: with open(A__ , """rb""" ) as f: snake_case_ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small snake_case_ = max(self.config.chunksize // 32 , 16 << 10 ) snake_case_ = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: snake_case_ = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(A__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": snake_case_ = batch.decode(self.config.encoding , errors=A__ ).encode("""utf-8""" ) try: while True: try: snake_case_ = paj.read_json( io.BytesIO(A__ ) , read_options=paj.ReadOptions(block_size=A__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(A__ , pa.ArrowInvalid ) and "straddling" not in str(A__ ) or block_size > len(A__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(A__ )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( A__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: snake_case_ = json.load(A__ ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(A__ )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(A__ , A__ ): # list is the only sequence type supported in JSON try: snake_case_ = set().union(*[row.keys() for row in dataset] ) snake_case_ = {col: [row.get(A__ ) for row in dataset] for col in keys} snake_case_ = pa.Table.from_pydict(A__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(A__ )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(A__ ) break else: logger.error(F"""Failed to read file '{file}' with error {type(A__ )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(A__ ) batch_idx += 1
719
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
0
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = False, False, False @dataclass class __A : '''simple docstring''' __lowercase: Optional[int] = None __lowercase: bool = True __lowercase: bool = True __lowercase: Optional[str] = None # Automatically constructed __lowercase: ClassVar[str] = "dict" __lowercase: ClassVar[Any] = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()}) __lowercase: str = field(default="""Audio""" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE) def __call__( self : str ) ->Optional[int]: """simple docstring""" return self.pa_type def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : int ) ->int: """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install \'soundfile\'.""" ) from err if isinstance(_a , _a ): return {"bytes": None, "path": value} elif isinstance(_a , _a ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes snake_case_ = BytesIO() sf.write(_a , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a \'sampling_rate\' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) snake_case_ = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 32_767 else: snake_case_ = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 32_767 snake_case_ = BytesIO(bytes() ) sf.write(_a , _a , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F"""An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.""" ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any = None ) ->Dict: """simple docstring""" if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) snake_case_ , snake_case_ = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(F"""An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install \'librosa\' and \'soundfile\'.""" ) from err snake_case_ = xsplitext(_a )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: snake_case_ = token_per_repo_id or {} snake_case_ = path.split("""::""" )[-1] try: snake_case_ = string_to_dict(_a , config.HUB_DATASETS_URL )["""repo_id"""] snake_case_ = token_per_repo_id[repo_id] except (ValueError, KeyError): snake_case_ = None with xopen(_a , """rb""" , use_auth_token=_a ) as f: snake_case_ , snake_case_ = sf.read(_a ) else: snake_case_ , snake_case_ = sf.read(_a ) snake_case_ = array.T if self.mono: snake_case_ = librosa.to_mono(_a ) if self.sampling_rate and self.sampling_rate != sampling_rate: snake_case_ = librosa.resample(_a , orig_sr=_a , target_sr=self.sampling_rate ) snake_case_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : List[Any] ) ->int: """simple docstring""" if pa.types.is_string(storage.type ): snake_case_ = pa.array([None] * len(_a ) , type=pa.binary() ) snake_case_ = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): snake_case_ = pa.array([None] * len(_a ) , type=pa.string() ) snake_case_ = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): snake_case_ = pa.array([Audio().encode_example(_a ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: snake_case_ = storage.field("""bytes""" ) else: snake_case_ = pa.array([None] * len(_a ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: snake_case_ = storage.field("""path""" ) else: snake_case_ = pa.array([None] * len(_a ) , type=pa.string() ) snake_case_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(_a , self.pa_type ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Tuple ) ->Any: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(UpperCAmelCase_ : str ): with xopen(_a , """rb""" ) as f: snake_case_ = f.read() return bytes_ snake_case_ = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) snake_case_ = pa.array( [os.path.basename(_a ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) snake_case_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_a , self.pa_type )
720
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/' __SCREAMING_SNAKE_CASE : List[Any] = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def _a ( _SCREAMING_SNAKE_CASE ) -> int: if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: snake_case_ = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: snake_case_ = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = {} import re snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) snake_case_ = re.compile( r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) snake_case_ = re.compile( r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) snake_case_ = re.compile( r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]] snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case_ = prefix + resnet_block snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]] snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case_ = prefix + resnet_block snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]] snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case_ = prefix + resnet_block snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # keep original key else: snake_case_ = original_key snake_case_ = replace_key(_SCREAMING_SNAKE_CASE ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) snake_case_ = original_key snake_case_ = original_key snake_case_ = value return new_dict @torch.no_grad() def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE ) open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content ) snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]] snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE ) snake_case_ = [] snake_case_ = {} for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ): snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""] snake_case_ = {} for k in old_dic.keys(): if k.endswith(""".b""" ): snake_case_ = old_dic[k] elif k.endswith(""".w""" ): snake_case_ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: snake_case_ = old_dic[k] else: snake_case_ = old_dic[k] snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}""" snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) weight_dict.append(_SCREAMING_SNAKE_CASE ) snake_case_ = weight_dict.pop(0 ) model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) return weight_dict if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) __SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
2
0
"""simple docstring""" import os import sys import unittest __SCREAMING_SNAKE_CASE : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __SCREAMING_SNAKE_CASE : str = os.path.join(git_repo_path, 'src', 'transformers') __SCREAMING_SNAKE_CASE : Tuple = """ {0} = None """ __SCREAMING_SNAKE_CASE : List[str] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ __SCREAMING_SNAKE_CASE : Optional[Any] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : int ) ->Any: """simple docstring""" snake_case_ = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" ) self.assertIsNone(UpperCamelCase__ ) snake_case_ = find_backend(""" if not is_tokenizers_available():""" ) self.assertEqual(UpperCamelCase__ , """tokenizers""" ) snake_case_ = find_backend(""" if not is_tensorflow_text_available():""" ) self.assertEqual(UpperCamelCase__ , """tensorflow_text""" ) snake_case_ = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" ) self.assertEqual(UpperCamelCase__ , """sentencepiece_and_tokenizers""" ) snake_case_ = find_backend( """ if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" ) self.assertEqual(UpperCamelCase__ , """sentencepiece_and_tensorflow_text""" ) snake_case_ = find_backend( """ if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" ) self.assertEqual(UpperCamelCase__ , """sentencepiece_and_tokenizers_and_vision""" ) def lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" snake_case_ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , UpperCamelCase__ ) self.assertIn("""tensorflow_text""" , UpperCamelCase__ ) self.assertIn("""sentencepiece_and_tokenizers""" , UpperCamelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertModel""" , objects["""tf"""] ) self.assertIn("""FlaxBertModel""" , objects["""flax"""] ) self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertTokenizer""" , objects["""tensorflow_text"""] ) self.assertIn("""convert_slow_tokenizer""" , objects["""sentencepiece_and_tokenizers"""] ) def lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" snake_case_ = create_dummy_object("""CONSTANT""" , """\'torch\'""" ) self.assertEqual(UpperCamelCase__ , """\nCONSTANT = None\n""" ) snake_case_ = create_dummy_object("""function""" , """\'torch\'""" ) self.assertEqual( UpperCamelCase__ , """\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n""" ) snake_case_ = """ class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') """ snake_case_ = create_dummy_object("""FakeClass""" , """\'torch\'""" ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" snake_case_ = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) """ snake_case_ = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] , UpperCamelCase__ )
721
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path __SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) __SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} __SCREAMING_SNAKE_CASE : Dict = 'zero2' __SCREAMING_SNAKE_CASE : List[Any] = 'zero3' __SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa] def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test __SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __A (snake_case__): '''simple docstring''' @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any: """simple docstring""" self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]: """simple docstring""" self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]: """simple docstring""" self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]: """simple docstring""" self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]: """simple docstring""" pass def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]: """simple docstring""" snake_case_ = models[model] snake_case_ = self.run_trainer( stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) self.do_checks(UpperCAmelCase_ ) return output_dir def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]: """simple docstring""" snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ ) snake_case_ = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(UpperCAmelCase_ )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(["""--fp16"""] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] snake_case_ = self.get_launcher(UpperCAmelCase_ ) snake_case_ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() ) return output_dir def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple: """simple docstring""" snake_case_ = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
2
0
"""simple docstring""" import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __A : '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : Union[str, Any]=7 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=99 , UpperCAmelCase_ : List[str]=64 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Dict=5 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=37 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=512 , UpperCAmelCase_ : Tuple=16 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Tuple=None , ) ->Dict: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = embedding_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ) ->Optional[Any]: """simple docstring""" snake_case_ = MegatronBertModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int ) ->List[str]: """simple docstring""" snake_case_ = MegatronBertForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[Any]: """simple docstring""" snake_case_ = MegatronBertForCausalLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str ) ->str: """simple docstring""" snake_case_ = MegatronBertForNextSentencePrediction(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ) ->Tuple: """simple docstring""" snake_case_ = MegatronBertForPreTraining(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , next_sentence_label=UpperCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int ) ->Tuple: """simple docstring""" snake_case_ = MegatronBertForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] ) ->Tuple: """simple docstring""" snake_case_ = self.num_labels snake_case_ = MegatronBertForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->List[str]: """simple docstring""" snake_case_ = self.num_labels snake_case_ = MegatronBertForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] ) ->int: """simple docstring""" snake_case_ = self.num_choices snake_case_ = MegatronBertForMultipleChoice(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : Any ) ->List[str]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A (snake_case_ , snake_case_ , unittest.TestCase): '''simple docstring''' __lowercase: int = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) __lowercase: Any = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) __lowercase: Dict = True # test_resize_embeddings = False __lowercase: str = False def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=False ) ->str: """simple docstring""" snake_case_ = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) if return_labels: if model_class in get_values(UpperCAmelCase_ ): snake_case_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase_ ) snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) return inputs_dict def lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" snake_case_ = MegatronBertModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Tuple ) ->Any: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Any ) ->int: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*UpperCAmelCase_ ) def lowerCAmelCase ( self : str ) ->int: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*UpperCAmelCase_ ) def lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->str: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*UpperCAmelCase_ ) def lowerCAmelCase ( self : List[str] ) ->int: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Dict ) ->int: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*UpperCAmelCase_ ) def _a ( _SCREAMING_SNAKE_CASE ) -> int: return torch.tensor( _SCREAMING_SNAKE_CASE , dtype=torch.long , device=_SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE : Optional[int] = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class __A (unittest.TestCase): '''simple docstring''' @slow @unittest.skip("""Model is not available.""" ) def lowerCAmelCase ( self : Tuple ) ->Any: """simple docstring""" snake_case_ = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: snake_case_ = os.path.join(os.environ["""MYDIR"""] , UpperCAmelCase_ ) snake_case_ = MegatronBertModel.from_pretrained(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.half() snake_case_ = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): snake_case_ = model(UpperCAmelCase_ )[0] snake_case_ = torch.Size((1, 9, 1_024) ) self.assertEqual(output.shape , UpperCAmelCase_ ) snake_case_ = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3 ): for jj in range(3 ): snake_case_ = output[0, ii, jj] snake_case_ = expected[3 * ii + jj] snake_case_ = """ii={} jj={} a={} b={}""".format(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) self.assertTrue(math.isclose(UpperCAmelCase_ , UpperCAmelCase_ , rel_tol=UpperCAmelCase_ , abs_tol=UpperCAmelCase_ ) , msg=UpperCAmelCase_ )
700
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case__) class __A (snake_case__): '''simple docstring''' __lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) __lowercase: ClassVar[Features] = Features({"""audio""": Audio()}) __lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")}) __lowercase: str = "audio" __lowercase: str = "transcription" def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int: """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , UpperCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) snake_case_ = copy.deepcopy(self ) snake_case_ = self.input_schema.copy() snake_case_ = features[self.audio_column] snake_case_ = input_schema return task_template @property def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]: """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
2
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] = '''▁''' __SCREAMING_SNAKE_CASE : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model'''} __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model''' ), } } __SCREAMING_SNAKE_CASE : Any = { '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off __SCREAMING_SNAKE_CASE : str = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __A (_UpperCAmelCase): '''simple docstring''' __lowercase: Any = VOCAB_FILES_NAMES __lowercase: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase: Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase: List[Any] = ["""input_ids""", """attention_mask"""] __lowercase: List[Any] = [] __lowercase: int = [] def __init__( self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str]="<s>" , UpperCAmelCase_ : str="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : str="<s>" , UpperCAmelCase_ : Optional[int]="<unk>" , UpperCAmelCase_ : List[str]="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : int=False , **UpperCAmelCase_ : Union[str, Any] , ) ->Optional[Any]: """simple docstring""" snake_case_ = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs snake_case_ = legacy_behaviour super().__init__( bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , tokenizer_file=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowercase__ , **lowercase__ , ) snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase__ ) ) snake_case_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token snake_case_ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case_ = 1 snake_case_ = len(self.sp_model ) snake_case_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowercase__ ) } snake_case_ = {v: k for k, v in self.lang_code_to_id.items()} snake_case_ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} snake_case_ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) snake_case_ = src_lang if src_lang is not None else "eng_Latn" snake_case_ = self.lang_code_to_id[self._src_lang] snake_case_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : int ) ->List[str]: """simple docstring""" snake_case_ = self.__dict__.copy() snake_case_ = None snake_case_ = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->List[Any]: """simple docstring""" snake_case_ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowerCAmelCase ( self : Optional[int] ) ->int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCAmelCase ( self : Tuple ) ->Union[str, Any]: """simple docstring""" return self._src_lang @src_lang.setter def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[Any] ) ->str: """simple docstring""" snake_case_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict = None , UpperCAmelCase_ : Optional[Any] = False ) ->Any: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) snake_case_ = [1] * len(self.prefix_tokens ) snake_case_ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase__ )) + suffix_ones return prefix_ones + ([0] * len(lowercase__ )) + ([0] * len(lowercase__ )) + suffix_ones def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any = None ) ->int: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict = None ) ->Optional[Any]: """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[str] ) ->int: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ = src_lang snake_case_ = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ = self.convert_tokens_to_ids(lowercase__ ) snake_case_ = tgt_lang_id return inputs def lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" snake_case_ = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->List[str]: """simple docstring""" return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def lowerCAmelCase ( self : int , UpperCAmelCase_ : Tuple ) ->Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ = self.sp_model.PieceToId(lowercase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCAmelCase ( self : str , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Dict ) ->Optional[Any]: """simple docstring""" snake_case_ = "".join(lowercase__ ).replace(lowercase__ , """ """ ).strip() return out_string def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] = None ) ->Tuple: """simple docstring""" if not os.path.isdir(lowercase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case_ = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ , """wb""" ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple = "eng_Latn" , UpperCAmelCase_ : List[str] = None , UpperCAmelCase_ : Dict = "fra_Latn" , **UpperCAmelCase_ : Optional[Any] , ) ->int: """simple docstring""" snake_case_ = src_lang snake_case_ = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] ) ->int: """simple docstring""" snake_case_ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: snake_case_ = [] snake_case_ = [self.eos_token_id, self.cur_lang_code] else: snake_case_ = [self.cur_lang_code] snake_case_ = [self.eos_token_id] def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Tuple ) ->Dict: """simple docstring""" snake_case_ = self.lang_code_to_id[lang] if self.legacy_behaviour: snake_case_ = [] snake_case_ = [self.eos_token_id, self.cur_lang_code] else: snake_case_ = [self.cur_lang_code] snake_case_ = [self.eos_token_id]
701
"""simple docstring""" from functools import reduce __SCREAMING_SNAKE_CASE : Tuple = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _a ( _SCREAMING_SNAKE_CASE = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) ) for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
2
0
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> int: snake_case_ = 1 snake_case_ = 2 while i * i <= n: snake_case_ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _a ( ) -> Tuple: snake_case_ = 1 snake_case_ = 1 while True: i += 1 t_num += i if count_divisors(SCREAMING_SNAKE_CASE_ ) > 500: break return t_num if __name__ == "__main__": print(solution())
702
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class __A (snake_case__): '''simple docstring''' __lowercase: Any = """mctct""" def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict: """simple docstring""" super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = num_attention_heads snake_case_ = attention_head_dim snake_case_ = max_position_embeddings snake_case_ = layer_norm_eps snake_case_ = layerdrop snake_case_ = hidden_act snake_case_ = initializer_range snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = pad_token_id snake_case_ = bos_token_id snake_case_ = eos_token_id snake_case_ = conv_glu_dim snake_case_ = conv_dropout snake_case_ = num_conv_layers snake_case_ = input_feat_per_channel snake_case_ = input_channels snake_case_ = conv_channels snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # prevents config testing fail with exporting to json snake_case_ = list(UpperCAmelCase_ ) snake_case_ = list(UpperCAmelCase_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
2
0
"""simple docstring""" import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class __A (__A): '''simple docstring''' __lowercase: Any = """conditional_detr""" __lowercase: Optional[Any] = ["""past_key_values"""] __lowercase: Dict = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Tuple , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Any=300 , UpperCAmelCase_ : Any=6 , UpperCAmelCase_ : Dict=2_048 , UpperCAmelCase_ : int=8 , UpperCAmelCase_ : str=6 , UpperCAmelCase_ : List[Any]=2_048 , UpperCAmelCase_ : Optional[Any]=8 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[Any]="relu" , UpperCAmelCase_ : str=256 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : Tuple=1.0 , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Optional[Any]="sine" , UpperCAmelCase_ : Any="resnet50" , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[Any]=5 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Union[str, Any]=1 , UpperCAmelCase_ : Optional[int]=1 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : List[str]=0.25 , **UpperCAmelCase_ : int , ) ->Dict: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can\'t specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ = CONFIG_MAPPING['resnet'](out_features=["""stage4"""] ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = backbone_config.get("""model_type""" ) snake_case_ = CONFIG_MAPPING[backbone_model_type] snake_case_ = config_class.from_dict(UpperCAmelCase_ ) snake_case_ = use_timm_backbone snake_case_ = backbone_config snake_case_ = num_channels snake_case_ = num_queries snake_case_ = d_model snake_case_ = encoder_ffn_dim snake_case_ = encoder_layers snake_case_ = encoder_attention_heads snake_case_ = decoder_ffn_dim snake_case_ = decoder_layers snake_case_ = decoder_attention_heads snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = activation_function snake_case_ = init_std snake_case_ = init_xavier_std snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = encoder_layers snake_case_ = auxiliary_loss snake_case_ = position_embedding_type snake_case_ = backbone snake_case_ = use_pretrained_backbone snake_case_ = dilation # Hungarian matcher snake_case_ = class_cost snake_case_ = bbox_cost snake_case_ = giou_cost # Loss coefficients snake_case_ = mask_loss_coefficient snake_case_ = dice_loss_coefficient snake_case_ = cls_loss_coefficient snake_case_ = bbox_loss_coefficient snake_case_ = giou_loss_coefficient snake_case_ = focal_alpha super().__init__(is_encoder_decoder=UpperCAmelCase_ , **UpperCAmelCase_ ) @property def lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" return self.encoder_attention_heads @property def lowerCAmelCase ( self : str ) ->int: """simple docstring""" return self.d_model def lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" snake_case_ = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output class __A (__A): '''simple docstring''' __lowercase: Optional[int] = version.parse("""1.11""") @property def lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowerCAmelCase ( self : int ) ->Optional[Any]: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" return 12
703
"""simple docstring""" from math import factorial def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int: return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : int = { 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Any = [ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
704
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: str = VQModel __lowercase: Union[str, Any] = """sample""" @property def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple: """simple docstring""" snake_case_ = 4 snake_case_ = 3 snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) return {"sample": image} @property def lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" return (3, 32, 32) def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } snake_case_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCAmelCase_ ) snake_case_ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(UpperCAmelCase_ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) snake_case_ = image.to(UpperCAmelCase_ ) with torch.no_grad(): snake_case_ = model(UpperCAmelCase_ ).sample snake_case_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] ) # fmt: on self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
2
0
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __A (__a): '''simple docstring''' __lowercase: Optional[Any] = '''umt5''' __lowercase: Tuple = ['''past_key_values'''] def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any=250_112 , UpperCAmelCase_ : int=512 , UpperCAmelCase_ : List[str]=64 , UpperCAmelCase_ : Union[str, Any]=1_024 , UpperCAmelCase_ : Any=8 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Dict=6 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : Union[str, Any]=128 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : str=1E-6 , UpperCAmelCase_ : Optional[int]=1.0 , UpperCAmelCase_ : Optional[Any]="gated-gelu" , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : List[str]="T5Tokenizer" , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Optional[Any]=0 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Optional[int]=0 , **UpperCAmelCase_ : str , ) ->Optional[Any]: """simple docstring""" super().__init__( is_encoder_decoder=snake_case__ , tokenizer_class=snake_case__ , tie_word_embeddings=snake_case__ , pad_token_id=snake_case__ , eos_token_id=snake_case__ , decoder_start_token_id=snake_case__ , **snake_case__ , ) snake_case_ = vocab_size snake_case_ = d_model snake_case_ = d_kv snake_case_ = d_ff snake_case_ = num_layers snake_case_ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry snake_case_ = num_heads snake_case_ = relative_attention_num_buckets snake_case_ = relative_attention_max_distance snake_case_ = dropout_rate snake_case_ = layer_norm_epsilon snake_case_ = initializer_factor snake_case_ = feed_forward_proj snake_case_ = use_cache snake_case_ = self.feed_forward_proj.split("""-""" ) snake_case_ = act_info[-1] snake_case_ = act_info[0] == """gated""" if len(snake_case__ ) > 1 and act_info[0] != "gated" or len(snake_case__ ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": snake_case_ = """gelu_new""" @property def lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" return self.d_model @property def lowerCAmelCase ( self : List[Any] ) ->Optional[int]: """simple docstring""" return self.num_heads @property def lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" return self.num_layers class __A (__a): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def lowerCAmelCase ( self : List[str] ) ->Tuple: """simple docstring""" snake_case_ = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: snake_case_ = """past_encoder_sequence + sequence""" snake_case_ = {0: """batch"""} snake_case_ = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: snake_case_ = {0: """batch""", 1: """decoder_sequence"""} snake_case_ = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(snake_case__ , direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" return 13 @property def lowerCAmelCase ( self : List[str] ) ->Tuple: """simple docstring""" return 5E-4
705
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Dict = KandinskyVaaControlnetPipeline __lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowercase: Union[str, Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowercase: Tuple = False @property def lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" return 32 @property def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" return 32 @property def lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" return self.time_input_dim @property def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" return 100 @property def lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" torch.manual_seed(0 ) snake_case_ = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : Any ) ->int: """simple docstring""" torch.manual_seed(0 ) snake_case_ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" snake_case_ = self.dummy_unet snake_case_ = self.dummy_movq snake_case_ = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , ) snake_case_ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]: """simple docstring""" snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase_ ) # create hint snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) if str(UpperCAmelCase_ ).startswith("""mps""" ): snake_case_ = torch.manual_seed(UpperCAmelCase_ ) else: snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) snake_case_ = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" snake_case_ = """cpu""" snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**UpperCAmelCase_ ) snake_case_ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) snake_case_ = output.images snake_case_ = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array( [0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" snake_case_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) snake_case_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0 snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case_ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case_ = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = """A robot, 4k photo""" snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 ) snake_case_ , snake_case_ = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 ) snake_case_ = pipeline( image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
2
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : List[Any] = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
706
"""simple docstring""" from __future__ import annotations from collections import deque class __A : '''simple docstring''' def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]: """simple docstring""" snake_case_ = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(UpperCAmelCase_ ) self.set_fail_transitions() def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None: """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None: """simple docstring""" snake_case_ = 0 for character in keyword: snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) snake_case_ = len(self.adlist ) - 1 else: snake_case_ = next_state self.adlist[current_state]["output"].append(UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->None: """simple docstring""" snake_case_ = deque() for node in self.adlist[0]["next_states"]: q.append(UpperCAmelCase_ ) snake_case_ = 0 while q: snake_case_ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(UpperCAmelCase_ ) snake_case_ = self.adlist[r]["""fail_state"""] while ( self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None and state != 0 ): snake_case_ = self.adlist[state]["""fail_state"""] snake_case_ = self.find_next_state( UpperCAmelCase_ , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: snake_case_ = 0 snake_case_ = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]: """simple docstring""" snake_case_ = {} # returns a dict with keywords and list of its occurrences snake_case_ = 0 for i in range(len(UpperCAmelCase_ ) ): while ( self.find_next_state(UpperCAmelCase_ , string[i] ) is None and current_state != 0 ): snake_case_ = self.adlist[current_state]["""fail_state"""] snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] ) if next_state is None: snake_case_ = 0 else: snake_case_ = next_state for key in self.adlist[current_state]["output"]: if key not in result: snake_case_ = [] result[key].append(i - len(UpperCAmelCase_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]: if not isinstance(_snake_case , _snake_case ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
707
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = num_channels snake_case_ = num_stages snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = is_training snake_case_ = use_labels snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_labels snake_case_ = initializer_range snake_case_ = out_features snake_case_ = out_indices snake_case_ = scope def lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]: """simple docstring""" snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any: """simple docstring""" snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple: """simple docstring""" snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case_ = None snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""pixel_values""": pixel_values} return config, inputs_dict def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Optional[Any] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __lowercase: Union[str, Any] = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) __lowercase: Union[str, Any] = False __lowercase: Optional[Any] = False __lowercase: Any = False __lowercase: Union[str, Any] = False __lowercase: Dict = False def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple: """simple docstring""" snake_case_ = ConvNextVaModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels() snake_case_ = True if model_class.__name__ in [ *get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ ), ]: continue snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.train() snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) snake_case_ = model(**UpperCAmelCase_ ).loss loss.backward() def lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels() snake_case_ = False snake_case_ = True if ( model_class.__name__ in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )] or not model_class.supports_gradient_checkpointing ): continue snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.gradient_checkpointing_enable() model.train() snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) snake_case_ = model(**UpperCAmelCase_ ).loss loss.backward() def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ): snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case_ = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def _a ( ) -> str: snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __A (unittest.TestCase): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): snake_case_ = model(**UpperCAmelCase_ ) # verify the logits snake_case_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
2
0
"""simple docstring""" from __future__ import annotations import math def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _A , _A , _A ) , minimax(depth + 1 , node_index * 2 + 1 , _A , _A , _A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _A , _A , _A ) , minimax(depth + 1 , node_index * 2 + 1 , _A , _A , _A ) , ) ) def _a ( ) -> None: snake_case_ = [90, 23, 6, 33, 21, 65, 123, 34_423] snake_case_ = math.log(len(_A ) , 2 ) print(f"""Optimal value : {minimax(0 , 0 , _A , _A , _A )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
708
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights'] def _a ( _SCREAMING_SNAKE_CASE ) -> str: if "emb" in name: snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: snake_case_ = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: snake_case_ = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: snake_case_ = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: snake_case_ = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: snake_case_ = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]: snake_case_ = list(state_dict.keys() ) snake_case_ = {} for key in keys: snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE ) snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE ) if "in_proj_weight" in key: # split fused qkv proj snake_case_ = val[:hidden_size, :] snake_case_ = val[hidden_size : 2 * hidden_size, :] snake_case_ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: snake_case_ = val else: snake_case_ = val return state_dict, enc_dec_proj_state_dict def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values snake_case_ = 1_024 snake_case_ = 24 snake_case_ = 16 elif checkpoint == "medium": snake_case_ = 1_536 snake_case_ = 48 snake_case_ = 24 elif checkpoint == "large": snake_case_ = 2_048 snake_case_ = 48 snake_case_ = 32 else: raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) snake_case_ = MusicgenDecoderConfig( hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , ) return config @torch.no_grad() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple: snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE ) snake_case_ = fairseq_model.lm.state_dict() snake_case_ , snake_case_ = rename_state_dict( _SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size ) snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" ) snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" ) if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE ) # check we can do a forward pass snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) snake_case_ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits if logits.shape != (8, 1, 2_048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" ) snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) # set the appropriate bos/pad token ids snake_case_ = 2_048 snake_case_ = 2_048 # set other default generation config params snake_case_ = int(30 * audio_encoder.config.frame_rate ) snake_case_ = True snake_case_ = 3.0 if pytorch_dump_folder is not None: Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if repo_id: logger.info(f"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) processor.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
2
0
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__) class __A (_A): '''simple docstring''' def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : str=None ) ->int: """simple docstring""" snake_case_ = self.layer[current_layer](UpperCamelCase__ , UpperCamelCase__ , head_mask[current_layer] ) snake_case_ = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _A , ) class __A (_A): '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : Dict ) ->Dict: """simple docstring""" super().__init__(UpperCamelCase__ ) snake_case_ = BertEncoderWithPabee(UpperCamelCase__ ) self.init_weights() snake_case_ = 0 snake_case_ = 0 snake_case_ = 0 snake_case_ = 0 def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[Any] ) ->Dict: """simple docstring""" snake_case_ = threshold def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->List[Any]: """simple docstring""" snake_case_ = patience def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = 0 snake_case_ = 0 def lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]: """simple docstring""" snake_case_ = self.inference_layers_num / self.inference_instances_num snake_case_ = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(UpperCamelCase__ ) @add_start_docstrings_to_model_forward(UpperCamelCase__ ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Tuple=False , ) ->List[str]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: snake_case_ = input_ids.size() elif inputs_embeds is not None: snake_case_ = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) snake_case_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: snake_case_ = torch.ones(UpperCamelCase__ , device=UpperCamelCase__ ) if token_type_ids is None: snake_case_ = torch.zeros(UpperCamelCase__ , dtype=torch.long , device=UpperCamelCase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. snake_case_ = self.get_extended_attention_mask(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: snake_case_ , snake_case_ , snake_case_ = encoder_hidden_states.size() snake_case_ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: snake_case_ = torch.ones(UpperCamelCase__ , device=UpperCamelCase__ ) snake_case_ = self.invert_attention_mask(UpperCamelCase__ ) else: snake_case_ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] snake_case_ = self.get_head_mask(UpperCamelCase__ , self.config.num_hidden_layers ) snake_case_ = self.embeddings( input_ids=UpperCamelCase__ , position_ids=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , inputs_embeds=UpperCamelCase__ ) snake_case_ = embedding_output if self.training: snake_case_ = [] for i in range(self.config.num_hidden_layers ): snake_case_ = self.encoder.adaptive_forward( UpperCamelCase__ , current_layer=UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ ) snake_case_ = self.pooler(UpperCamelCase__ ) snake_case_ = output_layers[i](output_dropout(UpperCamelCase__ ) ) res.append(UpperCamelCase__ ) elif self.patience == 0: # Use all layers for inference snake_case_ = self.encoder( UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) snake_case_ = self.pooler(encoder_outputs[0] ) snake_case_ = [output_layers[self.config.num_hidden_layers - 1](UpperCamelCase__ )] else: snake_case_ = 0 snake_case_ = None snake_case_ = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 snake_case_ = self.encoder.adaptive_forward( UpperCamelCase__ , current_layer=UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ ) snake_case_ = self.pooler(UpperCamelCase__ ) snake_case_ = output_layers[i](UpperCamelCase__ ) if regression: snake_case_ = logits.detach() if patient_result is not None: snake_case_ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: snake_case_ = 0 else: snake_case_ = logits.detach().argmax(dim=1 ) if patient_result is not None: snake_case_ = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCamelCase__ ) ): patient_counter += 1 else: snake_case_ = 0 snake_case_ = logits if patient_counter == self.patience: break snake_case_ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _A , ) class __A (_A): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : List[str] ) ->Dict: """simple docstring""" super().__init__(UpperCamelCase__ ) snake_case_ = config.num_labels snake_case_ = BertModelWithPabee(UpperCamelCase__ ) snake_case_ = nn.Dropout(config.hidden_dropout_prob ) snake_case_ = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase__ ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , ) ->Dict: """simple docstring""" snake_case_ = self.bert( input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , position_ids=UpperCamelCase__ , head_mask=UpperCamelCase__ , inputs_embeds=UpperCamelCase__ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) snake_case_ = (logits[-1],) if labels is not None: snake_case_ = None snake_case_ = 0 for ix, logits_item in enumerate(UpperCamelCase__ ): if self.num_labels == 1: # We are doing regression snake_case_ = MSELoss() snake_case_ = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: snake_case_ = CrossEntropyLoss() snake_case_ = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: snake_case_ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 snake_case_ = (total_loss / total_weights,) + outputs return outputs
709
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if index == number_of_items: return 0 snake_case_ = 0 snake_case_ = 0 snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 ) if weights[index] <= max_weight: snake_case_ = values[index] + knapsack( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 ) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Optional[int] = { '''bart''': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''bert''': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-base-cased-finetuned-mrpc''': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''dpr''': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''gpt2''': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlnet''': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm''': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm-roberta''': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''transfo-xl''': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''openai-gpt''': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''roberta''': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''layoutlm''': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''roberta-large-mnli''': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''camembert''': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''flaubert''': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert''': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert-base-distilled-squad''': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert''': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert-visual-feature-encoder''': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''ctrl''': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''albert''': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''t5''': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''electra''': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''wav2vec2''': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True ) -> List[Any]: if model_type not in MODEL_CLASSES: raise ValueError(f"""Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.""" ) snake_case_ = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: snake_case_ = cached_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) snake_case_ = config_class.from_json_file(_SCREAMING_SNAKE_CASE ) snake_case_ = True snake_case_ = True print(f"""Building TensorFlow model from configuration: {config}""" ) snake_case_ = model_class(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): snake_case_ = cached_file( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: snake_case_ = load_pytorch_checkpoint_in_tfa_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if compare_with_pt_model: snake_case_ = tf_model(tf_model.dummy_inputs , training=_SCREAMING_SNAKE_CASE ) # build the network snake_case_ = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" ) snake_case_ = pt_model_class.from_pretrained( pretrained_model_name_or_path=_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE , state_dict=_SCREAMING_SNAKE_CASE ) with torch.no_grad(): snake_case_ = pt_model(**pt_model.dummy_inputs ) snake_case_ = pto[0].numpy() snake_case_ = tfo[0].numpy() snake_case_ = np.amax(np.abs(np_pt - np_tf ) ) print(f"""Max absolute difference between models outputs {diff}""" ) assert diff <= 2E-2, f"""Error, model absolute difference is >2e-2: {diff}""" # Save pytorch-model print(f"""Save TensorFlow model to {tf_dump_path}""" ) tf_model.save_weights(_SCREAMING_SNAKE_CASE , save_format="""h5""" ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , ) -> Optional[int]: if args_model_type is None: snake_case_ = list(MODEL_CLASSES.keys() ) else: snake_case_ = [args_model_type] for j, model_type in enumerate(_SCREAMING_SNAKE_CASE , start=1 ): print("""=""" * 100 ) print(f""" Converting model type {j}/{len(_SCREAMING_SNAKE_CASE )}: {model_type}""" ) print("""=""" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(f"""Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.""" ) snake_case_ = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: snake_case_ = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: snake_case_ = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , start=1 ): print("""-""" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f""" Skipping finetuned checkpoint {model_shortcut_name}""" ) continue snake_case_ = model_shortcut_name elif only_convert_finetuned_models: print(f""" Skipping not finetuned checkpoint {model_shortcut_name}""" ) continue print( f""" Converting checkpoint {i}/{len(_SCREAMING_SNAKE_CASE )}: {model_shortcut_name} - model_type {model_type}""" ) print("""-""" * 100 ) if config_shortcut_name in aws_config_map: snake_case_ = cached_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) else: snake_case_ = config_shortcut_name if model_shortcut_name in aws_model_maps: snake_case_ = cached_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) else: snake_case_ = model_shortcut_name if os.path.isfile(_SCREAMING_SNAKE_CASE ): snake_case_ = 'converted_model' convert_pt_checkpoint_to_tf( model_type=_SCREAMING_SNAKE_CASE , pytorch_checkpoint_path=_SCREAMING_SNAKE_CASE , config_file=_SCREAMING_SNAKE_CASE , tf_dump_path=os.path.join(_SCREAMING_SNAKE_CASE , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=_SCREAMING_SNAKE_CASE , ) if remove_cached_files: os.remove(_SCREAMING_SNAKE_CASE ) os.remove(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.' ) parser.add_argument( '--model_type', default=None, type=str, help=( f"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ 'convert all the models from AWS.' ), ) parser.add_argument( '--pytorch_checkpoint_path', default=None, type=str, help=( 'Path to the PyTorch checkpoint path or shortcut name to download from AWS. ' 'If not given, will download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--config_file', default=None, type=str, help=( 'The config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture. If not given and ' '--pytorch_checkpoint_path is not given or is a shortcut name ' 'use the configuration associated to the shortcut name on the AWS' ), ) parser.add_argument( '--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.' ) parser.add_argument( '--use_cached_models', action='store_true', help='Use cached models if possible instead of updating to latest checkpoint versions.', ) parser.add_argument( '--remove_cached_files', action='store_true', help='Remove pytorch models after conversion (save memory when converting in batches).', ) parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.') __SCREAMING_SNAKE_CASE : Dict = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
710
"""simple docstring""" from math import factorial def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int: snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case_ = n // 2 return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: __SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
2
0
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def _a ( _SCREAMING_SNAKE_CASE ) -> Tuple: snake_case_ = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ f"""{test_file} instead.""" ) snake_case_ = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(f"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( f"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) snake_case_ = components[:-1] + [test_fn.replace(""".py""" , """""" )] snake_case_ = """.""".join(__snake_case ) return test_module_path def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ = get_module_path(__snake_case ) snake_case_ = importlib.import_module(__snake_case ) return test_module def _a ( _SCREAMING_SNAKE_CASE ) -> int: snake_case_ = [] snake_case_ = get_test_module(__snake_case ) for attr in dir(__snake_case ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(__snake_case , __snake_case ) ) # sort with class names return sorted(__snake_case , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def _a ( _SCREAMING_SNAKE_CASE ) -> Dict: snake_case_ = [] snake_case_ = get_test_module(__snake_case ) for attr in dir(__snake_case ): snake_case_ = getattr(__snake_case , __snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). snake_case_ = getattr(__snake_case , """all_model_classes""" , [] ) if len(__snake_case ) > 0: test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def _a ( _SCREAMING_SNAKE_CASE ) -> Any: snake_case_ = get_test_classes(__snake_case ) snake_case_ = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__snake_case , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def _a ( _SCREAMING_SNAKE_CASE ) -> Any: snake_case_ = test_class() if hasattr(__snake_case , """setUp""" ): test.setUp() snake_case_ = None if hasattr(__snake_case , """model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: snake_case_ = test.model_tester.__class__ return model_tester def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: snake_case_ = get_test_classes(__snake_case ) snake_case_ = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ = get_test_classes_for_model(__snake_case , __snake_case ) snake_case_ = [] for test_class in test_classes: snake_case_ = get_model_tester_from_test_class(__snake_case ) if tester_class is not None: tester_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def _a ( _SCREAMING_SNAKE_CASE ) -> Tuple: snake_case_ = get_test_classes(__snake_case ) snake_case_ = {test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes} return test_tester_mapping def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: snake_case_ = get_model_classes(__snake_case ) snake_case_ = { model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_test_mapping def _a ( _SCREAMING_SNAKE_CASE ) -> str: snake_case_ = get_model_classes(__snake_case ) snake_case_ = { model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_to_tester_mapping def _a ( _SCREAMING_SNAKE_CASE ) -> str: if isinstance(__snake_case , __snake_case ): return o elif isinstance(__snake_case , __snake_case ): return o.__name__ elif isinstance(__snake_case , (list, tuple) ): return [to_json(__snake_case ) for x in o] elif isinstance(__snake_case , __snake_case ): return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()} else: return o
711
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str: snake_case_ = ascii_letters + digits + punctuation return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(_SCREAMING_SNAKE_CASE ) snake_case_ = i // 3 snake_case_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) snake_case_ = ( chars_incl + random(_SCREAMING_SNAKE_CASE , quotient + remainder ) + random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) + random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) snake_case_ = list(_SCREAMING_SNAKE_CASE ) shuffle(_SCREAMING_SNAKE_CASE ) return "".join(_SCREAMING_SNAKE_CASE ) # random is a generalised function for letters, characters and numbers def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool: if len(_SCREAMING_SNAKE_CASE ) < min_length: # Your Password must be at least 8 characters long return False snake_case_ = any(char in ascii_uppercase for char in password ) snake_case_ = any(char in ascii_lowercase for char in password ) snake_case_ = any(char in digits for char in password ) snake_case_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _a ( ) -> str: snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() ) snake_case_ = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) ) print( """Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __SCREAMING_SNAKE_CASE : List[str] = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = ['ConvNextFeatureExtractor'] __SCREAMING_SNAKE_CASE : Any = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Any = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()['__file__'], _import_structure)
712
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __A (unittest.TestCase): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]: """simple docstring""" snake_case_ = size if size is not None else {"""height""": 18, """width""": 18} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = image_size snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = do_normalize def lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804], [-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" snake_case_ = ImageGPTImageProcessingTester(self ) @property def lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) ) def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) snake_case_ = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) ) else: self.assertEqual(obj[key] , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" ) image_processor_first.to_json_file(UpperCAmelCase_ ) snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict() snake_case_ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(UpperCAmelCase_ ) snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict() snake_case_ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , UpperCAmelCase_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" pass def _a ( ) -> str: snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) snake_case_ = Image.open(dataset[4]["""file"""] ) snake_case_ = Image.open(dataset[5]["""file"""] ) snake_case_ = [imagea, imagea] return images @require_vision @require_torch class __A (unittest.TestCase): '''simple docstring''' @slow def lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) snake_case_ = prepare_images() # test non-batched snake_case_ = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_024) ) snake_case_ = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ ) # test batched snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_024) ) snake_case_ = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
2
0
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: if len(A__ ) <= 1: return [tuple(A__ )] snake_case_ = [] def generate(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , A__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even snake_case_ , snake_case_ = arr[k - 1], arr[i] else: # k is odd snake_case_ , snake_case_ = arr[k - 1], arr[0] generate(k - 1 , A__ ) generate(len(A__ ) , A__ ) return res if __name__ == "__main__": __SCREAMING_SNAKE_CASE : int = input('Enter numbers separated by a comma:\n').strip() __SCREAMING_SNAKE_CASE : Optional[Any] = [int(item) for item in user_input.split(',')] print(heaps(arr))
713
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __A : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = scope snake_case_ = range_bbox def lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case_ = bbox[i, j, 3] snake_case_ = bbox[i, j, 1] snake_case_ = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case_ = bbox[i, j, 2] snake_case_ = bbox[i, j, 0] snake_case_ = t snake_case_ = None if self.use_input_mask: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str: """simple docstring""" snake_case_ = LiltModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict: """simple docstring""" snake_case_ = self.num_labels snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict: """simple docstring""" snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Optional[int] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __lowercase: Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __lowercase: Union[str, Any] = False __lowercase: List[str] = False def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]: """simple docstring""" return True def lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" snake_case_ = LiltModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[str] ) ->int: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) @slow def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_torch @slow class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ ) snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ ) snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ ) # forward pass with torch.no_grad(): snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ ) snake_case_ = torch.Size([1, 2, 768] ) snake_case_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , ) self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
2
0
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class __A (_UpperCamelCase): '''simple docstring''' __lowercase: str = """mvp""" __lowercase: Any = ["""past_key_values"""] __lowercase: List[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Dict , UpperCAmelCase_ : Tuple=50_267 , UpperCAmelCase_ : Any=1_024 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : List[str]=4_096 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : List[Any]=4_096 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : Optional[Any]=1_024 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=False , UpperCAmelCase_ : List[Any]=100 , UpperCAmelCase_ : str=800 , **UpperCAmelCase_ : Tuple , ) ->int: """simple docstring""" snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = d_model snake_case_ = encoder_ffn_dim snake_case_ = encoder_layers snake_case_ = encoder_attention_heads snake_case_ = decoder_ffn_dim snake_case_ = decoder_layers snake_case_ = decoder_attention_heads snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = activation_function snake_case_ = init_std snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = classifier_dropout snake_case_ = use_cache snake_case_ = encoder_layers snake_case_ = scale_embedding # scale factor will be sqrt(d_model) if True snake_case_ = use_prompt snake_case_ = prompt_length snake_case_ = prompt_mid_dim super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , forced_eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , UpperCAmelCase_ ): snake_case_ = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ """The config can simply be saved and uploaded again to be fixed.""" )
714
"""simple docstring""" from __future__ import annotations def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]: snake_case_ = 0 snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: snake_case_ = i + 1 else: snake_case_ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
2
0
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __A (snake_case__): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) ->Tuple: """simple docstring""" snake_case_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase_ , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(lowercase_ , """num_attention_heads""" ) ) self.parent.assertTrue(hasattr(lowercase_ , """num_encoder_blocks""" ) ) class __A : '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple=13 , UpperCAmelCase_ : List[Any]=64 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[2, 2, 2, 2] , UpperCAmelCase_ : Optional[Any]=[8, 4, 2, 1] , UpperCAmelCase_ : str=[16, 32, 64, 128] , UpperCAmelCase_ : Optional[Any]=[1, 4, 8, 16] , UpperCAmelCase_ : Tuple=[1, 2, 4, 8] , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : List[str]=None , ) ->List[Any]: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = num_channels snake_case_ = num_encoder_blocks snake_case_ = sr_ratios snake_case_ = depths snake_case_ = hidden_sizes snake_case_ = downsampling_rates snake_case_ = num_attention_heads snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = scope def lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str ) ->List[str]: """simple docstring""" snake_case_ = SegformerModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ ) snake_case_ = snake_case_ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.num_labels snake_case_ = SegformerForSemanticSegmentation(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) snake_case_ = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int ) ->str: """simple docstring""" snake_case_ = 1 snake_case_ = SegformerForSemanticSegmentation(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(lowercase_ ) snake_case_ = model(lowercase_ , labels=lowercase_ ) self.parent.assertGreater(result.loss , 0.0 ) def lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Any = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __lowercase: Union[str, Any] = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase: Optional[Any] = True __lowercase: Optional[int] = False __lowercase: int = False __lowercase: Union[str, Any] = False def lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" snake_case_ = SegformerModelTester(self ) snake_case_ = SegformerConfigTester(self , config_class=lowercase_ ) def lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def lowerCAmelCase ( self : Dict ) ->List[str]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowercase_ ) def lowerCAmelCase ( self : Any ) ->Any: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowercase_ ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def lowerCAmelCase ( self : Any ) ->str: """simple docstring""" pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def lowerCAmelCase ( self : str ) ->List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowercase_ ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase_ ) def lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) snake_case_ = outputs.attentions snake_case_ = sum(self.model_tester.depths ) self.assertEqual(len(lowercase_ ) , lowercase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case_ = True snake_case_ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) snake_case_ = outputs.attentions self.assertEqual(len(lowercase_ ) , lowercase_ ) # verify the first attentions (first block, first layer) snake_case_ = (self.model_tester.image_size // 4) ** 2 snake_case_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) snake_case_ = (self.model_tester.image_size // 32) ** 2 snake_case_ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) snake_case_ = len(lowercase_ ) # Check attention is always last and order is fine snake_case_ = True snake_case_ = True snake_case_ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(out_len + 1 , len(lowercase_ ) ) snake_case_ = outputs.attentions self.assertEqual(len(lowercase_ ) , lowercase_ ) # verify the first attentions (first block, first layer) snake_case_ = (self.model_tester.image_size // 4) ** 2 snake_case_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" def check_hidden_states_output(UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ): snake_case_ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) snake_case_ = outputs.hidden_states snake_case_ = self.model_tester.num_encoder_blocks self.assertEqual(len(lowercase_ ) , lowercase_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" if not self.model_tester.is_training: return snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: if model_class in get_values(lowercase_ ): continue snake_case_ = model_class(lowercase_ ) model.to(lowercase_ ) model.train() snake_case_ = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) snake_case_ = model(**lowercase_ ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" pass @slow def lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = SegformerModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def _a ( ) -> Union[str, Any]: snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class __A (unittest.TestCase): '''simple docstring''' @slow def lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" snake_case_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase_ , align=lowercase_ , do_random_crop=lowercase_ ) snake_case_ = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( lowercase_ ) snake_case_ = prepare_img() snake_case_ = image_processor(images=lowercase_ , return_tensors="""pt""" ) snake_case_ = encoded_inputs.pixel_values.to(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ ) snake_case_ = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , lowercase_ ) snake_case_ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" snake_case_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase_ , align=lowercase_ , do_random_crop=lowercase_ ) snake_case_ = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(lowercase_ ) snake_case_ = prepare_img() snake_case_ = image_processor(images=lowercase_ , return_tensors="""pt""" ) snake_case_ = encoded_inputs.pixel_values.to(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ ) snake_case_ = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , lowercase_ ) snake_case_ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase_ , atol=1E-1 ) ) @slow def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" snake_case_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase_ , align=lowercase_ , do_random_crop=lowercase_ ) snake_case_ = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( lowercase_ ) snake_case_ = prepare_img() snake_case_ = image_processor(images=lowercase_ , return_tensors="""pt""" ) snake_case_ = encoded_inputs.pixel_values.to(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ ) snake_case_ = outputs.logits.detach().cpu() snake_case_ = image_processor.post_process_semantic_segmentation(outputs=lowercase_ , target_sizes=[(500, 300)] ) snake_case_ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , lowercase_ ) snake_case_ = image_processor.post_process_semantic_segmentation(outputs=lowercase_ ) snake_case_ = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , lowercase_ )
715
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
0
"""simple docstring""" import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Union[str, Any] = 'Hello, World!' __SCREAMING_SNAKE_CASE : Dict = 'en_XX' def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: snake_case_ = Path("""data_bin""" ) snake_case_ = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(snake_case__ ).parent ) , checkpoint_file=Path(snake_case__ ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(snake_case__ ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(snake_case__ ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(snake_case__ ) snake_case_ = xmod.model.encoder.sentence_encoder snake_case_ = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: snake_case_ = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , snake_case__ ) snake_case_ = XmodForSequenceClassification(snake_case__ ) if classification_head else XmodForMaskedLM(snake_case__ ) model.eval() # Now let's copy all the weights. # Embeddings snake_case_ = xmod_sent_encoder.embed_tokens.weight snake_case_ = xmod_sent_encoder.embed_positions.weight snake_case_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. snake_case_ = xmod_sent_encoder.layernorm_embedding.weight snake_case_ = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer snake_case_ = model.roberta.encoder.layer[i] snake_case_ = xmod_sent_encoder.layers[i] # self attention snake_case_ = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) snake_case_ = xmod_layer.self_attn.q_proj.weight snake_case_ = xmod_layer.self_attn.q_proj.bias snake_case_ = xmod_layer.self_attn.k_proj.weight snake_case_ = xmod_layer.self_attn.k_proj.bias snake_case_ = xmod_layer.self_attn.v_proj.weight snake_case_ = xmod_layer.self_attn.v_proj.bias # self-attention output snake_case_ = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) snake_case_ = xmod_layer.self_attn.out_proj.weight snake_case_ = xmod_layer.self_attn.out_proj.bias snake_case_ = xmod_layer.self_attn_layer_norm.weight snake_case_ = xmod_layer.self_attn_layer_norm.bias # intermediate snake_case_ = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) snake_case_ = xmod_layer.fca.weight snake_case_ = xmod_layer.fca.bias # output snake_case_ = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) snake_case_ = xmod_layer.fca.weight snake_case_ = xmod_layer.fca.bias snake_case_ = xmod_layer.final_layer_norm.weight snake_case_ = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: snake_case_ = xmod_layer.adapter_layer_norm.weight snake_case_ = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): snake_case_ = bert_output.adapter_modules[lang_code] snake_case_ = xmod_layer.adapter_modules[lang_code] snake_case_ = from_adapter.fca.weight snake_case_ = from_adapter.fca.bias snake_case_ = from_adapter.fca.weight snake_case_ = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: snake_case_ = xmod_sent_encoder.layer_norm.weight snake_case_ = xmod_sent_encoder.layer_norm.bias if classification_head: snake_case_ = xmod.model.classification_heads["""mnli"""].dense.weight snake_case_ = xmod.model.classification_heads["""mnli"""].dense.bias snake_case_ = xmod.model.classification_heads["""mnli"""].out_proj.weight snake_case_ = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head snake_case_ = xmod.model.encoder.lm_head.dense.weight snake_case_ = xmod.model.encoder.lm_head.dense.bias snake_case_ = xmod.model.encoder.lm_head.layer_norm.weight snake_case_ = xmod.model.encoder.lm_head.layer_norm.bias snake_case_ = xmod.model.encoder.lm_head.weight snake_case_ = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. snake_case_ = xmod.encode(snake_case__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(snake_case__ ) snake_case_ = model(snake_case__ )[0] if classification_head: snake_case_ = xmod.model.classification_heads["""mnli"""](xmod.extract_features(snake_case__ ) ) else: snake_case_ = xmod.model(snake_case__ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) snake_case_ = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 snake_case_ = torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(snake_case__ ).mkdir(parents=snake_case__ , exist_ok=snake_case__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) __SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
716
"""simple docstring""" __SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter' __SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE' def _a ( _SCREAMING_SNAKE_CASE ) -> bool: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}""" raise TypeError(_SCREAMING_SNAKE_CASE ) snake_case_ = spanish_id.replace("""-""" , """""" ).upper() if len(_SCREAMING_SNAKE_CASE ) != 9: raise ValueError(_SCREAMING_SNAKE_CASE ) try: snake_case_ = int(spanish_id_clean[0:8] ) snake_case_ = spanish_id_clean[8] except ValueError as ex: raise ValueError(_SCREAMING_SNAKE_CASE ) from ex if letter.isdigit(): raise ValueError(_SCREAMING_SNAKE_CASE ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __A : '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : int=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : str=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Dict=0 , ) ->List[Any]: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope snake_case_ = projection_dim def lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) snake_case_ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple ) ->Any: """simple docstring""" snake_case_ = TFDPRContextEncoder(config=UpperCAmelCase__ ) snake_case_ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) snake_case_ = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) snake_case_ = model(UpperCAmelCase__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ) ->Optional[int]: """simple docstring""" snake_case_ = TFDPRQuestionEncoder(config=UpperCAmelCase__ ) snake_case_ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) snake_case_ = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) snake_case_ = model(UpperCAmelCase__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] ) ->Any: """simple docstring""" snake_case_ = TFDPRReader(config=UpperCAmelCase__ ) snake_case_ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() ( snake_case_ ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Any = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) __lowercase: Optional[Any] = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} __lowercase: Union[str, Any] = False __lowercase: int = False __lowercase: List[str] = False __lowercase: List[str] = False __lowercase: str = False def lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" snake_case_ = TFDPRModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ) ->Tuple: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*UpperCAmelCase__ ) def lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*UpperCAmelCase__ ) def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*UpperCAmelCase__ ) @slow def lowerCAmelCase ( self : int ) ->Union[str, Any]: """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = TFDPRContextEncoder.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = TFDPRContextEncoder.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = TFDPRQuestionEncoder.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = TFDPRReader.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @require_tf class __A (unittest.TestCase): '''simple docstring''' @slow def lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" snake_case_ = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) snake_case_ = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP] snake_case_ = model(UpperCAmelCase__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. snake_case_ = tf.constant( [ [ 0.03_236_253, 0.12_753_335, 0.16_818_509, 0.00_279_786, 0.3_896_933, 0.24_264_945, 0.2_178_971, -0.02_335_227, -0.08_481_959, -0.14_324_117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
717
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'} __SCREAMING_SNAKE_CASE : List[str] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } __SCREAMING_SNAKE_CASE : List[str] = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } __SCREAMING_SNAKE_CASE : int = '▁' class __A (snake_case__): '''simple docstring''' __lowercase: Optional[Any] = VOCAB_FILES_NAMES __lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None: """simple docstring""" snake_case_ = ( AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token ) snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) snake_case_ = do_lower_case snake_case_ = remove_space snake_case_ = keep_accents snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) @property def lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" return len(self.sp_model ) def lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) ->List[str]: """simple docstring""" snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]: """simple docstring""" snake_case_ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str: """simple docstring""" if self.remove_space: snake_case_ = """ """.join(inputs.strip().split() ) else: snake_case_ = inputs snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ ) snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] ) if self.do_lower_case: snake_case_ = outputs.lower() return outputs def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]: """simple docstring""" snake_case_ = self.preprocess_text(UpperCAmelCase_ ) snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) snake_case_ = [] for piece in pieces: if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case_ = cur_pieces[1:] else: snake_case_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase_ ) else: new_pieces.append(UpperCAmelCase_ ) return new_pieces def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict: """simple docstring""" return self.sp_model.PieceToId(UpperCAmelCase_ ) def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]: """simple docstring""" return self.sp_model.IdToPiece(UpperCAmelCase_ ) def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any: """simple docstring""" snake_case_ = [] snake_case_ = """""" snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase_ ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(UpperCAmelCase_ ) snake_case_ = False out_string += self.sp_model.decode(UpperCAmelCase_ ) return out_string.strip() def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]: """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1] return [1] + ([0] * len(UpperCAmelCase_ )) + [1] def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]: """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case_ = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , """wb""" ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
2
0
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: snake_case_ = [1] for i in range(2 , _SCREAMING_SNAKE_CASE ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" snake_case_ = [] snake_case_ = list(range(_SCREAMING_SNAKE_CASE ) ) # Find permutation while factorials: snake_case_ = factorials.pop() snake_case_ = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("""The given input must be positive""" ) # get the generated string sequence snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): snake_case_ = int(sequence[i] , 2 ) return sequence def _a ( _SCREAMING_SNAKE_CASE ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] snake_case_ = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits snake_case_ = gray_code_sequence_string(bit_count - 1 ) snake_case_ = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): snake_case_ = """0""" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): snake_case_ = """1""" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
2
0
from __future__ import annotations import numpy as np def _a ( _SCREAMING_SNAKE_CASE ) -> str: return np.maximum(0 , __a ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
719
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
0
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Dict = logging.get_logger('transformers.models.encodec') __SCREAMING_SNAKE_CASE : Optional[Any] = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } __SCREAMING_SNAKE_CASE : Tuple = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } __SCREAMING_SNAKE_CASE : Dict = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } __SCREAMING_SNAKE_CASE : Tuple = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } __SCREAMING_SNAKE_CASE : List[Any] = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } __SCREAMING_SNAKE_CASE : List[Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __SCREAMING_SNAKE_CASE : Dict = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __SCREAMING_SNAKE_CASE : Any = [] __SCREAMING_SNAKE_CASE : Dict = [] def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: for attribute in key.split(""".""" ): snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: snake_case_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value elif weight_type == "running_mean": snake_case_ = value elif weight_type == "running_var": snake_case_ = value elif weight_type == "num_batches_tracked": snake_case_ = value elif weight_type == "weight_ih_l0": snake_case_ = value elif weight_type == "weight_hh_l0": snake_case_ = value elif weight_type == "bias_ih_l0": snake_case_ = value elif weight_type == "bias_hh_l0": snake_case_ = value elif weight_type == "weight_ih_l1": snake_case_ = value elif weight_type == "weight_hh_l1": snake_case_ = value elif weight_type == "bias_ih_l1": snake_case_ = value elif weight_type == "bias_hh_l1": snake_case_ = value else: snake_case_ = value logger.info(f"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: snake_case_ = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: snake_case_ = [] if model_name == "encodec_24khz" or "encodec_32khz": snake_case_ = MAPPING_24K elif model_name == "encodec_48khz": snake_case_ = MAPPING_48K else: raise ValueError(f"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info(f"""{name} was ignored""" ) continue snake_case_ = False for key, mapped_key in MAPPING.items(): if "*" in key: snake_case_ = key.split(""".*.""" ) if prefix in name and suffix in name: snake_case_ = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ): continue snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(_SCREAMING_SNAKE_CASE )[0].split(""".""" )[-2] snake_case_ = mapped_key.replace("""*""" , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: snake_case_ = "weight_g" elif "weight_v" in name: snake_case_ = "weight_v" elif "weight_ih_l0" in name: snake_case_ = "weight_ih_l0" elif "weight_hh_l0" in name: snake_case_ = "weight_hh_l0" elif "bias_ih_l0" in name: snake_case_ = "bias_ih_l0" elif "bias_hh_l0" in name: snake_case_ = "bias_hh_l0" elif "weight_ih_l1" in name: snake_case_ = "weight_ih_l1" elif "weight_hh_l1" in name: snake_case_ = "weight_hh_l1" elif "bias_ih_l1" in name: snake_case_ = "bias_ih_l1" elif "bias_hh_l1" in name: snake_case_ = "bias_hh_l1" elif "bias" in name: snake_case_ = "bias" elif "weight" in name: snake_case_ = "weight" elif "running_mean" in name: snake_case_ = "running_mean" elif "running_var" in name: snake_case_ = "running_var" elif "num_batches_tracked" in name: snake_case_ = "num_batches_tracked" else: snake_case_ = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(f"""Unused weights: {unused_weights}""" ) @torch.no_grad() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> List[str]: if config_path is not None: snake_case_ = EncodecConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: snake_case_ = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": snake_case_ = [8, 5, 4, 4] snake_case_ = [2.2] snake_case_ = 64 snake_case_ = 32_000 snake_case_ = 2_048 snake_case_ = False snake_case_ = False snake_case_ = False elif model_name == "encodec_48khz": snake_case_ = [8, 5, 4, 2] snake_case_ = [3.0, 6.0, 12.0, 24.0] snake_case_ = 48_000 snake_case_ = 2 snake_case_ = False snake_case_ = "time_group_norm" snake_case_ = True snake_case_ = 1.0 snake_case_ = 0.01 else: raise ValueError(f"""Unknown model name: {model_name}""" ) snake_case_ = EncodecModel(_SCREAMING_SNAKE_CASE ) snake_case_ = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ = torch.load(_SCREAMING_SNAKE_CASE ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights snake_case_ = original_checkpoint["best_state"] recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if repo_id: print("""Pushing to the hub...""" ) feature_extractor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
720
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/' __SCREAMING_SNAKE_CASE : List[Any] = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def _a ( _SCREAMING_SNAKE_CASE ) -> int: if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: snake_case_ = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: snake_case_ = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = {} import re snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) snake_case_ = re.compile( r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) snake_case_ = re.compile( r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) snake_case_ = re.compile( r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]] snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case_ = prefix + resnet_block snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]] snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case_ = prefix + resnet_block snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]] snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case_ = prefix + resnet_block snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # keep original key else: snake_case_ = original_key snake_case_ = replace_key(_SCREAMING_SNAKE_CASE ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) snake_case_ = original_key snake_case_ = original_key snake_case_ = value return new_dict @torch.no_grad() def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE ) open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content ) snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]] snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE ) snake_case_ = [] snake_case_ = {} for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ): snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""] snake_case_ = {} for k in old_dic.keys(): if k.endswith(""".b""" ): snake_case_ = old_dic[k] elif k.endswith(""".w""" ): snake_case_ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: snake_case_ = old_dic[k] else: snake_case_ = old_dic[k] snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}""" snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) weight_dict.append(_SCREAMING_SNAKE_CASE ) snake_case_ = weight_dict.pop(0 ) model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) return weight_dict if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) __SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
2
0
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: if principal <= 0: raise Exception("""Principal borrowed must be > 0""" ) if rate_per_annum < 0: raise Exception("""Rate of interest must be >= 0""" ) if years_to_repay <= 0 or not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise Exception("""Years to repay must be an integer > 0""" ) # Yearly rate is divided by 12 to get monthly rate snake_case_ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly snake_case_ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
721
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path __SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) __SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} __SCREAMING_SNAKE_CASE : Dict = 'zero2' __SCREAMING_SNAKE_CASE : List[Any] = 'zero3' __SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa] def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test __SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __A (snake_case__): '''simple docstring''' @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any: """simple docstring""" self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]: """simple docstring""" self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]: """simple docstring""" self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]: """simple docstring""" self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]: """simple docstring""" pass def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]: """simple docstring""" snake_case_ = models[model] snake_case_ = self.run_trainer( stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) self.do_checks(UpperCAmelCase_ ) return output_dir def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]: """simple docstring""" snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ ) snake_case_ = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(UpperCAmelCase_ )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(["""--fp16"""] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] snake_case_ = self.get_launcher(UpperCAmelCase_ ) snake_case_ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() ) return output_dir def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple: """simple docstring""" snake_case_ = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
2
0
"""simple docstring""" from typing import Any def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]: if not input_list: return [] snake_case_ = [input_list.count(_lowerCAmelCase ) for value in input_list] snake_case_ = max(_lowerCAmelCase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(_lowerCAmelCase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
700
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case__) class __A (snake_case__): '''simple docstring''' __lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) __lowercase: ClassVar[Features] = Features({"""audio""": Audio()}) __lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")}) __lowercase: str = "audio" __lowercase: str = "transcription" def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int: """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , UpperCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) snake_case_ = copy.deepcopy(self ) snake_case_ = self.input_schema.copy() snake_case_ = features[self.audio_column] snake_case_ = input_schema return task_template @property def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]: """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
2
0
"""simple docstring""" import os def _a ( ) -> str: snake_case_ = os.path.join(os.path.dirname(lowerCamelCase_ ) , """num.txt""" ) with open(lowerCamelCase_ ) as file_hand: return str(sum(int(lowerCamelCase_ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
701
"""simple docstring""" from functools import reduce __SCREAMING_SNAKE_CASE : Tuple = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _a ( _SCREAMING_SNAKE_CASE = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) ) for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
2
0
"""simple docstring""" from __future__ import annotations from cmath import sqrt def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[complex, complex]: if a == 0: raise ValueError("""Coefficient \'a\' must not be zero.""" ) snake_case_ = b * b - 4 * a * c snake_case_ = (-b + sqrt(UpperCamelCase__ )) / (2 * a) snake_case_ = (-b - sqrt(UpperCamelCase__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _a ( ) -> Optional[int]: snake_case_ , snake_case_ = quadratic_roots(a=5 , b=6 , c=1 ) print(f"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
702
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class __A (snake_case__): '''simple docstring''' __lowercase: Any = """mctct""" def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict: """simple docstring""" super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = num_attention_heads snake_case_ = attention_head_dim snake_case_ = max_position_embeddings snake_case_ = layer_norm_eps snake_case_ = layerdrop snake_case_ = hidden_act snake_case_ = initializer_range snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = pad_token_id snake_case_ = bos_token_id snake_case_ = eos_token_id snake_case_ = conv_glu_dim snake_case_ = conv_dropout snake_case_ = num_conv_layers snake_case_ = input_feat_per_channel snake_case_ = input_channels snake_case_ = conv_channels snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # prevents config testing fail with exporting to json snake_case_ = list(UpperCAmelCase_ ) snake_case_ = list(UpperCAmelCase_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
2
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class __A : '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : List[str]=64 , UpperCAmelCase_ : Tuple=None ) ->int: """simple docstring""" snake_case_ = np.random.default_rng(lowercase_ ) snake_case_ = length snake_case_ = rng.normal(size=(length,) ).astype(np.floataa ) snake_case_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : int ) ->Dict: """simple docstring""" return self.length def __getitem__( self : Tuple , UpperCAmelCase_ : str ) ->List[Any]: """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class __A (torch.nn.Module): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=False ) ->Dict: """simple docstring""" super().__init__() snake_case_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) snake_case_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) snake_case_ = True def lowerCAmelCase ( self : int , UpperCAmelCase_ : Any=None ) ->Any: """simple docstring""" if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) snake_case_ = False return x * self.a[0] + self.b[0] class __A (torch.nn.Module): '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Dict=False ) ->Dict: """simple docstring""" super().__init__() snake_case_ = torch.nn.Parameter(torch.tensor(lowercase_ ).float() ) snake_case_ = torch.nn.Parameter(torch.tensor(lowercase_ ).float() ) snake_case_ = True def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Tuple=None ) ->Union[str, Any]: """simple docstring""" if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) snake_case_ = False return x * self.a + self.b def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 16 ) -> int: from datasets import load_dataset from transformers import AutoTokenizer snake_case_ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) snake_case_ = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} snake_case_ = load_dataset("""csv""" , data_files=__SCREAMING_SNAKE_CASE ) snake_case_ = datasets["train"].unique("""label""" ) snake_case_ = {v: i for i, v in enumerate(__SCREAMING_SNAKE_CASE )} def tokenize_function(_SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) snake_case_ = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="""max_length""" ) if "label" in examples: snake_case_ = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case_ = datasets.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(_SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(__SCREAMING_SNAKE_CASE , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. snake_case_ = DataLoader(tokenized_datasets["""train"""] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=2 ) snake_case_ = DataLoader(tokenized_datasets["""validation"""] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=1 ) return train_dataloader, eval_dataloader
703
"""simple docstring""" from math import factorial def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int: return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
2
0
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' snake_case_ = len(_SCREAMING_SNAKE_CASE ) for i in range(length - 1 ): snake_case_ = i for k in range(i + 1 , _SCREAMING_SNAKE_CASE ): if collection[k] < collection[least]: snake_case_ = k if least != i: snake_case_ , snake_case_ = (collection[i], collection[least]) return collection if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() __SCREAMING_SNAKE_CASE : Tuple = [int(item) for item in user_input.split(',')] print(selection_sort(unsorted))
704
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: str = VQModel __lowercase: Union[str, Any] = """sample""" @property def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple: """simple docstring""" snake_case_ = 4 snake_case_ = 3 snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) return {"sample": image} @property def lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" return (3, 32, 32) def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } snake_case_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCAmelCase_ ) snake_case_ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(UpperCAmelCase_ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) snake_case_ = image.to(UpperCAmelCase_ ) with torch.no_grad(): snake_case_ = model(UpperCAmelCase_ ).sample snake_case_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] ) # fmt: on self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
2
0
"""simple docstring""" from collections.abc import Sequence def _a ( _SCREAMING_SNAKE_CASE = None ) -> int: if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) snake_case_ = nums[0] for i in range(1 , len(_lowerCamelCase ) ): snake_case_ = nums[i] snake_case_ = max(_lowerCamelCase , ans + num , _lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user __SCREAMING_SNAKE_CASE : Union[str, Any] = int(input('Enter number of elements : ').strip()) __SCREAMING_SNAKE_CASE : Union[str, Any] = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
705
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Dict = KandinskyVaaControlnetPipeline __lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowercase: Union[str, Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowercase: Tuple = False @property def lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" return 32 @property def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" return 32 @property def lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" return self.time_input_dim @property def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" return 100 @property def lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" torch.manual_seed(0 ) snake_case_ = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : Any ) ->int: """simple docstring""" torch.manual_seed(0 ) snake_case_ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" snake_case_ = self.dummy_unet snake_case_ = self.dummy_movq snake_case_ = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , ) snake_case_ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]: """simple docstring""" snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase_ ) # create hint snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) if str(UpperCAmelCase_ ).startswith("""mps""" ): snake_case_ = torch.manual_seed(UpperCAmelCase_ ) else: snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) snake_case_ = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" snake_case_ = """cpu""" snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**UpperCAmelCase_ ) snake_case_ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) snake_case_ = output.images snake_case_ = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array( [0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" snake_case_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) snake_case_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0 snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case_ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case_ = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = """A robot, 4k photo""" snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 ) snake_case_ , snake_case_ = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 ) snake_case_ = pipeline( image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
2
0
"""simple docstring""" import os from collections.abc import Iterator def _a ( _SCREAMING_SNAKE_CASE = "." ) -> str: for dir_path, dir_names, filenames in os.walk(_SCREAMING_SNAKE_CASE ): snake_case_ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_SCREAMING_SNAKE_CASE )[1] in (".py", ".ipynb"): yield os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).lstrip("""./""" ) def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: return f"""{i * " "}*""" if i else "\n##" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: snake_case_ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_SCREAMING_SNAKE_CASE ) or old_parts[i] != new_part) and new_part: print(f"""{md_prefix(_SCREAMING_SNAKE_CASE )} {new_part.replace("_" , " " ).title()}""" ) return new_path def _a ( _SCREAMING_SNAKE_CASE = "." ) -> List[Any]: snake_case_ = """""" for filepath in sorted(good_file_paths(_SCREAMING_SNAKE_CASE ) ): snake_case_ , snake_case_ = os.path.split(_SCREAMING_SNAKE_CASE ) if filepath != old_path: snake_case_ = print_path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = (filepath.count(os.sep ) + 1) if filepath else 0 snake_case_ = f"""{filepath}/{filename}""".replace(""" """ , """%20""" ) snake_case_ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(f"""{md_prefix(_SCREAMING_SNAKE_CASE )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('.')
706
"""simple docstring""" from __future__ import annotations from collections import deque class __A : '''simple docstring''' def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]: """simple docstring""" snake_case_ = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(UpperCAmelCase_ ) self.set_fail_transitions() def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None: """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None: """simple docstring""" snake_case_ = 0 for character in keyword: snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) snake_case_ = len(self.adlist ) - 1 else: snake_case_ = next_state self.adlist[current_state]["output"].append(UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->None: """simple docstring""" snake_case_ = deque() for node in self.adlist[0]["next_states"]: q.append(UpperCAmelCase_ ) snake_case_ = 0 while q: snake_case_ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(UpperCAmelCase_ ) snake_case_ = self.adlist[r]["""fail_state"""] while ( self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None and state != 0 ): snake_case_ = self.adlist[state]["""fail_state"""] snake_case_ = self.find_next_state( UpperCAmelCase_ , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: snake_case_ = 0 snake_case_ = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]: """simple docstring""" snake_case_ = {} # returns a dict with keywords and list of its occurrences snake_case_ = 0 for i in range(len(UpperCAmelCase_ ) ): while ( self.find_next_state(UpperCAmelCase_ , string[i] ) is None and current_state != 0 ): snake_case_ = self.adlist[current_state]["""fail_state"""] snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] ) if next_state is None: snake_case_ = 0 else: snake_case_ = next_state for key in self.adlist[current_state]["output"]: if key not in result: snake_case_ = [] result[key].append(i - len(UpperCAmelCase_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" from __future__ import annotations from scipy.special import comb # type: ignore class __A : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : List[Any] ) ->List[Any]: """simple docstring""" snake_case_ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. snake_case_ = len(UpperCAmelCase_ ) - 1 def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] ) ->List[Any]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." snake_case_ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , UpperCAmelCase_ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(UpperCAmelCase_ ) , 5 ) == 1 return output_values def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Union[str, Any] ) ->str: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." snake_case_ = self.basis_function(UpperCAmelCase_ ) snake_case_ = 0.0 snake_case_ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCAmelCase ( self : int , UpperCAmelCase_ : List[str] = 0.01 ) ->Optional[int]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore snake_case_ = [] # x coordinates of points to plot snake_case_ = [] # y coordinates of points to plot snake_case_ = 0.0 while t <= 1: snake_case_ = self.bezier_curve_function(UpperCAmelCase_ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size snake_case_ = [i[0] for i in self.list_of_points] snake_case_ = [i[1] for i in self.list_of_points] plt.plot( UpperCAmelCase_ , UpperCAmelCase_ , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(UpperCAmelCase_ , UpperCAmelCase_ , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
707
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = num_channels snake_case_ = num_stages snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = is_training snake_case_ = use_labels snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_labels snake_case_ = initializer_range snake_case_ = out_features snake_case_ = out_indices snake_case_ = scope def lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]: """simple docstring""" snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any: """simple docstring""" snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple: """simple docstring""" snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case_ = None snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""pixel_values""": pixel_values} return config, inputs_dict def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Optional[Any] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __lowercase: Union[str, Any] = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) __lowercase: Union[str, Any] = False __lowercase: Optional[Any] = False __lowercase: Any = False __lowercase: Union[str, Any] = False __lowercase: Dict = False def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple: """simple docstring""" snake_case_ = ConvNextVaModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels() snake_case_ = True if model_class.__name__ in [ *get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ ), ]: continue snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.train() snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) snake_case_ = model(**UpperCAmelCase_ ).loss loss.backward() def lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels() snake_case_ = False snake_case_ = True if ( model_class.__name__ in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )] or not model_class.supports_gradient_checkpointing ): continue snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.gradient_checkpointing_enable() model.train() snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) snake_case_ = model(**UpperCAmelCase_ ).loss loss.backward() def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ): snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case_ = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def _a ( ) -> str: snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __A (unittest.TestCase): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): snake_case_ = model(**UpperCAmelCase_ ) # verify the logits snake_case_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
2
0
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = " " ) -> int: snake_case_ = [] snake_case_ = 0 for index, char in enumerate(lowerCAmelCase__ ): if char == separator: split_words.append(string[last_index:index] ) snake_case_ = index + 1 elif index + 1 == len(lowerCAmelCase__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
708
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights'] def _a ( _SCREAMING_SNAKE_CASE ) -> str: if "emb" in name: snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: snake_case_ = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: snake_case_ = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: snake_case_ = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: snake_case_ = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: snake_case_ = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]: snake_case_ = list(state_dict.keys() ) snake_case_ = {} for key in keys: snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE ) snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE ) if "in_proj_weight" in key: # split fused qkv proj snake_case_ = val[:hidden_size, :] snake_case_ = val[hidden_size : 2 * hidden_size, :] snake_case_ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: snake_case_ = val else: snake_case_ = val return state_dict, enc_dec_proj_state_dict def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values snake_case_ = 1_024 snake_case_ = 24 snake_case_ = 16 elif checkpoint == "medium": snake_case_ = 1_536 snake_case_ = 48 snake_case_ = 24 elif checkpoint == "large": snake_case_ = 2_048 snake_case_ = 48 snake_case_ = 32 else: raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) snake_case_ = MusicgenDecoderConfig( hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , ) return config @torch.no_grad() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple: snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE ) snake_case_ = fairseq_model.lm.state_dict() snake_case_ , snake_case_ = rename_state_dict( _SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size ) snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" ) snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" ) if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE ) # check we can do a forward pass snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) snake_case_ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits if logits.shape != (8, 1, 2_048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" ) snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) # set the appropriate bos/pad token ids snake_case_ = 2_048 snake_case_ = 2_048 # set other default generation config params snake_case_ = int(30 * audio_encoder.config.frame_rate ) snake_case_ = True snake_case_ = 3.0 if pytorch_dump_folder is not None: Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if repo_id: logger.info(f"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) processor.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
2
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class __A (a__): '''simple docstring''' def __init__( self : List[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[str] ) ->None: """simple docstring""" warnings.warn( """The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PerceiverImageProcessor instead.""" , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
709
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if index == number_of_items: return 0 snake_case_ = 0 snake_case_ = 0 snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 ) if weights[index] <= max_weight: snake_case_ = values[index] + knapsack( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 ) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import _LazyModule __SCREAMING_SNAKE_CASE : Tuple = {'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
710
"""simple docstring""" from math import factorial def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int: snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case_ = n // 2 return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: __SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
2
0
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _a ( ) -> Union[str, Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowerCAmelCase ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def _a ( ) -> List[str]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def _a ( ) -> Optional[int]: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowerCAmelCase ): http_head("""https://huggingface.co""" )
711
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str: snake_case_ = ascii_letters + digits + punctuation return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(_SCREAMING_SNAKE_CASE ) snake_case_ = i // 3 snake_case_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) snake_case_ = ( chars_incl + random(_SCREAMING_SNAKE_CASE , quotient + remainder ) + random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) + random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) snake_case_ = list(_SCREAMING_SNAKE_CASE ) shuffle(_SCREAMING_SNAKE_CASE ) return "".join(_SCREAMING_SNAKE_CASE ) # random is a generalised function for letters, characters and numbers def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: pass # Put your code here... def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool: if len(_SCREAMING_SNAKE_CASE ) < min_length: # Your Password must be at least 8 characters long return False snake_case_ = any(char in ascii_uppercase for char in password ) snake_case_ = any(char in ascii_lowercase for char in password ) snake_case_ = any(char in digits for char in password ) snake_case_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _a ( ) -> str: snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() ) snake_case_ = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) ) print( """Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
2
0