code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Dict = range(2, 20 + 1)
__SCREAMING_SNAKE_CASE : int = [10**k for k in range(ks[-1] + 1)]
__SCREAMING_SNAKE_CASE : Union[str, Any] = {}
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
snake_case_ = sum(a_i[j] for j in range(a_ , len(a_ ) ) )
snake_case_ = sum(a_i[j] * base[j] for j in range(min(len(a_ ) , a_ ) ) )
snake_case_ = 0, 0
snake_case_ = n - i
snake_case_ = memo.get(a_ )
if sub_memo is not None:
snake_case_ = sub_memo.get(a_ )
if jumps is not None and len(a_ ) > 0:
# find and make the largest jump without going over
snake_case_ = -1
for _k in range(len(a_ ) - 1 , -1 , -1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
snake_case_ = _k
break
if max_jump >= 0:
snake_case_ = jumps[max_jump]
# since the difference between jumps is cached, add c
snake_case_ = diff + c
for j in range(min(a_ , len(a_ ) ) ):
snake_case_ = divmod(a_ , 10 )
if new_c > 0:
add(a_ , a_ , a_ )
else:
snake_case_ = []
else:
snake_case_ = {c: []}
snake_case_ = sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
snake_case_ = next_term(a_ , k - 1 , i + dn , a_ )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
snake_case_ = compute(a_ , a_ , i + dn , a_ )
diff += _diff
dn += terms_jumped
snake_case_ = sub_memo[c]
# keep jumps sorted by # of terms skipped
snake_case_ = 0
while j < len(a_ ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(a_ , (diff, dn, k) )
return (diff, dn)
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
if i >= n:
return 0, i
if k > len(a_ ):
a_i.extend([0 for _ in range(k - len(a_ ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
snake_case_ = i
snake_case_ = 0, 0, 0
for j in range(len(a_ ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
snake_case_ = ds_c + ds_b
diff += addend
snake_case_ = 0
for j in range(a_ ):
snake_case_ = a_i[j] + addend
snake_case_ = divmod(a_ , 10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(a_ , a_ , a_ )
return diff, i - start_i
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
for j in range(a_ , len(a_ ) ):
snake_case_ = digits[j] + addend
if s >= 10:
snake_case_ = divmod(a_ , 10 )
snake_case_ = addend // 10 + quotient
else:
snake_case_ = s
snake_case_ = addend // 10
if addend == 0:
break
while addend > 0:
snake_case_ = divmod(a_ , 10 )
digits.append(a_ )
def _a ( _SCREAMING_SNAKE_CASE = 10**15 ) -> int:
snake_case_ = [1]
snake_case_ = 1
snake_case_ = 0
while True:
snake_case_ = next_term(a_ , 20 , i + dn , a_ )
dn += terms_jumped
if dn == n - i:
break
snake_case_ = 0
for j in range(len(a_ ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(f"""{solution() = }""")
| 712 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_normalize
def lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
snake_case_ = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" )
image_processor_first.to_json_file(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
pass
def _a ( ) -> str:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
snake_case_ = Image.open(dataset[4]["""file"""] )
snake_case_ = Image.open(dataset[5]["""file"""] )
snake_case_ = [imagea, imagea]
return images
@require_vision
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
snake_case_ = prepare_images()
# test non-batched
snake_case_ = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_024) )
snake_case_ = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ )
# test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_024) )
snake_case_ = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
| 2 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Dict = {
'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json',
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class __A (_a):
'''simple docstring'''
__lowercase: int = """canine"""
def __init__( self : Union[str, Any] , UpperCAmelCase_ : int=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Dict=12 , UpperCAmelCase_ : Any=3_072 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : List[Any]=16_384 , UpperCAmelCase_ : Optional[int]=16 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-12 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Dict=0XE000 , UpperCAmelCase_ : Optional[int]=0XE001 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : List[Any]=8 , UpperCAmelCase_ : Any=16_384 , UpperCAmelCase_ : List[Any]=128 , **UpperCAmelCase_ : int , ) ->Any:
"""simple docstring"""
super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A )
snake_case_ = max_position_embeddings
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = initializer_range
snake_case_ = type_vocab_size
snake_case_ = layer_norm_eps
# Character config:
snake_case_ = downsampling_rate
snake_case_ = upsampling_kernel_size
snake_case_ = num_hash_functions
snake_case_ = num_hash_buckets
snake_case_ = local_transformer_stride
| 713 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = scope
snake_case_ = range_bbox
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case_ = bbox[i, j, 3]
snake_case_ = bbox[i, j, 1]
snake_case_ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case_ = bbox[i, j, 2]
snake_case_ = bbox[i, j, 0]
snake_case_ = t
snake_case_ = None
if self.use_input_mask:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str:
"""simple docstring"""
snake_case_ = LiltModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict:
"""simple docstring"""
snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowercase: Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return True
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = LiltModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_torch
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ )
snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ )
snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ )
snake_case_ = torch.Size([1, 2, 768] )
snake_case_ = torch.tensor(
[[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 0 |
"""simple docstring"""
import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
__SCREAMING_SNAKE_CASE : int = HfApi()
__SCREAMING_SNAKE_CASE : Any = {}
# fmt: off
__SCREAMING_SNAKE_CASE : List[str] = torch.tensor([
-0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467,
1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189,
-1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839,
0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557
])
__SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([
-2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436,
1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208,
-2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948,
2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365
])
__SCREAMING_SNAKE_CASE : List[str] = torch.tensor([
-0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869,
-0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304,
-0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925,
0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943
])
__SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([
0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172,
-0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309,
0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805,
-0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505
])
__SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([
0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133,
-0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395,
0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559,
-0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386
])
__SCREAMING_SNAKE_CASE : Tuple = torch.tensor([
0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078,
-0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330,
0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683,
-0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431
])
__SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([
0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042,
-0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398,
0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574,
-0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390
])
__SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([
0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042,
-0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290,
0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746,
-0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473
])
__SCREAMING_SNAKE_CASE : Dict = torch.tensor([
-1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330,
1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243,
-2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810,
1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251])
__SCREAMING_SNAKE_CASE : Tuple = torch.tensor([
-1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324,
0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181,
-2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259,
1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266
])
__SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([
-1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212,
0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027,
-2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131,
1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355
])
__SCREAMING_SNAKE_CASE : int = torch.tensor([
-2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959,
1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351,
-3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341,
3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066
])
__SCREAMING_SNAKE_CASE : Any = torch.tensor([
-2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740,
1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398,
-2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395,
2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243
])
__SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([
-2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336,
1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908,
-3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560,
3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343
])
__SCREAMING_SNAKE_CASE : Dict = torch.tensor([
-1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344,
1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391,
-2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439,
1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219
])
# fmt: on
__SCREAMING_SNAKE_CASE : Any = api.list_models(filter='diffusers')
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
__SCREAMING_SNAKE_CASE : str = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1]
print(f"""Started running {mod.modelId}!!!""")
if mod.modelId.startswith('CompVis'):
__SCREAMING_SNAKE_CASE : str = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet')
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
__SCREAMING_SNAKE_CASE : Any = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
__SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
__SCREAMING_SNAKE_CASE : int = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1E-3
)
print(f"""{mod.modelId} has passed successfully!!!""")
| 714 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = 0
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
snake_case_ = i + 1
else:
snake_case_ = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
| 2 | 0 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
snake_case_ = [0] * len(_UpperCamelCase )
snake_case_ = []
snake_case_ = [1] * len(_UpperCamelCase )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(_UpperCamelCase ) ):
if indegree[i] == 0:
queue.append(_UpperCamelCase )
while queue:
snake_case_ = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
snake_case_ = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(_UpperCamelCase )
print(max(_UpperCamelCase ) )
# Adjacency list of Graph
__SCREAMING_SNAKE_CASE : List[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 715 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional
from packaging import version
if TYPE_CHECKING:
from ... import PreTrainedTokenizer, TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import is_torch_available, logging
__SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : List[Any] = {
"""bigscience/bloom""": """https://huggingface.co/bigscience/bloom/resolve/main/config.json""",
"""bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/config.json""",
"""bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json""",
"""bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json""",
"""bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/config.json""",
"""bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json""",
}
class __A (__UpperCAmelCase):
'''simple docstring'''
__lowercase: str = """bloom"""
__lowercase: List[Any] = ["""past_key_values"""]
__lowercase: List[str] = {
"""num_hidden_layers""": """n_layer""",
"""num_attention_heads""": """n_head""",
}
def __init__( self : Dict , UpperCAmelCase_ : Union[str, Any]=250_880 , UpperCAmelCase_ : int=64 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Optional[Any]=8 , UpperCAmelCase_ : Optional[Any]=1E-5 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Tuple , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = vocab_size
# Backward compatibility with n_embed kwarg
snake_case_ = kwargs.pop("""n_embed""" , UpperCAmelCase_ )
snake_case_ = hidden_size if n_embed is None else n_embed
snake_case_ = n_layer
snake_case_ = n_head
snake_case_ = layer_norm_epsilon
snake_case_ = initializer_range
snake_case_ = use_cache
snake_case_ = pretraining_tp
snake_case_ = apply_residual_connection_post_layernorm
snake_case_ = hidden_dropout
snake_case_ = attention_dropout
snake_case_ = bos_token_id
snake_case_ = eos_token_id
snake_case_ = slow_but_exact
super().__init__(bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ )
class __A (__UpperCAmelCase):
'''simple docstring'''
__lowercase: List[str] = version.parse("""1.12""")
def __init__( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any = "default" , UpperCAmelCase_ : Any = None , UpperCAmelCase_ : str = False , ) ->List[Any]:
"""simple docstring"""
super().__init__(UpperCAmelCase_ , task=UpperCAmelCase_ , patching_specs=UpperCAmelCase_ , use_past=UpperCAmelCase_ )
if not getattr(self._config , """pad_token_id""" , UpperCAmelCase_ ):
# TODO: how to do that better?
snake_case_ = 0
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
# BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344
self.fill_with_past_key_values_(UpperCAmelCase_ , direction="""inputs""" , inverted_values_shape=UpperCAmelCase_ )
snake_case_ = {0: """batch""", 1: """past_sequence + sequence"""}
else:
snake_case_ = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
return self._config.n_layer
@property
def lowerCAmelCase ( self : Any ) ->Optional[int]:
"""simple docstring"""
return self._config.n_head
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
return 1E-3
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] = -1 , UpperCAmelCase_ : Any = -1 , UpperCAmelCase_ : List[str] = False , UpperCAmelCase_ : Optional[int] = None , ) ->List[Any]:
"""simple docstring"""
snake_case_ = super(UpperCAmelCase_ , self ).generate_dummy_inputs(
UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_ )
# We need to order the input in the way they appears in the forward()
snake_case_ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
snake_case_ , snake_case_ = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
snake_case_ = seqlen + 2
snake_case_ = self._config.hidden_size // self.num_attention_heads
snake_case_ = (
batch * self.num_attention_heads,
head_dim,
past_key_values_length,
)
snake_case_ = (
batch * self.num_attention_heads,
past_key_values_length,
head_dim,
)
snake_case_ = [
(torch.zeros(UpperCAmelCase_ ), torch.zeros(UpperCAmelCase_ )) for _ in range(self.num_layers )
]
snake_case_ = common_inputs["""attention_mask"""]
if self.use_past:
snake_case_ = ordered_inputs["""attention_mask"""].dtype
snake_case_ = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase_ , UpperCAmelCase_ , dtype=UpperCAmelCase_ )] , dim=1 )
return ordered_inputs
@property
def lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
return 13
| 716 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter'
__SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE'
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}"""
raise TypeError(_SCREAMING_SNAKE_CASE )
snake_case_ = spanish_id.replace("""-""" , """""" ).upper()
if len(_SCREAMING_SNAKE_CASE ) != 9:
raise ValueError(_SCREAMING_SNAKE_CASE )
try:
snake_case_ = int(spanish_id_clean[0:8] )
snake_case_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_SCREAMING_SNAKE_CASE ) from ex
if letter.isdigit():
raise ValueError(_SCREAMING_SNAKE_CASE )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
from typing import List
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Tuple = {
"snap-research/efficientformer-l1-300": (
"https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json"
),
}
class __A (__lowerCAmelCase):
'''simple docstring'''
__lowercase: str = "efficientformer"
def __init__( self : Any , UpperCAmelCase_ : List[int] = [3, 2, 6, 4] , UpperCAmelCase_ : List[int] = [48, 96, 224, 448] , UpperCAmelCase_ : List[bool] = [True, True, True, True] , UpperCAmelCase_ : int = 448 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : int = 4 , UpperCAmelCase_ : int = 7 , UpperCAmelCase_ : int = 5 , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : int = 4 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : int = 16 , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : float = 1E-5 , UpperCAmelCase_ : str = "gelu" , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : float = 1E-12 , UpperCAmelCase_ : int = 224 , UpperCAmelCase_ : float = 1E-05 , **UpperCAmelCase_ : str , ) ->None:
"""simple docstring"""
super().__init__(**lowerCamelCase__ )
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = hidden_sizes
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = initializer_range
snake_case_ = layer_norm_eps
snake_case_ = patch_size
snake_case_ = num_channels
snake_case_ = depths
snake_case_ = mlp_expansion_ratio
snake_case_ = downsamples
snake_case_ = dim
snake_case_ = key_dim
snake_case_ = attention_ratio
snake_case_ = resolution
snake_case_ = pool_size
snake_case_ = downsample_patch_size
snake_case_ = downsample_stride
snake_case_ = downsample_pad
snake_case_ = drop_path_rate
snake_case_ = num_metaad_blocks
snake_case_ = distillation
snake_case_ = use_layer_scale
snake_case_ = layer_scale_init_value
snake_case_ = image_size
snake_case_ = batch_norm_eps
| 717 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'}
__SCREAMING_SNAKE_CASE : List[str] = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
}
}
__SCREAMING_SNAKE_CASE : List[str] = {
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
__SCREAMING_SNAKE_CASE : int = '▁'
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = VOCAB_FILES_NAMES
__lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None:
"""simple docstring"""
snake_case_ = (
AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
else mask_token
)
snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
snake_case_ = do_lower_case
snake_case_ = remove_space
snake_case_ = keep_accents
snake_case_ = vocab_file
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
return len(self.sp_model )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) ->List[str]:
"""simple docstring"""
snake_case_ = self.__dict__.copy()
snake_case_ = None
return state
def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
snake_case_ = {}
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str:
"""simple docstring"""
if self.remove_space:
snake_case_ = """ """.join(inputs.strip().split() )
else:
snake_case_ = inputs
snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ )
snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] )
if self.do_lower_case:
snake_case_ = outputs.lower()
return outputs
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
snake_case_ = self.preprocess_text(UpperCAmelCase_ )
snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
snake_case_ = []
for piece in pieces:
if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
snake_case_ = cur_pieces[1:]
else:
snake_case_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCAmelCase_ )
else:
new_pieces.append(UpperCAmelCase_ )
return new_pieces
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict:
"""simple docstring"""
return self.sp_model.PieceToId(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return self.sp_model.IdToPiece(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any:
"""simple docstring"""
snake_case_ = []
snake_case_ = """"""
snake_case_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase_ ) + token
snake_case_ = True
snake_case_ = []
else:
current_sub_tokens.append(UpperCAmelCase_ )
snake_case_ = False
out_string += self.sp_model.decode(UpperCAmelCase_ )
return out_string.strip()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , """wb""" ) as fi:
snake_case_ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
return (out_vocab_file,)
| 2 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = {
'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json',
'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json',
'uclanlp/visualbert-vqa-coco-pre': (
'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json'
),
'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json',
'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json',
'uclanlp/visualbert-vcr-coco-pre': (
'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json'
),
'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json',
'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json',
'uclanlp/visualbert-nlvr2-coco-pre': (
'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json'
)
# See all VisualBERT models at https://huggingface.co/models?filter=visual_bert
}
class __A (UpperCamelCase_):
'''simple docstring'''
__lowercase: List[str] = """visual_bert"""
def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any]=30_522 , UpperCAmelCase_ : str=768 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Dict=3_072 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : Optional[int]=1E-12 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Optional[int]=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Dict=2 , **UpperCAmelCase_ : Optional[Any] , ) ->List[str]:
"""simple docstring"""
super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ )
snake_case_ = vocab_size
snake_case_ = max_position_embeddings
snake_case_ = hidden_size
snake_case_ = visual_embedding_dim
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = initializer_range
snake_case_ = type_vocab_size
snake_case_ = layer_norm_eps
snake_case_ = bypass_transformer
snake_case_ = special_visual_initialize
| 718 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("""The given input must be positive""" )
# get the generated string sequence
snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = int(sequence[i] , 2 )
return sequence
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
snake_case_ = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
snake_case_ = gray_code_sequence_string(bit_count - 1 )
snake_case_ = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
snake_case_ = """0""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
snake_case_ = """1""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
snake_case_ = len(UpperCamelCase__ ) // 2
# choose the middle 3 elements
snake_case_ = lst[m - 1 : m + 2]
# if middle element is peak
if three[1] > three[0] and three[1] > three[2]:
return three[1]
# if increasing, recurse on right
elif three[0] < three[2]:
if len(lst[:m] ) == 2:
m -= 1
return peak(lst[m:] )
# decreasing
else:
if len(lst[:m] ) == 2:
m += 1
return peak(lst[:m] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 719 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 0 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list[list]:
snake_case_ = current_set.copy()
for row_index, row in enumerate(lowerCamelCase__ ):
snake_case_ = row[0]
for column_index, column in enumerate(lowerCamelCase__ ):
if magnitude == 0:
snake_case_ = column
continue
snake_case_ = column / magnitude
# Subtract to cancel term
snake_case_ = current_set[0]
snake_case_ = [first_row]
snake_case_ = current_set[1::]
for row in current_set:
snake_case_ = []
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(lowerCamelCase__ )
continue
for column_index in range(len(lowerCamelCase__ ) ):
temp_row.append(first_row[column_index] - row[column_index] )
final_set.append(lowerCamelCase__ )
# Create next recursion iteration set
if len(final_set[0] ) != 3:
snake_case_ = final_set[0]
snake_case_ = []
snake_case_ = []
for row in final_set[1::]:
current_first_column.append(row[0] )
next_iteration.append(row[1::] )
snake_case_ = simplify(lowerCamelCase__ )
for i in range(len(lowerCamelCase__ ) ):
resultant[i].insert(0 , current_first_column[i] )
resultant.insert(0 , lowerCamelCase__ )
snake_case_ = resultant
return final_set
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
if len(lowerCamelCase__ ) == 0:
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
snake_case_ = len(lowerCamelCase__ ) + 1
if any(len(lowerCamelCase__ ) != _length for item in equations ):
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
for row in equations:
if any(not isinstance(lowerCamelCase__ , (int, float) ) for column in row ):
raise ValueError("""solve_simultaneous() requires lists of integers""" )
if len(lowerCamelCase__ ) == 1:
return [equations[0][-1] / equations[0][0]]
snake_case_ = equations.copy()
if any(0 in row for row in data_set ):
snake_case_ = data_set.copy()
snake_case_ = []
for row_index, row in enumerate(lowerCamelCase__ ):
if 0 not in row:
snake_case_ = data_set.pop(lowerCamelCase__ )
break
if not full_row:
raise ValueError("""solve_simultaneous() requires at least 1 full equation""" )
data_set.insert(0 , lowerCamelCase__ )
snake_case_ = data_set.copy()
snake_case_ = simplify(lowerCamelCase__ )
snake_case_ = simplified[::-1]
snake_case_ = []
for row in simplified:
snake_case_ = row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0 )
continue
solutions.append(current_solution / row[-2] )
continue
snake_case_ = row.copy()[: len(lowerCamelCase__ ) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0 )
if len(lowerCamelCase__ ) == 0:
solutions.append(0 )
continue
snake_case_ = temp_row[1::]
snake_case_ = temp_row[::-1]
for column_index, column in enumerate(lowerCamelCase__ ):
current_solution -= column * solutions[column_index]
solutions.append(lowerCamelCase__ )
snake_case_ = []
for item in solutions:
final.append(float(round(lowerCamelCase__ , 5 ) ) )
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
__SCREAMING_SNAKE_CASE : Any = [
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]]))
| 720 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/'
__SCREAMING_SNAKE_CASE : List[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
snake_case_ = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
snake_case_ = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = {}
import re
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# keep original key
else:
snake_case_ = original_key
snake_case_ = replace_key(_SCREAMING_SNAKE_CASE )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
snake_case_ = original_key
snake_case_ = original_key
snake_case_ = value
return new_dict
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ):
snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE )
open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content )
snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]]
snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE )
snake_case_ = []
snake_case_ = {}
for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""]
snake_case_ = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
snake_case_ = old_dic[k]
elif k.endswith(""".w""" ):
snake_case_ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
snake_case_ = old_dic[k]
else:
snake_case_ = old_dic[k]
snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}"""
snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
weight_dict.append(_SCREAMING_SNAKE_CASE )
snake_case_ = weight_dict.pop(0 )
model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
return weight_dict
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 2 | 0 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import (
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaubertConfig,
TFFlaubertForMultipleChoice,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForSequenceClassification,
TFFlaubertForTokenClassification,
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
)
class __A :
'''simple docstring'''
def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any , ) ->List[Any]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = 13
snake_case_ = 7
snake_case_ = True
snake_case_ = True
snake_case_ = True
snake_case_ = True
snake_case_ = True
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = 2
snake_case_ = 99
snake_case_ = 0
snake_case_ = 32
snake_case_ = 2
snake_case_ = 4
snake_case_ = 0.1
snake_case_ = 0.1
snake_case_ = 512
snake_case_ = 16
snake_case_ = 2
snake_case_ = 0.02
snake_case_ = 3
snake_case_ = 4
snake_case_ = """last"""
snake_case_ = True
snake_case_ = None
snake_case_ = 0
def lowerCAmelCase ( self : int ) ->Tuple:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa )
snake_case_ = None
if self.use_input_lengths:
snake_case_ = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
snake_case_ = None
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa )
snake_case_ = ids_tensor([self.batch_size] , self.num_choices )
snake_case_ = FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , )
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = TFFlaubertModel(config=_SCREAMING_SNAKE_CASE )
snake_case_ = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids}
snake_case_ = model(_SCREAMING_SNAKE_CASE )
snake_case_ = [input_ids, input_mask]
snake_case_ = model(_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , ) ->Tuple:
"""simple docstring"""
snake_case_ = TFFlaubertWithLMHeadModel(_SCREAMING_SNAKE_CASE )
snake_case_ = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids}
snake_case_ = model(_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , ) ->Tuple:
"""simple docstring"""
snake_case_ = TFFlaubertForQuestionAnsweringSimple(_SCREAMING_SNAKE_CASE )
snake_case_ = {"""input_ids""": input_ids, """lengths""": input_lengths}
snake_case_ = model(_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = TFFlaubertForSequenceClassification(_SCREAMING_SNAKE_CASE )
snake_case_ = {"""input_ids""": input_ids, """lengths""": input_lengths}
snake_case_ = model(_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , ) ->Tuple:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = TFFlaubertForTokenClassification(config=_SCREAMING_SNAKE_CASE )
snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
snake_case_ = model(_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , ) ->Any:
"""simple docstring"""
snake_case_ = self.num_choices
snake_case_ = TFFlaubertForMultipleChoice(config=_SCREAMING_SNAKE_CASE )
snake_case_ = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) )
snake_case_ = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) )
snake_case_ = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) )
snake_case_ = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
"""token_type_ids""": multiple_choice_token_type_ids,
}
snake_case_ = model(_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase ( self : int ) ->int:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""langs""": token_type_ids,
"""lengths""": input_lengths,
}
return config, inputs_dict
@require_tf
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = (
(
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
TFFlaubertForSequenceClassification,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForTokenClassification,
TFFlaubertForMultipleChoice,
)
if is_tf_available()
else ()
)
__lowercase: Dict = (
(TFFlaubertWithLMHeadModel,) if is_tf_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
__lowercase: Union[str, Any] = (
{
"""feature-extraction""": TFFlaubertModel,
"""fill-mask""": TFFlaubertWithLMHeadModel,
"""question-answering""": TFFlaubertForQuestionAnsweringSimple,
"""text-classification""": TFFlaubertForSequenceClassification,
"""token-classification""": TFFlaubertForTokenClassification,
"""zero-shot""": TFFlaubertForSequenceClassification,
}
if is_tf_available()
else {}
)
__lowercase: Any = False
__lowercase: Optional[Any] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = TFFlaubertModelTester(self )
snake_case_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , emb_dim=37 )
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*_SCREAMING_SNAKE_CASE )
def lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*_SCREAMING_SNAKE_CASE )
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*_SCREAMING_SNAKE_CASE )
def lowerCAmelCase ( self : Any ) ->Any:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*_SCREAMING_SNAKE_CASE )
def lowerCAmelCase ( self : List[Any] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_token_classification(*_SCREAMING_SNAKE_CASE )
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_multiple_choice(*_SCREAMING_SNAKE_CASE )
@slow
def lowerCAmelCase ( self : List[Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = TFFlaubertModel.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
@require_tf
@require_sentencepiece
@require_tokenizers
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Any:
"""simple docstring"""
snake_case_ = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" )
snake_case_ = tf.convert_to_tensor(
[[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !"
snake_case_ = model(_SCREAMING_SNAKE_CASE )[0]
snake_case_ = tf.TensorShape((1, 8, 512) )
self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE )
# compare the actual values for a slice.
snake_case_ = tf.convert_to_tensor(
[
[
[-1.8_768_773, -1.566_555, 0.27_072_418],
[-1.6_920_038, -0.5_873_505, 1.9_329_599],
[-2.9_563_985, -1.6_993_835, 1.7_972_052],
]
] , dtype=tf.floataa , )
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 721 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__SCREAMING_SNAKE_CASE : Dict = 'zero2'
__SCREAMING_SNAKE_CASE : List[Any] = 'zero3'
__SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __A (snake_case__):
'''simple docstring'''
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = models[model]
snake_case_ = self.run_trainer(
stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
self.do_checks(UpperCAmelCase_ )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ )
snake_case_ = F"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(UpperCAmelCase_ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
snake_case_ = self.get_launcher(UpperCAmelCase_ )
snake_case_ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple:
"""simple docstring"""
snake_case_ = min(2 , get_gpu_count() ) if distributed else 1
return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 2 | 0 |
"""simple docstring"""
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
__SCREAMING_SNAKE_CASE : List[str] = 'src/diffusers'
__SCREAMING_SNAKE_CASE : List[Any] = '.'
# This is to make sure the diffusers module imported is the one in the repo.
__SCREAMING_SNAKE_CASE : Any = importlib.util.spec_from_file_location(
'diffusers',
os.path.join(DIFFUSERS_PATH, '__init__.py'),
submodule_search_locations=[DIFFUSERS_PATH],
)
__SCREAMING_SNAKE_CASE : Optional[Any] = spec.loader.load_module()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
return line.startswith(_SCREAMING_SNAKE_CASE ) or len(_SCREAMING_SNAKE_CASE ) <= 1 or re.search(r"""^\s*\)(\s*->.*:|:)\s*$""" , _SCREAMING_SNAKE_CASE ) is not None
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
snake_case_ = object_name.split(""".""" )
snake_case_ = 0
# First let's find the module where our object lives.
snake_case_ = parts[i]
while i < len(_SCREAMING_SNAKE_CASE ) and not os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , f"""{module}.py""" ) ):
i += 1
if i < len(_SCREAMING_SNAKE_CASE ):
snake_case_ = os.path.join(_SCREAMING_SNAKE_CASE , parts[i] )
if i >= len(_SCREAMING_SNAKE_CASE ):
raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" )
with open(os.path.join(_SCREAMING_SNAKE_CASE , f"""{module}.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
snake_case_ = f.readlines()
# Now let's find the class / func in the code!
snake_case_ = """"""
snake_case_ = 0
for name in parts[i + 1 :]:
while (
line_index < len(_SCREAMING_SNAKE_CASE ) and re.search(rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(_SCREAMING_SNAKE_CASE ):
raise ValueError(f""" {object_name} does not match any function or class in {module}.""" )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
snake_case_ = line_index
while line_index < len(_SCREAMING_SNAKE_CASE ) and _should_continue(lines[line_index] , _SCREAMING_SNAKE_CASE ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
snake_case_ = lines[start_index:line_index]
return "".join(_SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE : Any = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)')
__SCREAMING_SNAKE_CASE : Optional[Any] = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)')
__SCREAMING_SNAKE_CASE : Any = re.compile(R'<FILL\s+[^>]*>')
def _a ( _SCREAMING_SNAKE_CASE ) -> Tuple:
snake_case_ = code.split("""\n""" )
snake_case_ = 0
while idx < len(_SCREAMING_SNAKE_CASE ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(_SCREAMING_SNAKE_CASE ):
return re.search(r"""^(\s*)\S""" , lines[idx] ).groups()[0]
return ""
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
snake_case_ = len(get_indent(_SCREAMING_SNAKE_CASE ) ) > 0
if has_indent:
snake_case_ = f"""class Bla:\n{code}"""
snake_case_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=_SCREAMING_SNAKE_CASE )
snake_case_ = black.format_str(_SCREAMING_SNAKE_CASE , mode=_SCREAMING_SNAKE_CASE )
snake_case_ , snake_case_ = style_docstrings_in_code(_SCREAMING_SNAKE_CASE )
return result[len("""class Bla:\n""" ) :] if has_indent else result
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[Any]:
with open(_SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
snake_case_ = f.readlines()
snake_case_ = []
snake_case_ = 0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(_SCREAMING_SNAKE_CASE ):
snake_case_ = _re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
snake_case_ , snake_case_ , snake_case_ = search.groups()
snake_case_ = find_code_in_diffusers(_SCREAMING_SNAKE_CASE )
snake_case_ = get_indent(_SCREAMING_SNAKE_CASE )
snake_case_ = line_index + 1 if indent == theoretical_indent else line_index + 2
snake_case_ = theoretical_indent
snake_case_ = start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
snake_case_ = True
while line_index < len(_SCREAMING_SNAKE_CASE ) and should_continue:
line_index += 1
if line_index >= len(_SCREAMING_SNAKE_CASE ):
break
snake_case_ = lines[line_index]
snake_case_ = _should_continue(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and re.search(f"""^{indent}# End copy""" , _SCREAMING_SNAKE_CASE ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
snake_case_ = lines[start_index:line_index]
snake_case_ = """""".join(_SCREAMING_SNAKE_CASE )
# Remove any nested `Copied from` comments to avoid circular copies
snake_case_ = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(_SCREAMING_SNAKE_CASE ) is None]
snake_case_ = """\n""".join(_SCREAMING_SNAKE_CASE )
# Before comparing, use the `replace_pattern` on the original code.
if len(_SCREAMING_SNAKE_CASE ) > 0:
snake_case_ = replace_pattern.replace("""with""" , """""" ).split(""",""" )
snake_case_ = [_re_replace_pattern.search(_SCREAMING_SNAKE_CASE ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
snake_case_ , snake_case_ , snake_case_ = pattern.groups()
snake_case_ = re.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if option.strip() == "all-casing":
snake_case_ = re.sub(obja.lower() , obja.lower() , _SCREAMING_SNAKE_CASE )
snake_case_ = re.sub(obja.upper() , obja.upper() , _SCREAMING_SNAKE_CASE )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
snake_case_ = blackify(lines[start_index - 1] + theoretical_code )
snake_case_ = theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
snake_case_ = lines[:start_index] + [theoretical_code] + lines[line_index:]
snake_case_ = start_index + 1
if overwrite and len(_SCREAMING_SNAKE_CASE ) > 0:
# Warn the user a file has been modified.
print(f"""Detected changes, rewriting {filename}.""" )
with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(_SCREAMING_SNAKE_CASE )
return diffs
def _a ( _SCREAMING_SNAKE_CASE = False ) -> str:
snake_case_ = glob.glob(os.path.join(_SCREAMING_SNAKE_CASE , """**/*.py""" ) , recursive=_SCREAMING_SNAKE_CASE )
snake_case_ = []
for filename in all_files:
snake_case_ = is_copy_consistent(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs]
if not overwrite and len(_SCREAMING_SNAKE_CASE ) > 0:
snake_case_ = """\n""".join(_SCREAMING_SNAKE_CASE )
raise Exception(
"""Found the following copy inconsistencies:\n"""
+ diff
+ """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
__SCREAMING_SNAKE_CASE : List[str] = parser.parse_args()
check_copies(args.fix_and_overwrite)
| 700 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True})
__lowercase: ClassVar[Features] = Features({"""audio""": Audio()})
__lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")})
__lowercase: str = "audio"
__lowercase: str = "transcription"
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int:
"""simple docstring"""
if self.audio_column not in features:
raise ValueError(F"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , UpperCAmelCase_ ):
raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" )
snake_case_ = copy.deepcopy(self )
snake_case_ = self.input_schema.copy()
snake_case_ = features[self.audio_column]
snake_case_ = input_schema
return task_template
@property
def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]:
"""simple docstring"""
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 2 | 0 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int:
snake_case_ = set()
snake_case_ = 0
snake_case_ = n + 1 # maximum limit
for a in range(2 , _SCREAMING_SNAKE_CASE ):
for b in range(2 , _SCREAMING_SNAKE_CASE ):
snake_case_ = a**b # calculates the current power
collect_powers.add(_SCREAMING_SNAKE_CASE ) # adds the result to the set
return len(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print('''Number of terms ''', solution(int(str(input()).strip())))
| 701 |
"""simple docstring"""
from functools import reduce
__SCREAMING_SNAKE_CASE : Tuple = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def _a ( _SCREAMING_SNAKE_CASE = N ) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) )
for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 | 0 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Dict = [
'VerificationMode',
'Version',
'disable_progress_bar',
'enable_progress_bar',
'is_progress_bar_enabled',
'experimental',
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 702 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : str = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Any = """mctct"""
def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = intermediate_size
snake_case_ = num_attention_heads
snake_case_ = attention_head_dim
snake_case_ = max_position_embeddings
snake_case_ = layer_norm_eps
snake_case_ = layerdrop
snake_case_ = hidden_act
snake_case_ = initializer_range
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = pad_token_id
snake_case_ = bos_token_id
snake_case_ = eos_token_id
snake_case_ = conv_glu_dim
snake_case_ = conv_dropout
snake_case_ = num_conv_layers
snake_case_ = input_feat_per_channel
snake_case_ = input_channels
snake_case_ = conv_channels
snake_case_ = ctc_loss_reduction
snake_case_ = ctc_zero_infinity
# prevents config testing fail with exporting to json
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """
F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """
F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
| 2 | 0 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
if any(not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or x < 0 for x in sequence ):
raise TypeError("""Sequence must be list of non-negative integers""" )
for _ in range(len(_SCREAMING_SNAKE_CASE ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(_SCREAMING_SNAKE_CASE , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 703 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int:
return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 2 | 0 |
"""simple docstring"""
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
'''simple docstring'''
snake_case_ = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""_float_tensor""",
"""decoder.output_projection.weight""",
]
for k in ignore_keys:
state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ , snake_case_ = emb.weight.shape
snake_case_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE )
snake_case_ = emb.weight.data
return lin_layer
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="facebook/mbart-large-en-ro" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ) -> Tuple:
'''simple docstring'''
snake_case_ = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )["""model"""]
remove_ignore_keys_(_SCREAMING_SNAKE_CASE )
snake_case_ = state_dict["""encoder.embed_tokens.weight"""].shape[0]
snake_case_ = MBartConfig.from_pretrained(_SCREAMING_SNAKE_CASE , vocab_size=_SCREAMING_SNAKE_CASE )
if mbart_aa and finetuned:
snake_case_ = """relu"""
snake_case_ = state_dict["""decoder.embed_tokens.weight"""]
snake_case_ = MBartForConditionalGeneration(_SCREAMING_SNAKE_CASE )
model.model.load_state_dict(_SCREAMING_SNAKE_CASE )
if finetuned:
snake_case_ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'
)
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--hf_config',
default='facebook/mbart-large-cc25',
type=str,
help='Which huggingface architecture to use: mbart-large',
)
parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint')
parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint')
__SCREAMING_SNAKE_CASE : Dict = parser.parse_args()
__SCREAMING_SNAKE_CASE : Any = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 704 |
"""simple docstring"""
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: str = VQModel
__lowercase: Union[str, Any] = """sample"""
@property
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple:
"""simple docstring"""
snake_case_ = 4
snake_case_ = 3
snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ )
return {"sample": image}
@property
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
return (3, 32, 32)
@property
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
return (3, 32, 32)
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 3,
}
snake_case_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(UpperCAmelCase_ )
snake_case_ = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" )
model.to(UpperCAmelCase_ ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
snake_case_ = image.to(UpperCAmelCase_ )
with torch.no_grad():
snake_case_ = model(UpperCAmelCase_ ).sample
snake_case_ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] )
# fmt: on
self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 0 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> set[str]:
snake_case_ , snake_case_ = set(_SCREAMING_SNAKE_CASE ), [start]
while stack:
snake_case_ = stack.pop()
explored.add(_SCREAMING_SNAKE_CASE )
# Differences from BFS:
# 1) pop last element instead of first one
# 2) add adjacent elements to stack without exploring them
for adj in reversed(graph[v] ):
if adj not in explored:
stack.append(_SCREAMING_SNAKE_CASE )
return explored
__SCREAMING_SNAKE_CASE : List[str] = {
'A': ['B', 'C', 'D'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F'],
'D': ['B', 'D'],
'E': ['B', 'F'],
'F': ['C', 'E', 'G'],
'G': ['F'],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
print(depth_first_search(G, 'A'))
| 705 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = KandinskyVaaControlnetPipeline
__lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: Union[str, Any] = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
__lowercase: Tuple = False
@property
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return 100
@property
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
snake_case_ = self.dummy_unet
snake_case_ = self.dummy_movq
snake_case_ = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , )
snake_case_ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]:
"""simple docstring"""
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase_ )
# create hint
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
if str(UpperCAmelCase_ ).startswith("""mps""" ):
snake_case_ = torch.manual_seed(UpperCAmelCase_ )
else:
snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = """cpu"""
snake_case_ = self.get_dummy_components()
snake_case_ = self.pipeline_class(**UpperCAmelCase_ )
snake_case_ = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
snake_case_ = output.images
snake_case_ = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ = np.array(
[0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0
snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case_ = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case_ = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = """A robot, 4k photo"""
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ , snake_case_ = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ = pipeline(
image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 2 | 0 |
"""simple docstring"""
class __A :
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCAmelCase_ : list[int] ) ->None:
"""simple docstring"""
snake_case_ = len(UpperCAmelCase_ )
snake_case_ = [0] * len_array
if len_array > 0:
snake_case_ = array[0]
for i in range(1 , UpperCAmelCase_ ):
snake_case_ = self.prefix_sum[i - 1] + array[i]
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) ->int:
"""simple docstring"""
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : int ) ->bool:
"""simple docstring"""
snake_case_ = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(UpperCAmelCase_ )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 706 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
class __A :
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = []
self.adlist.append(
{"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} )
for keyword in keywords:
self.add_keyword(UpperCAmelCase_ )
self.set_fail_transitions()
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None:
"""simple docstring"""
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None:
"""simple docstring"""
snake_case_ = 0
for character in keyword:
snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ )
if next_state is None:
self.adlist.append(
{
"""value""": character,
"""next_states""": [],
"""fail_state""": 0,
"""output""": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
snake_case_ = len(self.adlist ) - 1
else:
snake_case_ = next_state
self.adlist[current_state]["output"].append(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->None:
"""simple docstring"""
snake_case_ = deque()
for node in self.adlist[0]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = 0
while q:
snake_case_ = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = self.adlist[r]["""fail_state"""]
while (
self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None
and state != 0
):
snake_case_ = self.adlist[state]["""fail_state"""]
snake_case_ = self.find_next_state(
UpperCAmelCase_ , self.adlist[child]["""value"""] )
if self.adlist[child]["fail_state"] is None:
snake_case_ = 0
snake_case_ = (
self.adlist[child]["""output"""]
+ self.adlist[self.adlist[child]["""fail_state"""]]["""output"""]
)
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]:
"""simple docstring"""
snake_case_ = {} # returns a dict with keywords and list of its occurrences
snake_case_ = 0
for i in range(len(UpperCAmelCase_ ) ):
while (
self.find_next_state(UpperCAmelCase_ , string[i] ) is None
and current_state != 0
):
snake_case_ = self.adlist[current_state]["""fail_state"""]
snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] )
if next_state is None:
snake_case_ = 0
else:
snake_case_ = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
snake_case_ = []
result[key].append(i - len(UpperCAmelCase_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
import pprint
import requests
__SCREAMING_SNAKE_CASE : Tuple = 'https://zenquotes.io/api'
def _a ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/today""" ).json()
def _a ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/random""" ).json()
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Optional[int] = random_quotes()
pprint.pprint(response) | 707 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = num_channels
snake_case_ = num_stages
snake_case_ = hidden_sizes
snake_case_ = depths
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = num_labels
snake_case_ = initializer_range
snake_case_ = out_features
snake_case_ = out_indices
snake_case_ = scope
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case_ = None
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[Any] = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
__lowercase: Union[str, Any] = (
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Optional[Any] = False
__lowercase: Any = False
__lowercase: Union[str, Any] = False
__lowercase: Dict = False
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = True
if model_class.__name__ in [
*get_values(UpperCAmelCase_ ),
*get_values(UpperCAmelCase_ ),
]:
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = False
snake_case_ = True
if (
model_class.__name__
in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )]
or not model_class.supports_gradient_checkpointing
):
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.gradient_checkpointing_enable()
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ):
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case_ = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _a ( ) -> str:
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ )
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
# verify the logits
snake_case_ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
| 2 | 0 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
__SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Tuple = {'vocab_file': 'vocab.txt'}
__SCREAMING_SNAKE_CASE : Any = {
'vocab_file': {
'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt',
'YituTech/conv-bert-medium-small': (
'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'
),
'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt',
}
}
__SCREAMING_SNAKE_CASE : int = {
'YituTech/conv-bert-base': 512,
'YituTech/conv-bert-medium-small': 512,
'YituTech/conv-bert-small': 512,
}
__SCREAMING_SNAKE_CASE : int = {
'YituTech/conv-bert-base': {'do_lower_case': True},
'YituTech/conv-bert-medium-small': {'do_lower_case': True},
'YituTech/conv-bert-small': {'do_lower_case': True},
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Tuple = VOCAB_FILES_NAMES
__lowercase: int = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Dict = PRETRAINED_INIT_CONFIGURATION
__lowercase: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase: Dict = ConvBertTokenizer
def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict="[UNK]" , UpperCAmelCase_ : Dict="[SEP]" , UpperCAmelCase_ : Tuple="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Any="[MASK]" , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : Dict , ) ->Tuple:
"""simple docstring"""
super().__init__(
UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , )
snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , UpperCAmelCase_ ) != do_lower_case
or normalizer_state.get("""strip_accents""" , UpperCAmelCase_ ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase_ ) != tokenize_chinese_chars
):
snake_case_ = getattr(UpperCAmelCase_ , normalizer_state.pop("""type""" ) )
snake_case_ = do_lower_case
snake_case_ = strip_accents
snake_case_ = tokenize_chinese_chars
snake_case_ = normalizer_class(**UpperCAmelCase_ )
snake_case_ = do_lower_case
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int=None ) ->List[Any]:
"""simple docstring"""
snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
snake_case_ = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ )
return tuple(UpperCAmelCase_ )
| 708 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights']
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
if "emb" in name:
snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
snake_case_ = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
snake_case_ = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
snake_case_ = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
snake_case_ = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
snake_case_ = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]:
snake_case_ = list(state_dict.keys() )
snake_case_ = {}
for key in keys:
snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE )
if "in_proj_weight" in key:
# split fused qkv proj
snake_case_ = val[:hidden_size, :]
snake_case_ = val[hidden_size : 2 * hidden_size, :]
snake_case_ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
snake_case_ = val
else:
snake_case_ = val
return state_dict, enc_dec_proj_state_dict
def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
snake_case_ = 1_024
snake_case_ = 24
snake_case_ = 16
elif checkpoint == "medium":
snake_case_ = 1_536
snake_case_ = 48
snake_case_ = 24
elif checkpoint == "large":
snake_case_ = 2_048
snake_case_ = 48
snake_case_ = 32
else:
raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
snake_case_ = MusicgenDecoderConfig(
hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , )
return config
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple:
snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE )
snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE )
snake_case_ = fairseq_model.lm.state_dict()
snake_case_ , snake_case_ = rename_state_dict(
_SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size )
snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" )
snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE )
# check we can do a forward pass
snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
snake_case_ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" )
snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
# set the appropriate bos/pad token ids
snake_case_ = 2_048
snake_case_ = 2_048
# set other default generation config params
snake_case_ = int(30 * audio_encoder.config.frame_rate )
snake_case_ = True
snake_case_ = 3.0
if pytorch_dump_folder is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if repo_id:
logger.info(f"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
processor.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint',
default='small',
type=str,
help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.',
)
parser.add_argument(
'--pytorch_dump_folder',
required=True,
default=None,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
parser.add_argument(
'--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.'
)
__SCREAMING_SNAKE_CASE : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 2 | 0 |
"""simple docstring"""
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler')
class __A :
'''simple docstring'''
def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = False ) ->Dict:
"""simple docstring"""
snake_case_ = scheduler
snake_case_ = optimizers if isinstance(UpperCAmelCase_ , (list, tuple) ) else [optimizers]
snake_case_ = split_batches
snake_case_ = step_with_optimizer
snake_case_ = GradientState()
def lowerCAmelCase ( self : Dict , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict ) ->Union[str, Any]:
"""simple docstring"""
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*UpperCAmelCase_ , **UpperCAmelCase_ )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*UpperCAmelCase_ , **UpperCAmelCase_ )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
snake_case_ = AcceleratorState().num_processes
for _ in range(UpperCAmelCase_ ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , """total_steps""" ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*UpperCAmelCase_ , **UpperCAmelCase_ )
else:
self.scheduler.step(*UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple ) ->Optional[int]:
"""simple docstring"""
return self.scheduler.get_last_lr()
def lowerCAmelCase ( self : Dict ) ->Optional[Any]:
"""simple docstring"""
return self.scheduler.state_dict()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Any:
"""simple docstring"""
self.scheduler.load_state_dict(UpperCAmelCase_ )
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
return self.scheduler.get_lr()
def lowerCAmelCase ( self : str , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[int] ) ->Any:
"""simple docstring"""
return self.scheduler.print_lr(*UpperCAmelCase_ , **UpperCAmelCase_ )
| 709 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
if index == number_of_items:
return 0
snake_case_ = 0
snake_case_ = 0
snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 )
if weights[index] <= max_weight:
snake_case_ = values[index] + knapsack(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 )
return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : List[Any] = [
'MRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'MraForMaskedLM',
'MraForMultipleChoice',
'MraForQuestionAnswering',
'MraForSequenceClassification',
'MraForTokenClassification',
'MraLayer',
'MraModel',
'MraPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 710 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int:
snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
snake_case_ = n // 2
return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
__SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 2 | 0 |
"""simple docstring"""
import re
import tempfile
from pathlib import Path
import pytest
import yaml
from datasets.utils.readme import ReadMe
# @pytest.fixture
# def example_yaml_structure():
__SCREAMING_SNAKE_CASE : Tuple = yaml.safe_load(
'\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n'
)
__SCREAMING_SNAKE_CASE : Any = {
'name': 'root',
'text': '',
'is_empty_text': True,
'subsections': [
{
'name': 'Dataset Card for My Dataset',
'text': '',
'is_empty_text': True,
'subsections': [
{'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []},
{
'name': 'Dataset Description',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [
{
'name': 'Dataset Summary',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [],
},
{
'name': 'Supported Tasks and Leaderboards',
'text': '',
'is_empty_text': True,
'subsections': [],
},
{'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []},
],
},
],
}
],
}
__SCREAMING_SNAKE_CASE : Any = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__SCREAMING_SNAKE_CASE : Dict = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__SCREAMING_SNAKE_CASE : List[str] = {
'name': 'root',
'text': '',
'is_empty_text': True,
'subsections': [
{
'name': 'Dataset Card for My Dataset',
'text': '',
'is_empty_text': True,
'subsections': [
{'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []},
{
'name': 'Dataset Description',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [
{
'name': 'Dataset Summary',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [
{
'name': 'Extra Ignored Subsection',
'text': '',
'is_empty_text': True,
'subsections': [],
}
],
},
{
'name': 'Supported Tasks and Leaderboards',
'text': '',
'is_empty_text': True,
'subsections': [],
},
{'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []},
],
},
],
}
],
}
__SCREAMING_SNAKE_CASE : List[Any] = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__SCREAMING_SNAKE_CASE : Union[str, Any] = (
'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.'
)
__SCREAMING_SNAKE_CASE : int = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__SCREAMING_SNAKE_CASE : Tuple = (
'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.'
)
__SCREAMING_SNAKE_CASE : int = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__SCREAMING_SNAKE_CASE : Tuple = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.'
__SCREAMING_SNAKE_CASE : List[str] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__SCREAMING_SNAKE_CASE : int = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).'
__SCREAMING_SNAKE_CASE : int = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n'
__SCREAMING_SNAKE_CASE : Any = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.'
__SCREAMING_SNAKE_CASE : Any = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n'
__SCREAMING_SNAKE_CASE : List[str] = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.'
__SCREAMING_SNAKE_CASE : List[Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n'
__SCREAMING_SNAKE_CASE : Dict = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.'
__SCREAMING_SNAKE_CASE : Tuple = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__SCREAMING_SNAKE_CASE : Dict = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.'
__SCREAMING_SNAKE_CASE : Any = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n'
__SCREAMING_SNAKE_CASE : Tuple = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.'
__SCREAMING_SNAKE_CASE : List[str] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__SCREAMING_SNAKE_CASE : List[Any] = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.'
__SCREAMING_SNAKE_CASE : Tuple = ''
__SCREAMING_SNAKE_CASE : List[str] = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.'
__SCREAMING_SNAKE_CASE : List[Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__SCREAMING_SNAKE_CASE : Optional[int] = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.'
@pytest.mark.parametrize(
"""readme_md, expected_dict""" , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
assert ReadMe.from_string(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to_dict() == expected_dict
@pytest.mark.parametrize(
"""readme_md, expected_error""" , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
with pytest.raises(_SCREAMING_SNAKE_CASE , match=re.escape(expected_error.format(path="""root""" ) ) ):
snake_case_ = ReadMe.from_string(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
readme.validate()
@pytest.mark.parametrize(
"""readme_md, expected_error""" , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
with pytest.raises(_SCREAMING_SNAKE_CASE , match=re.escape(expected_error.format(path="""root""" ) ) ):
ReadMe.from_string(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
"""readme_md,""" , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
ReadMe.from_string(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , suppress_parsing_errors=_SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
"""readme_md, expected_dict""" , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = Path(_SCREAMING_SNAKE_CASE ) / """README.md"""
with open(_SCREAMING_SNAKE_CASE , """w+""" ) as readme_file:
readme_file.write(_SCREAMING_SNAKE_CASE )
snake_case_ = ReadMe.from_readme(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to_dict()
assert out["name"] == path
assert out["text"] == ""
assert out["is_empty_text"]
assert out["subsections"] == expected_dict["subsections"]
@pytest.mark.parametrize(
"""readme_md, expected_error""" , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = Path(_SCREAMING_SNAKE_CASE ) / """README.md"""
with open(_SCREAMING_SNAKE_CASE , """w+""" ) as readme_file:
readme_file.write(_SCREAMING_SNAKE_CASE )
snake_case_ = expected_error.format(path=_SCREAMING_SNAKE_CASE )
with pytest.raises(_SCREAMING_SNAKE_CASE , match=re.escape(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = ReadMe.from_readme(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
readme.validate()
@pytest.mark.parametrize(
"""readme_md, expected_error""" , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = Path(_SCREAMING_SNAKE_CASE ) / """README.md"""
with open(_SCREAMING_SNAKE_CASE , """w+""" ) as readme_file:
readme_file.write(_SCREAMING_SNAKE_CASE )
snake_case_ = expected_error.format(path=_SCREAMING_SNAKE_CASE )
with pytest.raises(_SCREAMING_SNAKE_CASE , match=re.escape(_SCREAMING_SNAKE_CASE ) ):
ReadMe.from_readme(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
"""readme_md,""" , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = Path(_SCREAMING_SNAKE_CASE ) / """README.md"""
with open(_SCREAMING_SNAKE_CASE , """w+""" ) as readme_file:
readme_file.write(_SCREAMING_SNAKE_CASE )
ReadMe.from_readme(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , suppress_parsing_errors=_SCREAMING_SNAKE_CASE )
| 711 |
"""simple docstring"""
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str:
snake_case_ = ascii_letters + digits + punctuation
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(_SCREAMING_SNAKE_CASE )
snake_case_ = i // 3
snake_case_ = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
snake_case_ = (
chars_incl
+ random(_SCREAMING_SNAKE_CASE , quotient + remainder )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
)
snake_case_ = list(_SCREAMING_SNAKE_CASE )
shuffle(_SCREAMING_SNAKE_CASE )
return "".join(_SCREAMING_SNAKE_CASE )
# random is a generalised function for letters, characters and numbers
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool:
if len(_SCREAMING_SNAKE_CASE ) < min_length:
# Your Password must be at least 8 characters long
return False
snake_case_ = any(char in ascii_uppercase for char in password )
snake_case_ = any(char in ascii_lowercase for char in password )
snake_case_ = any(char in digits for char in password )
snake_case_ = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def _a ( ) -> str:
snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() )
snake_case_ = input(
"""Please indicate the characters that must be in your password: """ ).strip()
print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) )
print(
"""Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , )
print("""[If you are thinking of using this passsword, You better save it.]""" )
if __name__ == "__main__":
main()
| 2 | 0 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
return "".join([hex(_SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(_SCREAMING_SNAKE_CASE )] )
def _a ( _SCREAMING_SNAKE_CASE ) -> bytes:
# Check data validity, following RFC3548
# https://www.ietf.org/rfc/rfc3548.txt
if (len(_SCREAMING_SNAKE_CASE ) % 2) != 0:
raise ValueError(
"""Base16 encoded data is invalid:
Data does not have an even number of hex digits.""" )
# Check the character set - the standard base16 alphabet
# is uppercase according to RFC3548 section 6
if not set(_SCREAMING_SNAKE_CASE ) <= set("""0123456789ABCDEF""" ):
raise ValueError(
"""Base16 encoded data is invalid:
Data is not uppercase hex or it contains invalid characters.""" )
# For every two hexadecimal digits (= a byte), turn it into an integer.
# Then, string the result together into bytes, and return it.
return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , 2 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 712 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_normalize
def lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
snake_case_ = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" )
image_processor_first.to_json_file(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
pass
def _a ( ) -> str:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
snake_case_ = Image.open(dataset[4]["""file"""] )
snake_case_ = Image.open(dataset[5]["""file"""] )
snake_case_ = [imagea, imagea]
return images
@require_vision
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
snake_case_ = prepare_images()
# test non-batched
snake_case_ = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_024) )
snake_case_ = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ )
# test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_024) )
snake_case_ = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
| 2 | 0 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
# General docstring
__SCREAMING_SNAKE_CASE : str = 'ResNetConfig'
# Base docstring
__SCREAMING_SNAKE_CASE : Any = 'microsoft/resnet-50'
__SCREAMING_SNAKE_CASE : Tuple = [1, 2_048, 7, 7]
# Image classification docstring
__SCREAMING_SNAKE_CASE : Optional[Any] = 'microsoft/resnet-50'
__SCREAMING_SNAKE_CASE : Optional[int] = 'tiger cat'
__SCREAMING_SNAKE_CASE : Tuple = [
'microsoft/resnet-50',
# See all resnet models at https://huggingface.co/models?filter=resnet
]
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = "relu" ) ->Tuple:
"""simple docstring"""
super().__init__()
snake_case_ = nn.Convad(
UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=kernel_size // 2 , bias=UpperCAmelCase_ )
snake_case_ = nn.BatchNormad(UpperCAmelCase_ )
snake_case_ = ACTaFN[activation] if activation is not None else nn.Identity()
def lowerCAmelCase ( self : int , UpperCAmelCase_ : Tensor ) ->Tensor:
"""simple docstring"""
snake_case_ = self.convolution(UpperCAmelCase_ )
snake_case_ = self.normalization(UpperCAmelCase_ )
snake_case_ = self.activation(UpperCAmelCase_ )
return hidden_state
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCAmelCase_ : ResNetConfig ) ->Tuple:
"""simple docstring"""
super().__init__()
snake_case_ = ResNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act )
snake_case_ = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 )
snake_case_ = config.num_channels
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Tensor ) ->Tensor:
"""simple docstring"""
snake_case_ = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"""Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" )
snake_case_ = self.embedder(UpperCAmelCase_ )
snake_case_ = self.pooler(UpperCAmelCase_ )
return embedding
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 2 ) ->List[Any]:
"""simple docstring"""
super().__init__()
snake_case_ = nn.Convad(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 , stride=UpperCAmelCase_ , bias=UpperCAmelCase_ )
snake_case_ = nn.BatchNormad(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tensor ) ->Tensor:
"""simple docstring"""
snake_case_ = self.convolution(UpperCAmelCase_ )
snake_case_ = self.normalization(UpperCAmelCase_ )
return hidden_state
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = "relu" ) ->Tuple:
"""simple docstring"""
super().__init__()
snake_case_ = in_channels != out_channels or stride != 1
snake_case_ = (
ResNetShortCut(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ ) if should_apply_shortcut else nn.Identity()
)
snake_case_ = nn.Sequential(
ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ ) , ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , activation=UpperCAmelCase_ ) , )
snake_case_ = ACTaFN[activation]
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = hidden_state
snake_case_ = self.layer(UpperCAmelCase_ )
snake_case_ = self.shortcut(UpperCAmelCase_ )
hidden_state += residual
snake_case_ = self.activation(UpperCAmelCase_ )
return hidden_state
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = "relu" , UpperCAmelCase_ : int = 4 ) ->Tuple:
"""simple docstring"""
super().__init__()
snake_case_ = in_channels != out_channels or stride != 1
snake_case_ = out_channels // reduction
snake_case_ = (
ResNetShortCut(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ ) if should_apply_shortcut else nn.Identity()
)
snake_case_ = nn.Sequential(
ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 ) , ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ ) , ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 , activation=UpperCAmelCase_ ) , )
snake_case_ = ACTaFN[activation]
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = hidden_state
snake_case_ = self.layer(UpperCAmelCase_ )
snake_case_ = self.shortcut(UpperCAmelCase_ )
hidden_state += residual
snake_case_ = self.activation(UpperCAmelCase_ )
return hidden_state
class __A (nn.Module):
'''simple docstring'''
def __init__( self : str , UpperCAmelCase_ : ResNetConfig , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , ) ->List[Any]:
"""simple docstring"""
super().__init__()
snake_case_ = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer
snake_case_ = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ , activation=config.hidden_act ) , *[layer(UpperCAmelCase_ , UpperCAmelCase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Tensor ) ->Tensor:
"""simple docstring"""
snake_case_ = input
for layer in self.layers:
snake_case_ = layer(UpperCAmelCase_ )
return hidden_state
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : ResNetConfig ) ->List[Any]:
"""simple docstring"""
super().__init__()
snake_case_ = nn.ModuleList([] )
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
UpperCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
snake_case_ = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(UpperCAmelCase_ , config.depths[1:] ):
self.stages.append(ResNetStage(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , depth=UpperCAmelCase_ ) )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Tensor , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True ) ->BaseModelOutputWithNoAttention:
"""simple docstring"""
snake_case_ = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
snake_case_ = hidden_states + (hidden_state,)
snake_case_ = stage_module(UpperCAmelCase_ )
if output_hidden_states:
snake_case_ = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(
last_hidden_state=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , )
class __A (snake_case__):
'''simple docstring'''
__lowercase: List[Any] = ResNetConfig
__lowercase: List[Any] = """resnet"""
__lowercase: Optional[Any] = """pixel_values"""
__lowercase: List[Any] = True
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : str ) ->Tuple:
"""simple docstring"""
if isinstance(UpperCAmelCase_ , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" )
elif isinstance(UpperCAmelCase_ , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int]=False ) ->Tuple:
"""simple docstring"""
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = value
__SCREAMING_SNAKE_CASE : int = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
__SCREAMING_SNAKE_CASE : List[Any] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"""The bare ResNet model outputting raw features without any specific head on top.""" , snake_case__ , )
class __A (snake_case__):
'''simple docstring'''
def __init__( self : str , UpperCAmelCase_ : Tuple ) ->Union[str, Any]:
"""simple docstring"""
super().__init__(UpperCAmelCase_ )
snake_case_ = config
snake_case_ = ResNetEmbeddings(UpperCAmelCase_ )
snake_case_ = ResNetEncoder(UpperCAmelCase_ )
snake_case_ = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UpperCAmelCase_ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Tensor , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None ) ->BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
snake_case_ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict
snake_case_ = self.embedder(UpperCAmelCase_ )
snake_case_ = self.encoder(
UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ )
snake_case_ = encoder_outputs[0]
snake_case_ = self.pooler(UpperCAmelCase_ )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"""
ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" , snake_case__ , )
class __A (snake_case__):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : int ) ->Any:
"""simple docstring"""
super().__init__(UpperCAmelCase_ )
snake_case_ = config.num_labels
snake_case_ = ResNetModel(UpperCAmelCase_ )
# classification head
snake_case_ = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UpperCAmelCase_ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[torch.LongTensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , ) ->ImageClassifierOutputWithNoAttention:
"""simple docstring"""
snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict
snake_case_ = self.resnet(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ )
snake_case_ = outputs.pooler_output if return_dict else outputs[1]
snake_case_ = self.classifier(UpperCAmelCase_ )
snake_case_ = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
snake_case_ = """regression"""
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
snake_case_ = """single_label_classification"""
else:
snake_case_ = """multi_label_classification"""
if self.config.problem_type == "regression":
snake_case_ = MSELoss()
if self.num_labels == 1:
snake_case_ = loss_fct(logits.squeeze() , labels.squeeze() )
else:
snake_case_ = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ )
elif self.config.problem_type == "single_label_classification":
snake_case_ = CrossEntropyLoss()
snake_case_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
snake_case_ = BCEWithLogitsLoss()
snake_case_ = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ )
if not return_dict:
snake_case_ = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states )
@add_start_docstrings(
"""
ResNet backbone, to be used with frameworks like DETR and MaskFormer.
""" , snake_case__ , )
class __A (snake_case__ , snake_case__):
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : Any ) ->Union[str, Any]:
"""simple docstring"""
super().__init__(UpperCAmelCase_ )
super()._init_backbone(UpperCAmelCase_ )
snake_case_ = [config.embedding_size] + config.hidden_sizes
snake_case_ = ResNetEmbeddings(UpperCAmelCase_ )
snake_case_ = ResNetEncoder(UpperCAmelCase_ )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UpperCAmelCase_ )
@replace_return_docstrings(output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Tensor , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None ) ->BackboneOutput:
"""simple docstring"""
snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict
snake_case_ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
snake_case_ = self.embedder(UpperCAmelCase_ )
snake_case_ = self.encoder(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ )
snake_case_ = outputs.hidden_states
snake_case_ = ()
for idx, stage in enumerate(self.stage_names ):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
snake_case_ = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=UpperCAmelCase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=UpperCAmelCase_ , )
| 713 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = scope
snake_case_ = range_bbox
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case_ = bbox[i, j, 3]
snake_case_ = bbox[i, j, 1]
snake_case_ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case_ = bbox[i, j, 2]
snake_case_ = bbox[i, j, 0]
snake_case_ = t
snake_case_ = None
if self.use_input_mask:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str:
"""simple docstring"""
snake_case_ = LiltModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict:
"""simple docstring"""
snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowercase: Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return True
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = LiltModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_torch
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ )
snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ )
snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ )
snake_case_ = torch.Size([1, 2, 768] )
snake_case_ = torch.tensor(
[[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 0 |
"""simple docstring"""
import warnings
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
__SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: Dict = ["""input_values""", """attention_mask"""]
def __init__( self : List[Any] , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 16_000 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : int = 80 , UpperCAmelCase_ : int = 16 , UpperCAmelCase_ : int = 64 , UpperCAmelCase_ : str = "hann_window" , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : float = 80 , UpperCAmelCase_ : float = 7_600 , UpperCAmelCase_ : float = 1E-10 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : str , ) ->str:
"""simple docstring"""
super().__init__(feature_size=UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , padding_value=UpperCAmelCase_ , **UpperCAmelCase_ )
snake_case_ = do_normalize
snake_case_ = return_attention_mask
snake_case_ = num_mel_bins
snake_case_ = hop_length
snake_case_ = win_length
snake_case_ = win_function
snake_case_ = frame_signal_scale
snake_case_ = fmin
snake_case_ = fmax
snake_case_ = mel_floor
snake_case_ = reduction_factor
snake_case_ = win_length * sampling_rate // 1_000
snake_case_ = hop_length * sampling_rate // 1_000
snake_case_ = optimal_fft_length(self.sample_size )
snake_case_ = (self.n_fft // 2) + 1
snake_case_ = window_function(window_length=self.sample_size , name=self.win_function , periodic=UpperCAmelCase_ )
snake_case_ = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="""slaney""" , mel_scale="""slaney""" , )
if frame_signal_scale != 1.0:
warnings.warn(
"""The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" , UpperCAmelCase_ , )
if reduction_factor != 2.0:
warnings.warn(
"""The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" , UpperCAmelCase_ , )
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def lowerCAmelCase ( UpperCAmelCase_ : List[np.ndarray] , UpperCAmelCase_ : List[np.ndarray] , UpperCAmelCase_ : float = 0.0 ) ->List[np.ndarray]:
"""simple docstring"""
if attention_mask is not None:
snake_case_ = np.array(UpperCAmelCase_ , np.intaa )
snake_case_ = []
for vector, length in zip(UpperCAmelCase_ , attention_mask.sum(-1 ) ):
snake_case_ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 )
if length < normed_slice.shape[0]:
snake_case_ = padding_value
normed_input_values.append(UpperCAmelCase_ )
else:
snake_case_ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values]
return normed_input_values
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : np.ndarray , ) ->np.ndarray:
"""simple docstring"""
snake_case_ = spectrogram(
UpperCAmelCase_ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="""log10""" , )
return log_mel_spec.T
def __call__( self : int , UpperCAmelCase_ : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , UpperCAmelCase_ : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : Optional[Any] , ) ->BatchFeature:
"""simple docstring"""
if audio is None and audio_target is None:
raise ValueError("""You must provide either `audio` or `audio_target` values.""" )
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of"""
F""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with"""
F""" {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
"""It is strongly recommended to pass the ``sampling_rate`` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
if audio is not None:
snake_case_ = self._process_audio(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ , )
else:
snake_case_ = None
if audio_target is not None:
snake_case_ = self._process_audio(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ , )
if inputs is None:
return inputs_target
else:
snake_case_ = inputs_target["""input_values"""]
snake_case_ = inputs_target.get("""attention_mask""" )
if decoder_attention_mask is not None:
snake_case_ = decoder_attention_mask
return inputs
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : Optional[int] , ) ->BatchFeature:
"""simple docstring"""
snake_case_ = isinstance(UpperCAmelCase_ , np.ndarray ) and len(speech.shape ) > 1
if is_batched_numpy and len(speech.shape ) > 2:
raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" )
snake_case_ = is_batched_numpy or (
isinstance(UpperCAmelCase_ , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
snake_case_ = [np.asarray(UpperCAmelCase_ , dtype=np.floataa ) for speech in speech]
elif not is_batched and not isinstance(UpperCAmelCase_ , np.ndarray ):
snake_case_ = np.asarray(UpperCAmelCase_ , dtype=np.floataa )
elif isinstance(UpperCAmelCase_ , np.ndarray ) and speech.dtype is np.dtype(np.floataa ):
snake_case_ = speech.astype(np.floataa )
# always return batch
if not is_batched:
snake_case_ = [speech]
# needed to make pad() work on spectrogram inputs
snake_case_ = self.feature_size
# convert into correct format for padding
if is_target:
snake_case_ = [self._extract_mel_features(UpperCAmelCase_ ) for waveform in speech]
snake_case_ = BatchFeature({"""input_values""": features} )
snake_case_ = self.num_mel_bins
else:
snake_case_ = BatchFeature({"""input_values""": speech} )
snake_case_ = self.pad(
UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , )
snake_case_ = feature_size_hack
# convert input values to correct format
snake_case_ = padded_inputs["""input_values"""]
if not isinstance(input_values[0] , np.ndarray ):
snake_case_ = [np.asarray(UpperCAmelCase_ , dtype=np.floataa ) for array in input_values]
elif (
not isinstance(UpperCAmelCase_ , np.ndarray )
and isinstance(input_values[0] , np.ndarray )
and input_values[0].dtype is np.dtype(np.floataa )
):
snake_case_ = [array.astype(np.floataa ) for array in input_values]
elif isinstance(UpperCAmelCase_ , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ):
snake_case_ = input_values.astype(np.floataa )
# convert attention_mask to correct format
snake_case_ = padded_inputs.get("""attention_mask""" )
if attention_mask is not None:
snake_case_ = [np.asarray(UpperCAmelCase_ , dtype=np.intaa ) for array in attention_mask]
# zero-mean and unit-variance normalization
if not is_target and self.do_normalize:
snake_case_ = (
attention_mask
if self._get_padding_strategies(UpperCAmelCase_ , max_length=UpperCAmelCase_ ) is not PaddingStrategy.DO_NOT_PAD
else None
)
snake_case_ = self.zero_mean_unit_var_norm(
padded_inputs["""input_values"""] , attention_mask=UpperCAmelCase_ , padding_value=self.padding_value )
if return_tensors is not None:
snake_case_ = padded_inputs.convert_to_tensors(UpperCAmelCase_ )
return padded_inputs
def lowerCAmelCase ( self : Any ) ->Dict[str, Any]:
"""simple docstring"""
snake_case_ = super().to_dict()
# Don't serialize these as they are derived from the other properties.
snake_case_ = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""]
for name in names:
if name in output:
del output[name]
return output
| 714 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = 0
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
snake_case_ = i + 1
else:
snake_case_ = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
| 2 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = KandinskyVaaControlnetPipeline
__lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: Union[str, Any] = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
__lowercase: Tuple = False
@property
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return 100
@property
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
snake_case_ = self.dummy_unet
snake_case_ = self.dummy_movq
snake_case_ = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , )
snake_case_ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]:
"""simple docstring"""
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase_ )
# create hint
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
if str(UpperCAmelCase_ ).startswith("""mps""" ):
snake_case_ = torch.manual_seed(UpperCAmelCase_ )
else:
snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = """cpu"""
snake_case_ = self.get_dummy_components()
snake_case_ = self.pipeline_class(**UpperCAmelCase_ )
snake_case_ = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
snake_case_ = output.images
snake_case_ = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ = np.array(
[0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0
snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case_ = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case_ = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = """A robot, 4k photo"""
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ , snake_case_ = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ = pipeline(
image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 715 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 0 |
"""simple docstring"""
import string
def _a ( _SCREAMING_SNAKE_CASE ) -> None:
for key in range(len(string.ascii_uppercase ) ):
snake_case_ = """"""
for symbol in message:
if symbol in string.ascii_uppercase:
snake_case_ = string.ascii_uppercase.find(_SCREAMING_SNAKE_CASE )
snake_case_ = num - key
if num < 0:
snake_case_ = num + len(string.ascii_uppercase )
snake_case_ = translated + string.ascii_uppercase[num]
else:
snake_case_ = translated + symbol
print(f"""Decryption using Key #{key}: {translated}""" )
def _a ( ) -> None:
snake_case_ = input("""Encrypted message: """ )
snake_case_ = message.upper()
decrypt(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 716 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter'
__SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE'
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}"""
raise TypeError(_SCREAMING_SNAKE_CASE )
snake_case_ = spanish_id.replace("""-""" , """""" ).upper()
if len(_SCREAMING_SNAKE_CASE ) != 9:
raise ValueError(_SCREAMING_SNAKE_CASE )
try:
snake_case_ = int(spanish_id_clean[0:8] )
snake_case_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_SCREAMING_SNAKE_CASE ) from ex
if letter.isdigit():
raise ValueError(_SCREAMING_SNAKE_CASE )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
flip_channel_order,
get_resize_output_image_size,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging
if is_vision_available():
import PIL
if is_torch_available():
import torch
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: Any = ["""pixel_values"""]
def __init__( self : List[str] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : Tuple , ) ->None:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ )
snake_case_ = size if size is not None else {"""shortest_edge""": 224}
snake_case_ = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ )
snake_case_ = crop_size if crop_size is not None else {"""height""": 256, """width""": 256}
snake_case_ = get_size_dict(UpperCAmelCase_ , param_name="""crop_size""" )
snake_case_ = do_resize
snake_case_ = size
snake_case_ = resample
snake_case_ = do_rescale
snake_case_ = rescale_factor
snake_case_ = do_center_crop
snake_case_ = crop_size
snake_case_ = do_flip_channel_order
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PIL.Image.BILINEAR , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->np.ndarray:
"""simple docstring"""
snake_case_ = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ )
if "shortest_edge" not in size:
raise ValueError(F"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" )
snake_case_ = get_resize_output_image_size(UpperCAmelCase_ , size=size["""shortest_edge"""] , default_to_square=UpperCAmelCase_ )
return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[str] , ) ->np.ndarray:
"""simple docstring"""
snake_case_ = get_size_dict(UpperCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
return center_crop(UpperCAmelCase_ , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : str , ) ->Optional[int]:
"""simple docstring"""
return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None ) ->np.ndarray:
"""simple docstring"""
return flip_channel_order(UpperCAmelCase_ , data_format=UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : Any , ) ->PIL.Image.Image:
"""simple docstring"""
snake_case_ = do_resize if do_resize is not None else self.do_resize
snake_case_ = resample if resample is not None else self.resample
snake_case_ = do_rescale if do_rescale is not None else self.do_rescale
snake_case_ = rescale_factor if rescale_factor is not None else self.rescale_factor
snake_case_ = do_center_crop if do_center_crop is not None else self.do_center_crop
snake_case_ = (
do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order
)
snake_case_ = size if size is not None else self.size
snake_case_ = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ )
snake_case_ = crop_size if crop_size is not None else self.crop_size
snake_case_ = get_size_dict(UpperCAmelCase_ , param_name="""crop_size""" )
snake_case_ = make_list_of_images(UpperCAmelCase_ )
if not valid_images(UpperCAmelCase_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
# All transformations expect numpy arrays.
snake_case_ = [to_numpy_array(UpperCAmelCase_ ) for image in images]
if do_resize:
snake_case_ = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ ) for image in images]
if do_center_crop:
snake_case_ = [self.center_crop(image=UpperCAmelCase_ , size=UpperCAmelCase_ ) for image in images]
if do_rescale:
snake_case_ = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_ ) for image in images]
# the pretrained checkpoints assume images are BGR, not RGB
if do_flip_channel_order:
snake_case_ = [self.flip_channel_order(image=UpperCAmelCase_ ) for image in images]
snake_case_ = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images]
snake_case_ = {"""pixel_values""": images}
return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Tuple] = None ) ->Dict:
"""simple docstring"""
snake_case_ = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ):
raise ValueError(
"""Make sure that you pass in as many target sizes as the batch dimension of the logits""" )
if is_torch_tensor(UpperCAmelCase_ ):
snake_case_ = target_sizes.numpy()
snake_case_ = []
for idx in range(len(UpperCAmelCase_ ) ):
snake_case_ = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=UpperCAmelCase_ )
snake_case_ = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(UpperCAmelCase_ )
else:
snake_case_ = logits.argmax(dim=1 )
snake_case_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 717 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'}
__SCREAMING_SNAKE_CASE : List[str] = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
}
}
__SCREAMING_SNAKE_CASE : List[str] = {
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
__SCREAMING_SNAKE_CASE : int = '▁'
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = VOCAB_FILES_NAMES
__lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None:
"""simple docstring"""
snake_case_ = (
AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
else mask_token
)
snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
snake_case_ = do_lower_case
snake_case_ = remove_space
snake_case_ = keep_accents
snake_case_ = vocab_file
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
return len(self.sp_model )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) ->List[str]:
"""simple docstring"""
snake_case_ = self.__dict__.copy()
snake_case_ = None
return state
def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
snake_case_ = {}
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str:
"""simple docstring"""
if self.remove_space:
snake_case_ = """ """.join(inputs.strip().split() )
else:
snake_case_ = inputs
snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ )
snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] )
if self.do_lower_case:
snake_case_ = outputs.lower()
return outputs
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
snake_case_ = self.preprocess_text(UpperCAmelCase_ )
snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
snake_case_ = []
for piece in pieces:
if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
snake_case_ = cur_pieces[1:]
else:
snake_case_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCAmelCase_ )
else:
new_pieces.append(UpperCAmelCase_ )
return new_pieces
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict:
"""simple docstring"""
return self.sp_model.PieceToId(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return self.sp_model.IdToPiece(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any:
"""simple docstring"""
snake_case_ = []
snake_case_ = """"""
snake_case_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase_ ) + token
snake_case_ = True
snake_case_ = []
else:
current_sub_tokens.append(UpperCAmelCase_ )
snake_case_ = False
out_string += self.sp_model.decode(UpperCAmelCase_ )
return out_string.strip()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , """wb""" ) as fi:
snake_case_ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
return (out_vocab_file,)
| 2 | 0 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
snake_case_ = str(_SCREAMING_SNAKE_CASE )
return n == n[::-1]
def _a ( _SCREAMING_SNAKE_CASE = 1_000_000 ) -> int:
snake_case_ = 0
for i in range(1 , _SCREAMING_SNAKE_CASE ):
if is_palindrome(_SCREAMING_SNAKE_CASE ) and is_palindrome(bin(_SCREAMING_SNAKE_CASE ).split("""b""" )[1] ):
total += i
return total
if __name__ == "__main__":
print(solution(int(str(input().strip()))))
| 718 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("""The given input must be positive""" )
# get the generated string sequence
snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = int(sequence[i] , 2 )
return sequence
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
snake_case_ = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
snake_case_ = gray_code_sequence_string(bit_count - 1 )
snake_case_ = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
snake_case_ = """0""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
snake_case_ = """1""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
from functools import lru_cache
@lru_cache
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if num < 0:
raise ValueError("""Number should not be negative.""" )
return 1 if num in (0, 1) else num * factorial(num - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 719 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 0 |
"""simple docstring"""
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
__SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__)
@add_end_docstrings(snake_case__)
class __A (snake_case__):
'''simple docstring'''
def __init__( self : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int ) ->Any:
"""simple docstring"""
super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : int=None ) ->Dict:
"""simple docstring"""
snake_case_ = {}
snake_case_ = {}
if prompt is not None:
snake_case_ = prompt
if generate_kwargs is not None:
snake_case_ = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
snake_case_ = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
snake_case_ = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : str , UpperCAmelCase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCAmelCase_ : int ) ->int:
"""simple docstring"""
return super().__call__(UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=None ) ->List[str]:
"""simple docstring"""
snake_case_ = load_image(UpperCAmelCase_ )
if prompt is not None:
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
raise ValueError(
F"""Received an invalid text input, got - {type(UpperCAmelCase_ )} - but expected a single string. """
"""Note also that one single text can be provided for conditional image to text generation.""" )
snake_case_ = self.model.config.model_type
if model_type == "git":
snake_case_ = self.image_processor(images=UpperCAmelCase_ , return_tensors=self.framework )
snake_case_ = self.tokenizer(text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ).input_ids
snake_case_ = [self.tokenizer.cls_token_id] + input_ids
snake_case_ = torch.tensor(UpperCAmelCase_ ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
snake_case_ = self.image_processor(images=UpperCAmelCase_ , header_text=UpperCAmelCase_ , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
snake_case_ = self.image_processor(images=UpperCAmelCase_ , return_tensors=self.framework )
snake_case_ = self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework )
model_inputs.update(UpperCAmelCase_ )
else:
raise ValueError(F"""Model type {model_type} does not support conditional text generation""" )
else:
snake_case_ = self.image_processor(images=UpperCAmelCase_ , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
snake_case_ = None
return model_inputs
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int=None ) ->List[str]:
"""simple docstring"""
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , UpperCAmelCase_ )
and all(x is None for x in model_inputs["""input_ids"""] )
):
snake_case_ = None
if generate_kwargs is None:
snake_case_ = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
snake_case_ = model_inputs.pop(self.model.main_input_name )
snake_case_ = self.model.generate(UpperCAmelCase_ , **UpperCAmelCase_ , **UpperCAmelCase_ )
return model_outputs
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = []
for output_ids in model_outputs:
snake_case_ = {
"""generated_text""": self.tokenizer.decode(
UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , )
}
records.append(UpperCAmelCase_ )
return records
| 720 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/'
__SCREAMING_SNAKE_CASE : List[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
snake_case_ = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
snake_case_ = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = {}
import re
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# keep original key
else:
snake_case_ = original_key
snake_case_ = replace_key(_SCREAMING_SNAKE_CASE )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
snake_case_ = original_key
snake_case_ = original_key
snake_case_ = value
return new_dict
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ):
snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE )
open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content )
snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]]
snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE )
snake_case_ = []
snake_case_ = {}
for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""]
snake_case_ = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
snake_case_ = old_dic[k]
elif k.endswith(""".w""" ):
snake_case_ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
snake_case_ = old_dic[k]
else:
snake_case_ = old_dic[k]
snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}"""
snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
weight_dict.append(_SCREAMING_SNAKE_CASE )
snake_case_ = weight_dict.pop(0 )
model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
return weight_dict
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 2 | 0 |
"""simple docstring"""
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
__SCREAMING_SNAKE_CASE : str = datasets.utils.logging.get_logger(__name__)
@dataclass
class __A (datasets.BuilderConfig):
'''simple docstring'''
__lowercase: Optional[datasets.Features] = None
__lowercase: str = "utf-8"
__lowercase: Optional[str] = None
__lowercase: Optional[str] = None
__lowercase: bool = True # deprecated
__lowercase: Optional[int] = None # deprecated
__lowercase: int = 10 << 20 # 10MB
__lowercase: Optional[bool] = None
class __A (datasets.ArrowBasedBuilder):
'''simple docstring'''
__lowercase: str = JsonConfig
def lowerCAmelCase ( self : Optional[int] ) ->Tuple:
"""simple docstring"""
if self.config.block_size is not None:
logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" )
snake_case_ = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
"""The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" )
if self.config.newlines_in_values is not None:
raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" )
return datasets.DatasetInfo(features=self.config.features )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
snake_case_ = dl_manager.download_and_extract(self.config.data_files )
if isinstance(UpperCAmelCase_ , (str, list, tuple) ):
snake_case_ = data_files
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = [files]
snake_case_ = [dl_manager.iter_files(UpperCAmelCase_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
snake_case_ = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = [files]
snake_case_ = [dl_manager.iter_files(UpperCAmelCase_ ) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase_ , gen_kwargs={"""files""": files} ) )
return splits
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : pa.Table ) ->pa.Table:
"""simple docstring"""
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
snake_case_ = self.config.features.arrow_schema.field(UpperCAmelCase_ ).type
snake_case_ = pa_table.append_column(UpperCAmelCase_ , pa.array([None] * len(UpperCAmelCase_ ) , type=UpperCAmelCase_ ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
snake_case_ = table_cast(UpperCAmelCase_ , self.config.features.arrow_schema )
return pa_table
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase_ ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(UpperCAmelCase_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
snake_case_ = json.load(UpperCAmelCase_ )
# We keep only the field we are interested in
snake_case_ = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(UpperCAmelCase_ , (list, tuple) ):
snake_case_ = set().union(*[row.keys() for row in dataset] )
snake_case_ = {col: [row.get(UpperCAmelCase_ ) for row in dataset] for col in keys}
else:
snake_case_ = dataset
snake_case_ = pa.Table.from_pydict(UpperCAmelCase_ )
yield file_idx, self._cast_table(UpperCAmelCase_ )
# If the file has one json object per line
else:
with open(UpperCAmelCase_ , """rb""" ) as f:
snake_case_ = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
snake_case_ = max(self.config.chunksize // 32 , 16 << 10 )
snake_case_ = (
self.config.encoding_errors if self.config.encoding_errors is not None else """strict"""
)
while True:
snake_case_ = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(UpperCAmelCase_ )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
snake_case_ = batch.decode(self.config.encoding , errors=UpperCAmelCase_ ).encode("""utf-8""" )
try:
while True:
try:
snake_case_ = paj.read_json(
io.BytesIO(UpperCAmelCase_ ) , read_options=paj.ReadOptions(block_size=UpperCAmelCase_ ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(UpperCAmelCase_ , pa.ArrowInvalid )
and "straddling" not in str(UpperCAmelCase_ )
or block_size > len(UpperCAmelCase_ )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
F"""Batch of {len(UpperCAmelCase_ )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
UpperCAmelCase_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
snake_case_ = json.load(UpperCAmelCase_ )
except json.JSONDecodeError:
logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase_ )}: {e}""" )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): # list is the only sequence type supported in JSON
try:
snake_case_ = set().union(*[row.keys() for row in dataset] )
snake_case_ = {col: [row.get(UpperCAmelCase_ ) for row in dataset] for col in keys}
snake_case_ = pa.Table.from_pydict(UpperCAmelCase_ )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase_ )}: {e}""" )
raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None
yield file_idx, self._cast_table(UpperCAmelCase_ )
break
else:
logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase_ )}: {e}""" )
raise ValueError(
F"""Not able to read records in the JSON file at {file}. """
F"""You should probably indicate the field of the JSON file containing your records. """
F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """
F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase_ )
batch_idx += 1
| 721 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__SCREAMING_SNAKE_CASE : Dict = 'zero2'
__SCREAMING_SNAKE_CASE : List[Any] = 'zero3'
__SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __A (snake_case__):
'''simple docstring'''
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = models[model]
snake_case_ = self.run_trainer(
stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
self.do_checks(UpperCAmelCase_ )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ )
snake_case_ = F"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(UpperCAmelCase_ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
snake_case_ = self.get_launcher(UpperCAmelCase_ )
snake_case_ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple:
"""simple docstring"""
snake_case_ = min(2 , get_gpu_count() ) if distributed else 1
return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 2 | 0 |
"""simple docstring"""
import inspect
import unittest
from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=[0, 1, 2, 3] , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=37 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=[1, 384, 24, 24] , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : str=None , ) ->Any:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = patch_size
snake_case_ = num_channels
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = backbone_out_indices
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = backbone_featmap_shape
snake_case_ = scope
snake_case_ = is_hybrid
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
snake_case_ = (image_size // patch_size) ** 2
snake_case_ = num_patches + 1
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [96, 192, 384, 768],
"""num_groups""": 2,
}
return DPTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=UpperCAmelCase_ , backbone_featmap_shape=self.backbone_featmap_shape , )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = DPTModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = DPTForDepthEstimation(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = DPTForSemanticSegmentation(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
__lowercase: Optional[Any] = (
{
"""depth-estimation""": DPTForDepthEstimation,
"""feature-extraction""": DPTModel,
"""image-segmentation""": DPTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Tuple = False
__lowercase: Tuple = False
def lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
snake_case_ = DPTModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""DPT does not use inputs_embeds""" )
def lowerCAmelCase ( self : Union[str, Any] ) ->str:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
snake_case_ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) )
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = True
if model_class in get_values(UpperCAmelCase_ ):
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = False
snake_case_ = True
if model_class in get_values(UpperCAmelCase_ ) or not model_class.supports_gradient_checkpointing:
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.gradient_checkpointing_enable()
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = _config_zero_init(UpperCAmelCase_ )
for model_class in self.all_model_classes:
snake_case_ = model_class(config=UpperCAmelCase_ )
# Skip the check for the backbone
snake_case_ = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
snake_case_ = [F"""{name}.{key}""" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
pass
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
snake_case_ = DPTModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = """add"""
with self.assertRaises(UpperCAmelCase_ ):
snake_case_ = DPTForDepthEstimation(UpperCAmelCase_ )
def _a ( ) -> Any:
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
snake_case_ = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" )
snake_case_ = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(UpperCAmelCase_ )
snake_case_ = prepare_img()
snake_case_ = image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
snake_case_ = outputs.predicted_depth
# verify the predicted depth
snake_case_ = torch.Size((1, 384, 384) )
self.assertEqual(predicted_depth.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor(
[[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , UpperCAmelCase_ , atol=1E-4 ) )
| 700 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True})
__lowercase: ClassVar[Features] = Features({"""audio""": Audio()})
__lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")})
__lowercase: str = "audio"
__lowercase: str = "transcription"
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int:
"""simple docstring"""
if self.audio_column not in features:
raise ValueError(F"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , UpperCAmelCase_ ):
raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" )
snake_case_ = copy.deepcopy(self )
snake_case_ = self.input_schema.copy()
snake_case_ = features[self.audio_column]
snake_case_ = input_schema
return task_template
@property
def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]:
"""simple docstring"""
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 2 | 0 |
"""simple docstring"""
import itertools
import math
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _a ( ) -> List[Any]:
snake_case_ = 2
while True:
if is_prime(_SCREAMING_SNAKE_CASE ):
yield num
num += 1
def _a ( _SCREAMING_SNAKE_CASE = 10_001 ) -> int:
return next(itertools.islice(prime_generator() , nth - 1 , _SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 701 |
"""simple docstring"""
from functools import reduce
__SCREAMING_SNAKE_CASE : Tuple = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def _a ( _SCREAMING_SNAKE_CASE = N ) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) )
for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 | 0 |
"""simple docstring"""
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Union[str, Any] = {
'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json',
'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json',
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = """encodec"""
def __init__( self : Optional[Any] , UpperCAmelCase_ : int=[1.5, 3.0, 6.0, 12.0, 24.0] , UpperCAmelCase_ : Dict=24_000 , UpperCAmelCase_ : List[str]=1 , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Dict=128 , UpperCAmelCase_ : int=32 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : Any=[8, 5, 4, 2] , UpperCAmelCase_ : Union[str, Any]="weight_norm" , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : str=7 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Tuple="reflect" , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Union[str, Any]=1.0 , UpperCAmelCase_ : List[str]=1_024 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=True , **UpperCAmelCase_ : str , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = target_bandwidths
snake_case_ = sampling_rate
snake_case_ = audio_channels
snake_case_ = normalize
snake_case_ = chunk_length_s
snake_case_ = overlap
snake_case_ = hidden_size
snake_case_ = num_filters
snake_case_ = num_residual_layers
snake_case_ = upsampling_ratios
snake_case_ = norm_type
snake_case_ = kernel_size
snake_case_ = last_kernel_size
snake_case_ = residual_kernel_size
snake_case_ = dilation_growth_rate
snake_case_ = use_causal_conv
snake_case_ = pad_mode
snake_case_ = compress
snake_case_ = num_lstm_layers
snake_case_ = trim_right_ratio
snake_case_ = codebook_size
snake_case_ = codebook_dim if codebook_dim is not None else hidden_size
snake_case_ = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" )
super().__init__(**UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[Any] ) ->Optional[int]:
"""simple docstring"""
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
snake_case_ = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def lowerCAmelCase ( self : Optional[Any] ) ->int:
"""simple docstring"""
return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 702 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : str = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Any = """mctct"""
def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = intermediate_size
snake_case_ = num_attention_heads
snake_case_ = attention_head_dim
snake_case_ = max_position_embeddings
snake_case_ = layer_norm_eps
snake_case_ = layerdrop
snake_case_ = hidden_act
snake_case_ = initializer_range
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = pad_token_id
snake_case_ = bos_token_id
snake_case_ = eos_token_id
snake_case_ = conv_glu_dim
snake_case_ = conv_dropout
snake_case_ = num_conv_layers
snake_case_ = input_feat_per_channel
snake_case_ = input_channels
snake_case_ = conv_channels
snake_case_ = ctc_loss_reduction
snake_case_ = ctc_zero_infinity
# prevents config testing fail with exporting to json
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """
F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """
F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
| 2 | 0 |
"""simple docstring"""
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class __A :
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=13 , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Optional[int]=16 , UpperCAmelCase_ : Dict=[1, 2, 1] , UpperCAmelCase_ : List[Any]=[2, 2, 4] , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Dict=2.0 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Any=8 , UpperCAmelCase_ : Optional[int]=["stage1", "stage2", "stage3"] , UpperCAmelCase_ : str=[1, 2, 3] , ) ->Dict:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = patch_size
snake_case_ = num_channels
snake_case_ = embed_dim
snake_case_ = depths
snake_case_ = num_heads
snake_case_ = window_size
snake_case_ = mlp_ratio
snake_case_ = qkv_bias
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = drop_path_rate
snake_case_ = hidden_act
snake_case_ = use_absolute_embeddings
snake_case_ = patch_norm
snake_case_ = layer_norm_eps
snake_case_ = initializer_range
snake_case_ = is_training
snake_case_ = scope
snake_case_ = use_labels
snake_case_ = type_sequence_label_size
snake_case_ = encoder_stride
snake_case_ = out_features
snake_case_ = out_indices
def lowerCAmelCase ( self : str ) ->List[str]:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = MaskFormerSwinModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
snake_case_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
snake_case_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ) ->Tuple:
"""simple docstring"""
snake_case_ = MaskFormerSwinBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(UpperCAmelCase_ ):
snake_case_ = ["""stem"""]
snake_case_ = MaskFormerSwinBackbone(config=UpperCAmelCase_ )
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[Any] = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
__lowercase: Tuple = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {}
__lowercase: Tuple = False
__lowercase: Optional[int] = False
__lowercase: Dict = False
__lowercase: int = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : Optional[Any] ) ->str:
"""simple docstring"""
snake_case_ = MaskFormerSwinModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
"""`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with"""
""" `nn.DataParallel`"""
) )
def lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
pass
def lowerCAmelCase ( self : int ) ->Union[str, Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
return
def lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*UpperCAmelCase_ )
@unittest.skip("""Swin does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[Any] ) ->int:
"""simple docstring"""
pass
@unittest.skip("""Swin does not support feedforward chunking""" )
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
pass
def lowerCAmelCase ( self : List[Any] ) ->int:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
snake_case_ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) )
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
@unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" )
def lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" )
def lowerCAmelCase ( self : int ) ->Tuple:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.hidden_states
snake_case_ = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ )
# Swin has a different seq_length
snake_case_ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
snake_case_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
snake_case_ = True
self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = 3
snake_case_ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
snake_case_ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
snake_case_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
snake_case_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
snake_case_ = True
self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) )
@unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" )
def lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(UpperCAmelCase_ : List[Any] ):
snake_case_ = 0
return t
def check_equivalence(UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]={} ):
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ , return_dict=UpperCAmelCase_ , **UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ , return_dict=UpperCAmelCase_ , **UpperCAmelCase_ ).to_tuple()
def recursive_check(UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] ):
if isinstance(UpperCAmelCase_ , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
recursive_check(UpperCAmelCase_ , UpperCAmelCase_ )
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(UpperCAmelCase_ , UpperCAmelCase_ )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(UpperCAmelCase_ ) , set_nan_tensor_to_zero(UpperCAmelCase_ ) , atol=1E-5 ) , msg=(
"""Tuple and dict output are not equal. Difference:"""
F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:"""
F""" {torch.isnan(UpperCAmelCase_ ).any()} and `inf`: {torch.isinf(UpperCAmelCase_ )}. Dict has"""
F""" `nan`: {torch.isnan(UpperCAmelCase_ ).any()} and `inf`: {torch.isinf(UpperCAmelCase_ )}."""
) , )
recursive_check(UpperCAmelCase_ , UpperCAmelCase_ )
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ )
check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ )
check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , {"""output_hidden_states""": True} )
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , {"""output_hidden_states""": True} )
@require_torch
class __A (unittest.TestCase , snake_case__):
'''simple docstring'''
__lowercase: Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else ()
__lowercase: Tuple = MaskFormerSwinConfig
def lowerCAmelCase ( self : str ) ->Any:
"""simple docstring"""
snake_case_ = MaskFormerSwinModelTester(self )
def lowerCAmelCase ( self : Optional[Any] ) ->int:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = inputs_dict["""pixel_values"""].shape[0]
for backbone_class in self.all_model_classes:
snake_case_ = backbone_class(UpperCAmelCase_ )
backbone.to(UpperCAmelCase_ )
backbone.eval()
snake_case_ = backbone(**UpperCAmelCase_ )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , UpperCAmelCase_ )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
snake_case_ = backbone(**UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
snake_case_ , snake_case_ , snake_case_ = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
snake_case_ = backbone(**UpperCAmelCase_ , output_attentions=UpperCAmelCase_ )
self.assertIsNotNone(outputs.attentions )
| 703 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int:
return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 2 | 0 |
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__SCREAMING_SNAKE_CASE : List[str] = 'platform'
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class __A :
'''simple docstring'''
__lowercase: List[str] = PegasusConfig
__lowercase: Dict = {}
__lowercase: Optional[Any] = """gelu"""
def __init__( self : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=99 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=20 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Tuple=0 , ) ->Optional[int]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = eos_token_id
snake_case_ = pad_token_id
snake_case_ = bos_token_id
def lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
snake_case_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
snake_case_ = np.concatenate([input_ids, eos_tensor] , axis=1 )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
snake_case_ = prepare_pegasus_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
return config, inputs_dict
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->str:
"""simple docstring"""
snake_case_ = 20
snake_case_ = model_class_name(UpperCAmelCase_ )
snake_case_ = model.encode(inputs_dict["""input_ids"""] )
snake_case_ , snake_case_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
snake_case_ = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
snake_case_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
snake_case_ = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
snake_case_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
snake_case_ = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , )
snake_case_ = model.decode(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = 20
snake_case_ = model_class_name(UpperCAmelCase_ )
snake_case_ = model.encode(inputs_dict["""input_ids"""] )
snake_case_ , snake_case_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
snake_case_ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
snake_case_ = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
snake_case_ = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
snake_case_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
snake_case_ = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
snake_case_ = model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ )
snake_case_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Dict:
'''simple docstring'''
if attention_mask is None:
snake_case_ = np.not_equal(_SCREAMING_SNAKE_CASE , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
snake_case_ = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
__lowercase: Union[str, Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
__lowercase: List[str] = True
__lowercase: str = False
__lowercase: Optional[int] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = FlaxPegasusModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = model_class(UpperCAmelCase_ )
@jax.jit
def encode_jitted(UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any]=None , **UpperCAmelCase_ : Optional[Any] ):
return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )
with self.subTest("""JIT Enabled""" ):
snake_case_ = encode_jitted(**UpperCAmelCase_ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
snake_case_ = encode_jitted(**UpperCAmelCase_ ).to_tuple()
self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) )
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
snake_case_ = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] ):
return model.decode(
decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , )
with self.subTest("""JIT Enabled""" ):
snake_case_ = decode_jitted(**UpperCAmelCase_ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
snake_case_ = decode_jitted(**UpperCAmelCase_ ).to_tuple()
self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) )
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowerCAmelCase ( self : Any ) ->List[str]:
"""simple docstring"""
for model_class_name in self.all_model_classes:
snake_case_ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=UpperCAmelCase_ )
snake_case_ = np.ones((1, 1) )
snake_case_ = model(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Dict ) ->Tuple:
"""simple docstring"""
snake_case_ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
snake_case_ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
snake_case_ = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
snake_case_ = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
snake_case_ = tokenizer(UpperCAmelCase_ , return_tensors="""np""" , truncation=UpperCAmelCase_ , max_length=512 , padding=UpperCAmelCase_ )
snake_case_ = model.generate(**UpperCAmelCase_ , num_beams=2 ).sequences
snake_case_ = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ )
assert tgt_text == decoded
| 704 |
"""simple docstring"""
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: str = VQModel
__lowercase: Union[str, Any] = """sample"""
@property
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple:
"""simple docstring"""
snake_case_ = 4
snake_case_ = 3
snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ )
return {"sample": image}
@property
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
return (3, 32, 32)
@property
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
return (3, 32, 32)
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 3,
}
snake_case_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(UpperCAmelCase_ )
snake_case_ = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" )
model.to(UpperCAmelCase_ ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
snake_case_ = image.to(UpperCAmelCase_ )
with torch.no_grad():
snake_case_ = model(UpperCAmelCase_ ).sample
snake_case_ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] )
# fmt: on
self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 0 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : Union[str, Any]=400 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[int]=0.9 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Dict=[0.5, 0.5, 0.5] , UpperCAmelCase_ : int=[0.5, 0.5, 0.5] , ) ->int:
"""simple docstring"""
snake_case_ = size if size is not None else {"""shortest_edge""": 30}
snake_case_ = crop_size if crop_size is not None else {"""height""": 30, """width""": 30}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize_and_center_crop
snake_case_ = size
snake_case_ = crop_pct
snake_case_ = crop_size
snake_case_ = do_normalize
snake_case_ = image_mean
snake_case_ = image_std
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = PoolFormerImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = PoolFormerImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize_and_center_crop""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """crop_pct""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """image_mean""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """image_std""" ) )
def lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 30} )
self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCAmelCase ( self : int ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 705 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = KandinskyVaaControlnetPipeline
__lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: Union[str, Any] = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
__lowercase: Tuple = False
@property
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return 100
@property
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
snake_case_ = self.dummy_unet
snake_case_ = self.dummy_movq
snake_case_ = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , )
snake_case_ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]:
"""simple docstring"""
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase_ )
# create hint
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
if str(UpperCAmelCase_ ).startswith("""mps""" ):
snake_case_ = torch.manual_seed(UpperCAmelCase_ )
else:
snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = """cpu"""
snake_case_ = self.get_dummy_components()
snake_case_ = self.pipeline_class(**UpperCAmelCase_ )
snake_case_ = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
snake_case_ = output.images
snake_case_ = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ = np.array(
[0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0
snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case_ = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case_ = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = """A robot, 4k photo"""
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ , snake_case_ = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ = pipeline(
image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 2 | 0 |
"""simple docstring"""
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Dict ) ->Tuple:
"""simple docstring"""
snake_case_ = tempfile.mkdtemp()
snake_case_ = BlipImageProcessor()
snake_case_ = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" )
snake_case_ = BlipProcessor(UpperCAmelCase_ , UpperCAmelCase_ )
processor.save_pretrained(self.tmpdirname )
def lowerCAmelCase ( self : str , **UpperCAmelCase_ : List[str] ) ->Dict:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).tokenizer
def lowerCAmelCase ( self : Dict , **UpperCAmelCase_ : Optional[Any] ) ->List[str]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).image_processor
def lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
snake_case_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
snake_case_ = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
snake_case_ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
snake_case_ = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 )
snake_case_ = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCAmelCase_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = BlipProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
snake_case_ = self.prepare_image_inputs()
snake_case_ = image_processor(UpperCAmelCase_ , return_tensors="""np""" )
snake_case_ = processor(images=UpperCAmelCase_ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = BlipProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
snake_case_ = """lower newer"""
snake_case_ = processor(text=UpperCAmelCase_ )
snake_case_ = tokenizer(UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = BlipProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
snake_case_ = """lower newer"""
snake_case_ = self.prepare_image_inputs()
snake_case_ = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase_ ):
processor()
def lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = BlipProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
snake_case_ = processor.batch_decode(UpperCAmelCase_ )
snake_case_ = tokenizer.batch_decode(UpperCAmelCase_ )
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = BlipProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
snake_case_ = """lower newer"""
snake_case_ = self.prepare_image_inputs()
snake_case_ = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
| 706 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
class __A :
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = []
self.adlist.append(
{"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} )
for keyword in keywords:
self.add_keyword(UpperCAmelCase_ )
self.set_fail_transitions()
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None:
"""simple docstring"""
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None:
"""simple docstring"""
snake_case_ = 0
for character in keyword:
snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ )
if next_state is None:
self.adlist.append(
{
"""value""": character,
"""next_states""": [],
"""fail_state""": 0,
"""output""": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
snake_case_ = len(self.adlist ) - 1
else:
snake_case_ = next_state
self.adlist[current_state]["output"].append(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->None:
"""simple docstring"""
snake_case_ = deque()
for node in self.adlist[0]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = 0
while q:
snake_case_ = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = self.adlist[r]["""fail_state"""]
while (
self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None
and state != 0
):
snake_case_ = self.adlist[state]["""fail_state"""]
snake_case_ = self.find_next_state(
UpperCAmelCase_ , self.adlist[child]["""value"""] )
if self.adlist[child]["fail_state"] is None:
snake_case_ = 0
snake_case_ = (
self.adlist[child]["""output"""]
+ self.adlist[self.adlist[child]["""fail_state"""]]["""output"""]
)
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]:
"""simple docstring"""
snake_case_ = {} # returns a dict with keywords and list of its occurrences
snake_case_ = 0
for i in range(len(UpperCAmelCase_ ) ):
while (
self.find_next_state(UpperCAmelCase_ , string[i] ) is None
and current_state != 0
):
snake_case_ = self.adlist[current_state]["""fail_state"""]
snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] )
if next_state is None:
snake_case_ = 0
else:
snake_case_ = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
snake_case_ = []
result[key].append(i - len(UpperCAmelCase_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __A (metaclass=snake_case__):
'''simple docstring'''
__lowercase: str = ["""torch""", """transformers""", """onnx"""]
def __init__( self : Union[str, Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Tuple ) ->Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : Optional[int] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : Optional[int] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class __A (metaclass=snake_case__):
'''simple docstring'''
__lowercase: List[Any] = ["""torch""", """transformers""", """onnx"""]
def __init__( self : Any , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ) ->int:
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : str , *UpperCAmelCase_ : int , **UpperCAmelCase_ : int ) ->List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[Any] ) ->List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class __A (metaclass=snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = ["""torch""", """transformers""", """onnx"""]
def __init__( self : Tuple , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str ) ->str:
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ) ->List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : List[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Tuple ) ->Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class __A (metaclass=snake_case__):
'''simple docstring'''
__lowercase: Optional[int] = ["""torch""", """transformers""", """onnx"""]
def __init__( self : int , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ) ->Tuple:
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any] ) ->Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : List[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : str ) ->Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class __A (metaclass=snake_case__):
'''simple docstring'''
__lowercase: Any = ["""torch""", """transformers""", """onnx"""]
def __init__( self : Any , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any] ) ->Dict:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any ) ->List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class __A (metaclass=snake_case__):
'''simple docstring'''
__lowercase: int = ["""torch""", """transformers""", """onnx"""]
def __init__( self : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Tuple ) ->Any:
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Tuple ) ->Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def lowerCAmelCase ( cls : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Tuple ) ->Any:
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) | 707 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = num_channels
snake_case_ = num_stages
snake_case_ = hidden_sizes
snake_case_ = depths
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = num_labels
snake_case_ = initializer_range
snake_case_ = out_features
snake_case_ = out_indices
snake_case_ = scope
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case_ = None
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[Any] = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
__lowercase: Union[str, Any] = (
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Optional[Any] = False
__lowercase: Any = False
__lowercase: Union[str, Any] = False
__lowercase: Dict = False
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = True
if model_class.__name__ in [
*get_values(UpperCAmelCase_ ),
*get_values(UpperCAmelCase_ ),
]:
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = False
snake_case_ = True
if (
model_class.__name__
in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )]
or not model_class.supports_gradient_checkpointing
):
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.gradient_checkpointing_enable()
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ):
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case_ = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _a ( ) -> str:
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ )
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
# verify the logits
snake_case_ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
| 2 | 0 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("""The given input must be positive""" )
# get the generated string sequence
snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = int(sequence[i] , 2 )
return sequence
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
snake_case_ = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
snake_case_ = gray_code_sequence_string(bit_count - 1 )
snake_case_ = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
snake_case_ = """0""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
snake_case_ = """1""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 708 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights']
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
if "emb" in name:
snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
snake_case_ = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
snake_case_ = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
snake_case_ = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
snake_case_ = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
snake_case_ = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]:
snake_case_ = list(state_dict.keys() )
snake_case_ = {}
for key in keys:
snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE )
if "in_proj_weight" in key:
# split fused qkv proj
snake_case_ = val[:hidden_size, :]
snake_case_ = val[hidden_size : 2 * hidden_size, :]
snake_case_ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
snake_case_ = val
else:
snake_case_ = val
return state_dict, enc_dec_proj_state_dict
def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
snake_case_ = 1_024
snake_case_ = 24
snake_case_ = 16
elif checkpoint == "medium":
snake_case_ = 1_536
snake_case_ = 48
snake_case_ = 24
elif checkpoint == "large":
snake_case_ = 2_048
snake_case_ = 48
snake_case_ = 32
else:
raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
snake_case_ = MusicgenDecoderConfig(
hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , )
return config
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple:
snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE )
snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE )
snake_case_ = fairseq_model.lm.state_dict()
snake_case_ , snake_case_ = rename_state_dict(
_SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size )
snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" )
snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE )
# check we can do a forward pass
snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
snake_case_ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" )
snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
# set the appropriate bos/pad token ids
snake_case_ = 2_048
snake_case_ = 2_048
# set other default generation config params
snake_case_ = int(30 * audio_encoder.config.frame_rate )
snake_case_ = True
snake_case_ = 3.0
if pytorch_dump_folder is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if repo_id:
logger.info(f"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
processor.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint',
default='small',
type=str,
help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.',
)
parser.add_argument(
'--pytorch_dump_folder',
required=True,
default=None,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
parser.add_argument(
'--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.'
)
__SCREAMING_SNAKE_CASE : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 2 | 0 |
"""simple docstring"""
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
__SCREAMING_SNAKE_CASE : Optional[Any] = getLogger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = 'cuda' if torch.cuda.is_available() else 'cpu'
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 , _SCREAMING_SNAKE_CASE = DEFAULT_DEVICE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="summarization" , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> Dict:
snake_case_ = Path(_SCREAMING_SNAKE_CASE ).open("""w""" , encoding="""utf-8""" )
snake_case_ = str(_SCREAMING_SNAKE_CASE )
snake_case_ = AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE )
if fpaa:
snake_case_ = model.half()
snake_case_ = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE )
logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type.
snake_case_ = time.time()
# update config with task specific params
use_task_specific_params(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if prefix is None:
snake_case_ = prefix or getattr(model.config , """prefix""" , """""" ) or """"""
for examples_chunk in tqdm(list(chunks(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ):
snake_case_ = [prefix + text for text in examples_chunk]
snake_case_ = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , truncation=_SCREAMING_SNAKE_CASE , padding="""longest""" ).to(_SCREAMING_SNAKE_CASE )
snake_case_ = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_SCREAMING_SNAKE_CASE , )
snake_case_ = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE )
for hypothesis in dec:
fout.write(hypothesis + """\n""" )
fout.flush()
fout.close()
snake_case_ = int(time.time() - start_time ) # seconds
snake_case_ = len(_SCREAMING_SNAKE_CASE )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def _a ( ) -> List[str]:
return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" )
def _a ( _SCREAMING_SNAKE_CASE=True ) -> Optional[Any]:
snake_case_ = argparse.ArgumentParser()
parser.add_argument("""model_name""" , type=_SCREAMING_SNAKE_CASE , help="""like facebook/bart-large-cnn,t5-base, etc.""" )
parser.add_argument("""input_path""" , type=_SCREAMING_SNAKE_CASE , help="""like cnn_dm/test.source""" )
parser.add_argument("""save_path""" , type=_SCREAMING_SNAKE_CASE , help="""where to save summaries""" )
parser.add_argument("""--reference_path""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""like cnn_dm/test.target""" )
parser.add_argument("""--score_path""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , default="""metrics.json""" , help="""where to save metrics""" )
parser.add_argument("""--device""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""cuda, cuda:1, cpu etc.""" )
parser.add_argument(
"""--prefix""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""will be added to the begininng of src examples""" )
parser.add_argument("""--task""" , type=_SCREAMING_SNAKE_CASE , default="""summarization""" , help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""" , type=_SCREAMING_SNAKE_CASE , default=8 , required=_SCREAMING_SNAKE_CASE , help="""batch size""" )
parser.add_argument(
"""--n_obs""" , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help="""How many observations. Defaults to all.""" )
parser.add_argument("""--fp16""" , action="""store_true""" )
parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" )
parser.add_argument(
"""--info""" , nargs="""?""" , type=_SCREAMING_SNAKE_CASE , const=datetime_now() , help=(
"""use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g."""
""" lang=en-ru. If no value is passed, the current datetime string will be used."""
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
snake_case_ , snake_case_ = parser.parse_known_args()
snake_case_ = parse_numeric_n_bool_cl_kwargs(_SCREAMING_SNAKE_CASE )
if parsed_args and verbose:
print(f"""parsed the following generate kwargs: {parsed_args}""" )
snake_case_ = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
snake_case_ = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError("""Can't mix --fp16 and --device cpu""" )
snake_case_ = generate_summaries_or_translations(
_SCREAMING_SNAKE_CASE , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_SCREAMING_SNAKE_CASE , )
if args.reference_path is None:
return {}
# Compute scores
snake_case_ = calculate_bleu if """translation""" in args.task else calculate_rouge
snake_case_ = [x.rstrip() for x in open(args.save_path ).readlines()]
snake_case_ = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_SCREAMING_SNAKE_CASE )]
snake_case_ = score_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
scores.update(_SCREAMING_SNAKE_CASE )
if args.dump_args:
scores.update(_SCREAMING_SNAKE_CASE )
if args.info:
snake_case_ = args.info
if verbose:
print(_SCREAMING_SNAKE_CASE )
if args.score_path is not None:
json.dump(_SCREAMING_SNAKE_CASE , open(args.score_path , """w""" ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 709 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
if index == number_of_items:
return 0
snake_case_ = 0
snake_case_ = 0
snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 )
if weights[index] <= max_weight:
snake_case_ = values[index] + knapsack(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 )
return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
__SCREAMING_SNAKE_CASE : Union[str, Any] = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
__SCREAMING_SNAKE_CASE : Optional[Any] = [file for file in filepaths if file != file.lower()]
if upper_files:
print(f"""{len(upper_files)} files contain uppercase characters:""")
print('\n'.join(upper_files) + '\n')
__SCREAMING_SNAKE_CASE : List[str] = [file for file in filepaths if ' ' in file]
if space_files:
print(f"""{len(space_files)} files contain space characters:""")
print('\n'.join(space_files) + '\n')
__SCREAMING_SNAKE_CASE : List[Any] = [file for file in filepaths if '-' in file]
if hyphen_files:
print(f"""{len(hyphen_files)} files contain hyphen characters:""")
print('\n'.join(hyphen_files) + '\n')
__SCREAMING_SNAKE_CASE : List[str] = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(f"""{len(nodir_files)} files are not in a directory:""")
print('\n'.join(nodir_files) + '\n')
__SCREAMING_SNAKE_CASE : str = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 710 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int:
snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
snake_case_ = n // 2
return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
__SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 2 | 0 |
"""simple docstring"""
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class __A (snake_case__):
def __init__( self : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str ) ->Tuple:
"""simple docstring"""
snake_case_ = dataset
snake_case_ = process
snake_case_ = params
def __len__( self : Tuple ) ->List[Any]:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self : List[str] , UpperCAmelCase_ : Any ) ->Dict:
"""simple docstring"""
snake_case_ = self.dataset[i]
snake_case_ = self.process(UpperCAmelCase_ , **self.params )
return processed
class __A (snake_case__):
def __init__( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str=None ) ->Dict:
"""simple docstring"""
snake_case_ = loader
snake_case_ = infer
snake_case_ = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
snake_case_ = None
snake_case_ = loader_batch_size
# Internal bookkeeping
snake_case_ = None
snake_case_ = None
def __len__( self : int ) ->Optional[int]:
"""simple docstring"""
return len(self.loader )
def __iter__( self : Dict ) ->List[Any]:
"""simple docstring"""
snake_case_ = iter(self.loader )
return self
def lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
snake_case_ = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
snake_case_ = {}
for k, element in self._loader_batch_data.items():
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
# Convert ModelOutput to tuple first
snake_case_ = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
snake_case_ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
snake_case_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
snake_case_ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
snake_case_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
snake_case_ = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
snake_case_ = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
snake_case_ = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
snake_case_ = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
snake_case_ = self._loader_batch_data.__class__(UpperCAmelCase_ )
self._loader_batch_index += 1
return result
def lowerCAmelCase ( self : List[str] ) ->Any:
"""simple docstring"""
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
snake_case_ = next(self.iterator )
snake_case_ = self.infer(UpperCAmelCase_ , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(UpperCAmelCase_ , torch.Tensor ):
snake_case_ = processed
else:
snake_case_ = list(processed.keys() )[0]
snake_case_ = processed[key]
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = len(UpperCAmelCase_ )
else:
snake_case_ = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
snake_case_ = observed_batch_size
# Setting internal index to unwrap the batch
snake_case_ = processed
snake_case_ = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class __A (snake_case__):
def __init__( self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any]=None ) ->str:
"""simple docstring"""
super().__init__(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def __iter__( self : Dict ) ->Optional[int]:
"""simple docstring"""
snake_case_ = iter(self.loader )
snake_case_ = None
return self
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
if self.subiterator is None:
snake_case_ = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
snake_case_ = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
snake_case_ = self.infer(next(self.iterator ) , **self.params )
snake_case_ = next(self.subiterator )
return processed
class __A (snake_case__):
def __iter__( self : List[Any] ) ->int:
"""simple docstring"""
snake_case_ = iter(self.loader )
return self
def lowerCAmelCase ( self : Optional[int] ) ->Tuple:
"""simple docstring"""
snake_case_ = False
snake_case_ = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
snake_case_ = self.loader_batch_item()
snake_case_ = item.pop("""is_last""" )
accumulator.append(UpperCAmelCase_ )
if is_last:
return accumulator
while not is_last:
snake_case_ = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(UpperCAmelCase_ , torch.Tensor ):
snake_case_ = processed
else:
snake_case_ = list(processed.keys() )[0]
snake_case_ = processed[key]
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = len(UpperCAmelCase_ )
else:
snake_case_ = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
snake_case_ = observed_batch_size
snake_case_ = processed
snake_case_ = 0
while self._loader_batch_index < self.loader_batch_size:
snake_case_ = self.loader_batch_item()
snake_case_ = item.pop("""is_last""" )
accumulator.append(UpperCAmelCase_ )
if is_last:
return accumulator
else:
snake_case_ = processed
snake_case_ = item.pop("""is_last""" )
accumulator.append(UpperCAmelCase_ )
return accumulator
class __A (snake_case__):
def __init__( self : List[Any] , UpperCAmelCase_ : Dataset , UpperCAmelCase_ : str ) ->Tuple:
"""simple docstring"""
snake_case_ = dataset
snake_case_ = key
def __len__( self : Union[str, Any] ) ->int:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) ->Dict:
"""simple docstring"""
return self.dataset[i][self.key]
class __A (snake_case__):
def __init__( self : Any , UpperCAmelCase_ : Dataset , UpperCAmelCase_ : str , UpperCAmelCase_ : str ) ->Dict:
"""simple docstring"""
snake_case_ = dataset
snake_case_ = keya
snake_case_ = keya
def __len__( self : Dict ) ->List[str]:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 711 |
"""simple docstring"""
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str:
snake_case_ = ascii_letters + digits + punctuation
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(_SCREAMING_SNAKE_CASE )
snake_case_ = i // 3
snake_case_ = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
snake_case_ = (
chars_incl
+ random(_SCREAMING_SNAKE_CASE , quotient + remainder )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
)
snake_case_ = list(_SCREAMING_SNAKE_CASE )
shuffle(_SCREAMING_SNAKE_CASE )
return "".join(_SCREAMING_SNAKE_CASE )
# random is a generalised function for letters, characters and numbers
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool:
if len(_SCREAMING_SNAKE_CASE ) < min_length:
# Your Password must be at least 8 characters long
return False
snake_case_ = any(char in ascii_uppercase for char in password )
snake_case_ = any(char in ascii_lowercase for char in password )
snake_case_ = any(char in digits for char in password )
snake_case_ = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def _a ( ) -> str:
snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() )
snake_case_ = input(
"""Please indicate the characters that must be in your password: """ ).strip()
print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) )
print(
"""Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , )
print("""[If you are thinking of using this passsword, You better save it.]""" )
if __name__ == "__main__":
main()
| 2 | 0 |
"""simple docstring"""
import io
import math
from typing import Dict, Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
get_image_size,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_vision_available, logging
from ...utils.import_utils import requires_backends
if is_vision_available():
import textwrap
from PIL import Image, ImageDraw, ImageFont
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
__SCREAMING_SNAKE_CASE : Any = False
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[Any] = 'ybelkada/fonts'
def _a ( ) -> Union[str, Any]:
if is_torch_available() and not is_torch_greater_or_equal_than_1_11:
raise ImportError(
f"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """
"""Pix2StructImageProcessor. Please upgrade torch.""" )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
requires_backends(_SCREAMING_SNAKE_CASE , ["""torch"""] )
_check_torch_version()
snake_case_ = image_tensor.unsqueeze(0 )
snake_case_ = torch.nn.functional.unfold(_SCREAMING_SNAKE_CASE , (patch_height, patch_width) , stride=(patch_height, patch_width) )
snake_case_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 )
snake_case_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape(
image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , )
return patches.unsqueeze(0 )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 36 , _SCREAMING_SNAKE_CASE = "black" , _SCREAMING_SNAKE_CASE = "white" , _SCREAMING_SNAKE_CASE = 5 , _SCREAMING_SNAKE_CASE = 5 , _SCREAMING_SNAKE_CASE = 5 , _SCREAMING_SNAKE_CASE = 5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , ) -> Image.Image:
requires_backends(_SCREAMING_SNAKE_CASE , """vision""" )
# Add new lines so that each line is no more than 80 characters.
snake_case_ = textwrap.TextWrapper(width=80 )
snake_case_ = wrapper.wrap(text=_SCREAMING_SNAKE_CASE )
snake_case_ = """\n""".join(_SCREAMING_SNAKE_CASE )
if font_bytes is not None and font_path is None:
snake_case_ = io.BytesIO(_SCREAMING_SNAKE_CASE )
elif font_path is not None:
snake_case_ = font_path
else:
snake_case_ = hf_hub_download(_SCREAMING_SNAKE_CASE , """Arial.TTF""" )
snake_case_ = ImageFont.truetype(_SCREAMING_SNAKE_CASE , encoding="""UTF-8""" , size=_SCREAMING_SNAKE_CASE )
# Use a temporary canvas to determine the width and height in pixels when
# rendering the text.
snake_case_ = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , _SCREAMING_SNAKE_CASE ) )
snake_case_ , snake_case_ , snake_case_ , snake_case_ = temp_draw.textbbox((0, 0) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Create the actual image with a bit of padding around the text.
snake_case_ = text_width + left_padding + right_padding
snake_case_ = text_height + top_padding + bottom_padding
snake_case_ = Image.new("""RGB""" , (image_width, image_height) , _SCREAMING_SNAKE_CASE )
snake_case_ = ImageDraw.Draw(_SCREAMING_SNAKE_CASE )
draw.text(xy=(left_padding, top_padding) , text=_SCREAMING_SNAKE_CASE , fill=_SCREAMING_SNAKE_CASE , font=_SCREAMING_SNAKE_CASE )
return image
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any:
requires_backends(_SCREAMING_SNAKE_CASE , """vision""" )
# Convert to PIL image if necessary
snake_case_ = to_pil_image(_SCREAMING_SNAKE_CASE )
snake_case_ = render_text(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
snake_case_ = max(header_image.width , image.width )
snake_case_ = int(image.height * (new_width / image.width) )
snake_case_ = int(header_image.height * (new_width / header_image.width) )
snake_case_ = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" )
new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) )
new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) )
# Convert back to the original framework if necessary
snake_case_ = to_numpy_array(_SCREAMING_SNAKE_CASE )
if infer_channel_dimension_format(_SCREAMING_SNAKE_CASE ) == ChannelDimension.LAST:
snake_case_ = to_channel_dimension_format(_SCREAMING_SNAKE_CASE , ChannelDimension.LAST )
return new_image
class __A (snake_case__):
'''simple docstring'''
__lowercase: Tuple = ["""flattened_patches"""]
def __init__( self : Optional[Any] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : int = 2_048 , UpperCAmelCase_ : bool = False , **UpperCAmelCase_ : Any , ) ->None:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ )
snake_case_ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16}
snake_case_ = do_normalize
snake_case_ = do_convert_rgb
snake_case_ = max_patches
snake_case_ = is_vqa
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : int , UpperCAmelCase_ : dict , **UpperCAmelCase_ : List[Any] ) ->np.ndarray:
"""simple docstring"""
requires_backends(self.extract_flattened_patches , """torch""" )
_check_torch_version()
# convert to torch
snake_case_ = to_channel_dimension_format(UpperCAmelCase_ , ChannelDimension.FIRST )
snake_case_ = torch.from_numpy(UpperCAmelCase_ )
snake_case_ , snake_case_ = patch_size["""height"""], patch_size["""width"""]
snake_case_ , snake_case_ = get_image_size(UpperCAmelCase_ )
# maximize scale s.t.
snake_case_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) )
snake_case_ = max(min(math.floor(scale * image_height / patch_height ) , UpperCAmelCase_ ) , 1 )
snake_case_ = max(min(math.floor(scale * image_width / patch_width ) , UpperCAmelCase_ ) , 1 )
snake_case_ = max(num_feasible_rows * patch_height , 1 )
snake_case_ = max(num_feasible_cols * patch_width , 1 )
snake_case_ = torch.nn.functional.interpolate(
image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=UpperCAmelCase_ , antialias=UpperCAmelCase_ , ).squeeze(0 )
# [1, rows, columns, patch_height * patch_width * image_channels]
snake_case_ = torch_extract_patches(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = patches.shape
snake_case_ = patches_shape[1]
snake_case_ = patches_shape[2]
snake_case_ = patches_shape[3]
# [rows * columns, patch_height * patch_width * image_channels]
snake_case_ = patches.reshape([rows * columns, depth] )
# [rows * columns, 1]
snake_case_ = torch.arange(UpperCAmelCase_ ).reshape([rows, 1] ).repeat(1 , UpperCAmelCase_ ).reshape([rows * columns, 1] )
snake_case_ = torch.arange(UpperCAmelCase_ ).reshape([1, columns] ).repeat(UpperCAmelCase_ , 1 ).reshape([rows * columns, 1] )
# Offset by 1 so the ids do not contain zeros, which represent padding.
row_ids += 1
col_ids += 1
# Prepare additional patch features.
# [rows * columns, 1]
snake_case_ = row_ids.to(torch.floataa )
snake_case_ = col_ids.to(torch.floataa )
# [rows * columns, 2 + patch_height * patch_width * image_channels]
snake_case_ = torch.cat([row_ids, col_ids, patches] , -1 )
# [max_patches, 2 + patch_height * patch_width * image_channels]
snake_case_ = torch.nn.functional.pad(UpperCAmelCase_ , [0, 0, 0, max_patches - (rows * columns)] ).float()
snake_case_ = to_numpy_array(UpperCAmelCase_ )
return result
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Union[str, Any] ) ->np.ndarray:
"""simple docstring"""
if image.dtype == np.uinta:
snake_case_ = image.astype(np.floataa )
# take mean across the whole `image`
snake_case_ = np.mean(UpperCAmelCase_ )
snake_case_ = np.std(UpperCAmelCase_ )
snake_case_ = max(UpperCAmelCase_ , 1.0 / math.sqrt(np.prod(image.shape ) ) )
return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : Union[str, Any] , ) ->ImageInput:
"""simple docstring"""
snake_case_ = do_normalize if do_normalize is not None else self.do_normalize
snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
snake_case_ = patch_size if patch_size is not None else self.patch_size
snake_case_ = max_patches if max_patches is not None else self.max_patches
snake_case_ = self.is_vqa
if kwargs.get("""data_format""" , UpperCAmelCase_ ) is not None:
raise ValueError("""data_format is not an accepted input as the outputs are """ )
snake_case_ = make_list_of_images(UpperCAmelCase_ )
if not valid_images(UpperCAmelCase_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
snake_case_ = [convert_to_rgb(UpperCAmelCase_ ) for image in images]
# All transformations expect numpy arrays.
snake_case_ = [to_numpy_array(UpperCAmelCase_ ) for image in images]
if is_vqa:
if header_text is None:
raise ValueError("""A header text must be provided for VQA models.""" )
snake_case_ = kwargs.pop("""font_bytes""" , UpperCAmelCase_ )
snake_case_ = kwargs.pop("""font_path""" , UpperCAmelCase_ )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = [header_text] * len(UpperCAmelCase_ )
snake_case_ = [
render_header(UpperCAmelCase_ , header_text[i] , font_bytes=UpperCAmelCase_ , font_path=UpperCAmelCase_ )
for i, image in enumerate(UpperCAmelCase_ )
]
if do_normalize:
snake_case_ = [self.normalize(image=UpperCAmelCase_ ) for image in images]
# convert to torch tensor and permute
snake_case_ = [
self.extract_flattened_patches(image=UpperCAmelCase_ , max_patches=UpperCAmelCase_ , patch_size=UpperCAmelCase_ )
for image in images
]
# create attention mask in numpy
snake_case_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images]
snake_case_ = BatchFeature(
data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=UpperCAmelCase_ )
return encoded_outputs
| 712 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_normalize
def lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
snake_case_ = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" )
image_processor_first.to_json_file(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
pass
def _a ( ) -> str:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
snake_case_ = Image.open(dataset[4]["""file"""] )
snake_case_ = Image.open(dataset[5]["""file"""] )
snake_case_ = [imagea, imagea]
return images
@require_vision
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
snake_case_ = prepare_images()
# test non-batched
snake_case_ = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_024) )
snake_case_ = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ )
# test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_024) )
snake_case_ = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
| 2 | 0 |
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Tuple = {
'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json',
'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json',
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: int = """xlnet"""
__lowercase: Optional[Any] = ["""mems"""]
__lowercase: List[Any] = {
"""n_token""": """vocab_size""", # Backward compatibility
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : int , UpperCAmelCase_ : Tuple=32_000 , UpperCAmelCase_ : str=1_024 , UpperCAmelCase_ : Union[str, Any]=24 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : int=4_096 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]="bi" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : str=1E-12 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=-1 , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Optional[Any]="last" , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Tuple="tanh" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Tuple=5 , UpperCAmelCase_ : Optional[int]=5 , UpperCAmelCase_ : Optional[int]=5 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=2 , **UpperCAmelCase_ : int , ) ->List[str]:
"""simple docstring"""
snake_case_ = vocab_size
snake_case_ = d_model
snake_case_ = n_layer
snake_case_ = n_head
if d_model % n_head != 0:
raise ValueError(F"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" )
snake_case_ = d_model // n_head
snake_case_ = ff_activation
snake_case_ = d_inner
snake_case_ = untie_r
snake_case_ = attn_type
snake_case_ = initializer_range
snake_case_ = layer_norm_eps
snake_case_ = dropout
snake_case_ = mem_len
snake_case_ = reuse_len
snake_case_ = bi_data
snake_case_ = clamp_len
snake_case_ = same_length
snake_case_ = summary_type
snake_case_ = summary_use_proj
snake_case_ = summary_activation
snake_case_ = summary_last_dropout
snake_case_ = start_n_top
snake_case_ = end_n_top
snake_case_ = bos_token_id
snake_case_ = pad_token_id
snake_case_ = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
"""The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`"""
""" instead.""" , UpperCAmelCase_ , )
snake_case_ = kwargs["""use_cache"""]
snake_case_ = use_mems_eval
snake_case_ = use_mems_train
super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->str:
"""simple docstring"""
raise NotImplementedError(
F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 713 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = scope
snake_case_ = range_bbox
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case_ = bbox[i, j, 3]
snake_case_ = bbox[i, j, 1]
snake_case_ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case_ = bbox[i, j, 2]
snake_case_ = bbox[i, j, 0]
snake_case_ = t
snake_case_ = None
if self.use_input_mask:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str:
"""simple docstring"""
snake_case_ = LiltModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict:
"""simple docstring"""
snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowercase: Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return True
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = LiltModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_torch
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ )
snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ )
snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ )
snake_case_ = torch.Size([1, 2, 768] )
snake_case_ = torch.tensor(
[[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 0 |
"""simple docstring"""
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def _a ( _SCREAMING_SNAKE_CASE = 3 ) -> qiskit.result.counts.Counts:
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise TypeError("""number of qubits must be a integer.""" )
if number_of_qubits <= 0:
raise ValueError("""number of qubits must be > 0.""" )
if math.floor(_SCREAMING_SNAKE_CASE ) != number_of_qubits:
raise ValueError("""number of qubits must be exact integer.""" )
if number_of_qubits > 10:
raise ValueError("""number of qubits too large to simulate(>10).""" )
snake_case_ = QuantumRegister(_SCREAMING_SNAKE_CASE , """qr""" )
snake_case_ = ClassicalRegister(_SCREAMING_SNAKE_CASE , """cr""" )
snake_case_ = QuantumCircuit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = number_of_qubits
for i in range(_SCREAMING_SNAKE_CASE ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(_SCREAMING_SNAKE_CASE ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(_SCREAMING_SNAKE_CASE , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# simulate with 10000 shots
snake_case_ = Aer.get_backend("""qasm_simulator""" )
snake_case_ = execute(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , shots=10_000 )
return job.result().get_counts(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(
f"""Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}"""
)
| 714 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = 0
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
snake_case_ = i + 1
else:
snake_case_ = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
| 2 | 0 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
snake_case_ = len(_SCREAMING_SNAKE_CASE )
snake_case_ = len(matrix[0] )
snake_case_ = min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for row in range(_SCREAMING_SNAKE_CASE ):
# Check if diagonal element is not zero
if matrix[row][row] != 0:
# Eliminate all the elements below the diagonal
for col in range(row + 1 , _SCREAMING_SNAKE_CASE ):
snake_case_ = matrix[col][row] / matrix[row][row]
for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
matrix[col][i] -= multiplier * matrix[row][i]
else:
# Find a non-zero diagonal element to swap rows
snake_case_ = True
for i in range(row + 1 , _SCREAMING_SNAKE_CASE ):
if matrix[i][row] != 0:
snake_case_ , snake_case_ = matrix[i], matrix[row]
snake_case_ = False
break
if reduce:
rank -= 1
for i in range(_SCREAMING_SNAKE_CASE ):
snake_case_ = matrix[i][rank]
# Reduce the row pointer by one to stay on the same row
row -= 1
return rank
if __name__ == "__main__":
import doctest
doctest.testmod()
| 715 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 0 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights']
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
if "emb" in name:
snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
snake_case_ = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
snake_case_ = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
snake_case_ = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
snake_case_ = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
snake_case_ = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]:
snake_case_ = list(state_dict.keys() )
snake_case_ = {}
for key in keys:
snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE )
if "in_proj_weight" in key:
# split fused qkv proj
snake_case_ = val[:hidden_size, :]
snake_case_ = val[hidden_size : 2 * hidden_size, :]
snake_case_ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
snake_case_ = val
else:
snake_case_ = val
return state_dict, enc_dec_proj_state_dict
def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
snake_case_ = 1_024
snake_case_ = 24
snake_case_ = 16
elif checkpoint == "medium":
snake_case_ = 1_536
snake_case_ = 48
snake_case_ = 24
elif checkpoint == "large":
snake_case_ = 2_048
snake_case_ = 48
snake_case_ = 32
else:
raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
snake_case_ = MusicgenDecoderConfig(
hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , )
return config
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple:
snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE )
snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE )
snake_case_ = fairseq_model.lm.state_dict()
snake_case_ , snake_case_ = rename_state_dict(
_SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size )
snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" )
snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE )
# check we can do a forward pass
snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
snake_case_ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" )
snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
# set the appropriate bos/pad token ids
snake_case_ = 2_048
snake_case_ = 2_048
# set other default generation config params
snake_case_ = int(30 * audio_encoder.config.frame_rate )
snake_case_ = True
snake_case_ = 3.0
if pytorch_dump_folder is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if repo_id:
logger.info(f"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
processor.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint',
default='small',
type=str,
help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.',
)
parser.add_argument(
'--pytorch_dump_folder',
required=True,
default=None,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
parser.add_argument(
'--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.'
)
__SCREAMING_SNAKE_CASE : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 716 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter'
__SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE'
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}"""
raise TypeError(_SCREAMING_SNAKE_CASE )
snake_case_ = spanish_id.replace("""-""" , """""" ).upper()
if len(_SCREAMING_SNAKE_CASE ) != 9:
raise ValueError(_SCREAMING_SNAKE_CASE )
try:
snake_case_ = int(spanish_id_clean[0:8] )
snake_case_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_SCREAMING_SNAKE_CASE ) from ex
if letter.isdigit():
raise ValueError(_SCREAMING_SNAKE_CASE )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=7 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : List[Any]=18 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : Tuple=400 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : str=None , UpperCAmelCase_ : str=True , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : int=True , ) ->List[str]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""shortest_edge""": 20}
snake_case_ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_center_crop
snake_case_ = crop_size
snake_case_ = do_flip_channel_order
def lowerCAmelCase ( self : Any ) ->List[str]:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Tuple = MobileViTImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
snake_case_ = MobileViTImageProcessingTester(self )
@property
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : int ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_center_crop""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """center_crop""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_flip_channel_order""" ) )
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 20} )
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCAmelCase ( self : str ) ->str:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 717 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'}
__SCREAMING_SNAKE_CASE : List[str] = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
}
}
__SCREAMING_SNAKE_CASE : List[str] = {
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
__SCREAMING_SNAKE_CASE : int = '▁'
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = VOCAB_FILES_NAMES
__lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None:
"""simple docstring"""
snake_case_ = (
AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
else mask_token
)
snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
snake_case_ = do_lower_case
snake_case_ = remove_space
snake_case_ = keep_accents
snake_case_ = vocab_file
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
return len(self.sp_model )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) ->List[str]:
"""simple docstring"""
snake_case_ = self.__dict__.copy()
snake_case_ = None
return state
def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
snake_case_ = {}
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str:
"""simple docstring"""
if self.remove_space:
snake_case_ = """ """.join(inputs.strip().split() )
else:
snake_case_ = inputs
snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ )
snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] )
if self.do_lower_case:
snake_case_ = outputs.lower()
return outputs
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
snake_case_ = self.preprocess_text(UpperCAmelCase_ )
snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
snake_case_ = []
for piece in pieces:
if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
snake_case_ = cur_pieces[1:]
else:
snake_case_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCAmelCase_ )
else:
new_pieces.append(UpperCAmelCase_ )
return new_pieces
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict:
"""simple docstring"""
return self.sp_model.PieceToId(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return self.sp_model.IdToPiece(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any:
"""simple docstring"""
snake_case_ = []
snake_case_ = """"""
snake_case_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase_ ) + token
snake_case_ = True
snake_case_ = []
else:
current_sub_tokens.append(UpperCAmelCase_ )
snake_case_ = False
out_string += self.sp_model.decode(UpperCAmelCase_ )
return out_string.strip()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , """wb""" ) as fi:
snake_case_ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
return (out_vocab_file,)
| 2 | 0 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Union[str, Any] = '▁'
__SCREAMING_SNAKE_CASE : int = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'}
__SCREAMING_SNAKE_CASE : Any = {
'vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model',
},
'monolingual_vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt',
},
}
__SCREAMING_SNAKE_CASE : Any = {'vinai/bartpho-syllable': 1_024}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Dict = VOCAB_FILES_NAMES
__lowercase: str = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase: Tuple = ["""input_ids""", """attention_mask"""]
def __init__( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str="<s>" , UpperCAmelCase_ : str="</s>" , UpperCAmelCase_ : Dict="</s>" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="<unk>" , UpperCAmelCase_ : Union[str, Any]="<pad>" , UpperCAmelCase_ : Optional[int]="<mask>" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : List[Any] , ) ->None:
"""simple docstring"""
snake_case_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token
snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
snake_case_ = vocab_file
snake_case_ = monolingual_vocab_file
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(UpperCAmelCase_ ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
snake_case_ = {}
snake_case_ = 0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(UpperCAmelCase_ ) not in self.fairseq_tokens_to_ids:
snake_case_ = cnt
cnt += 1
with open(UpperCAmelCase_ , """r""" , encoding="""utf-8""" ) as f:
for line in f.readlines():
snake_case_ = line.strip().split()[0]
snake_case_ = len(self.fairseq_tokens_to_ids )
if str(UpperCAmelCase_ ) not in self.fairseq_tokens_to_ids:
snake_case_ = len(self.fairseq_tokens_to_ids )
snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : List[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.__dict__.copy()
snake_case_ = None
snake_case_ = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : int , UpperCAmelCase_ : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
snake_case_ = {}
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
snake_case_ = [self.cls_token_id]
snake_case_ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] + ([0] * len(UpperCAmelCase_ )) + [1]
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def lowerCAmelCase ( self : Dict ) ->Tuple:
"""simple docstring"""
return len(self.fairseq_ids_to_tokens )
def lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Optional[Any] ) ->Any:
"""simple docstring"""
return self.fairseq_ids_to_tokens[index]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : List[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = """""".join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , """ """ ).strip()
return out_string
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , """wb""" ) as fi:
snake_case_ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
UpperCAmelCase_ ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(UpperCAmelCase_ , """w""" , encoding="""utf-8""" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(F"""{str(UpperCAmelCase_ )} \n""" )
return out_vocab_file, out_monolingual_vocab_file
| 718 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("""The given input must be positive""" )
# get the generated string sequence
snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = int(sequence[i] , 2 )
return sequence
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
snake_case_ = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
snake_case_ = gray_code_sequence_string(bit_count - 1 )
snake_case_ = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
snake_case_ = """0""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
snake_case_ = """1""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , ) -> Union[str, Any]:
snake_case_ = {}
if train_file is not None:
snake_case_ = [train_file]
if eval_file is not None:
snake_case_ = [eval_file]
if test_file is not None:
snake_case_ = [test_file]
snake_case_ = datasets.load_dataset("""csv""" , data_files=_SCREAMING_SNAKE_CASE )
snake_case_ = list(ds[list(files.keys() )[0]].features.keys() )
snake_case_ = features_name.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = list(set(ds[list(files.keys() )[0]][label_name] ) )
snake_case_ = {label: i for i, label in enumerate(_SCREAMING_SNAKE_CASE )}
snake_case_ = tokenizer.model_input_names
snake_case_ = {}
if len(_SCREAMING_SNAKE_CASE ) == 1:
for k in files.keys():
snake_case_ = ds[k].map(
lambda _SCREAMING_SNAKE_CASE : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding="""max_length""" ) , batched=_SCREAMING_SNAKE_CASE , )
elif len(_SCREAMING_SNAKE_CASE ) == 2:
for k in files.keys():
snake_case_ = ds[k].map(
lambda _SCREAMING_SNAKE_CASE : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding="""max_length""" , ) , batched=_SCREAMING_SNAKE_CASE , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
snake_case_ = {k: v for k, v in ex.items() if k in input_names}
snake_case_ = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
snake_case_ = {k: v for k, v in ex.items() if k in input_names}
snake_case_ = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
snake_case_ = {k: v for k, v in ex.items() if k in input_names}
snake_case_ = labelaid[ex[label_name]]
yield (d, label)
snake_case_ = (
tf.data.Dataset.from_generator(
_SCREAMING_SNAKE_CASE , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
snake_case_ = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
snake_case_ = (
tf.data.Dataset.from_generator(
_SCREAMING_SNAKE_CASE , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
snake_case_ = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
snake_case_ = (
tf.data.Dataset.from_generator(
_SCREAMING_SNAKE_CASE , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
snake_case_ = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
__SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__)
@dataclass
class __A :
'''simple docstring'''
__lowercase: int = field(metadata={"""help""": """Which column contains the label"""})
__lowercase: str = field(default=snake_case__ , metadata={"""help""": """The path of the training file"""})
__lowercase: Optional[str] = field(default=snake_case__ , metadata={"""help""": """The path of the development file"""})
__lowercase: Optional[str] = field(default=snake_case__ , metadata={"""help""": """The path of the test file"""})
__lowercase: int = field(
default=1_28 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__lowercase: bool = field(
default=snake_case__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""})
@dataclass
class __A :
'''simple docstring'''
__lowercase: str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""})
__lowercase: Optional[str] = field(
default=snake_case__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""})
__lowercase: Optional[str] = field(
default=snake_case__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""})
__lowercase: bool = field(default=snake_case__ , metadata={"""help""": """Set this flag to use fast tokenization."""})
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
__lowercase: Optional[str] = field(
default=snake_case__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
def _a ( ) -> Union[str, Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
""" --overwrite_output_dir to overcome.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.info(
f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """
f"""16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
snake_case_ = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case_ , snake_case_ , snake_case_ , snake_case_ = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_SCREAMING_SNAKE_CASE , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
snake_case_ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_SCREAMING_SNAKE_CASE ) , labelaid=_SCREAMING_SNAKE_CASE , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
snake_case_ = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , )
def compute_metrics(_SCREAMING_SNAKE_CASE ) -> Dict:
snake_case_ = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
snake_case_ = TFTrainer(
model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
snake_case_ = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
snake_case_ = trainer.evaluate()
snake_case_ = os.path.join(training_args.output_dir , """eval_results.txt""" )
with open(_SCREAMING_SNAKE_CASE , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key, value in result.items():
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
results.update(_SCREAMING_SNAKE_CASE )
return results
if __name__ == "__main__":
main()
| 719 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 0 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
__SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
__SCREAMING_SNAKE_CASE : str = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n'
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=8 ) -> List[str]:
snake_case_ = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
snake_case_ = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=512 ) -> List[Any]:
snake_case_ = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 )
snake_case_ = np.array(pil_image.convert("""RGB""" ) )
snake_case_ = arr.astype(np.floataa ) / 127.5 - 1
snake_case_ = np.transpose(_SCREAMING_SNAKE_CASE , [2, 0, 1] )
snake_case_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).unsqueeze(0 )
return image
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : DDPMScheduler , UpperCAmelCase_ : VQModel , ) ->Tuple:
"""simple docstring"""
super().__init__()
self.register_modules(
unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , movq=UpperCAmelCase_ , )
snake_case_ = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def lowerCAmelCase ( self : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict ) ->Optional[int]:
"""simple docstring"""
snake_case_ = min(int(num_inference_steps * strength ) , UpperCAmelCase_ )
snake_case_ = max(num_inference_steps - init_timestep , 0 )
snake_case_ = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=None ) ->Optional[Any]:
"""simple docstring"""
if not isinstance(UpperCAmelCase_ , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCAmelCase_ )}""" )
snake_case_ = image.to(device=UpperCAmelCase_ , dtype=UpperCAmelCase_ )
snake_case_ = batch_size * num_images_per_prompt
if image.shape[1] == 4:
snake_case_ = image
else:
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and len(UpperCAmelCase_ ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(UpperCAmelCase_ )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = [
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase_ )
]
snake_case_ = torch.cat(UpperCAmelCase_ , dim=0 )
else:
snake_case_ = self.movq.encode(UpperCAmelCase_ ).latent_dist.sample(UpperCAmelCase_ )
snake_case_ = self.movq.config.scaling_factor * init_latents
snake_case_ = torch.cat([init_latents] , dim=0 )
snake_case_ = init_latents.shape
snake_case_ = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_ )
# get latents
snake_case_ = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = init_latents
return latents
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[Any]=0 ) ->Any:
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
snake_case_ = torch.device(F"""cuda:{gpu_id}""" )
snake_case_ = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Dict=0 ) ->int:
"""simple docstring"""
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
snake_case_ = torch.device(F"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=UpperCAmelCase_ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
snake_case_ = None
for cpu_offloaded_model in [self.unet, self.movq]:
snake_case_ , snake_case_ = cpu_offload_with_hook(UpperCAmelCase_ , UpperCAmelCase_ , prev_module_hook=UpperCAmelCase_ )
# We'll offload the last model manually.
snake_case_ = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def lowerCAmelCase ( self : Optional[Any] ) ->str:
"""simple docstring"""
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(UpperCAmelCase_ , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(UpperCAmelCase_ )
def __call__( self : str , UpperCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , UpperCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 100 , UpperCAmelCase_ : float = 4.0 , UpperCAmelCase_ : float = 0.3 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self._execution_device
snake_case_ = guidance_scale > 1.0
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = torch.cat(UpperCAmelCase_ , dim=0 )
snake_case_ = image_embeds.shape[0]
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = torch.cat(UpperCAmelCase_ , dim=0 )
if do_classifier_free_guidance:
snake_case_ = image_embeds.repeat_interleave(UpperCAmelCase_ , dim=0 )
snake_case_ = negative_image_embeds.repeat_interleave(UpperCAmelCase_ , dim=0 )
snake_case_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCAmelCase_ )
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = [image]
if not all(isinstance(UpperCAmelCase_ , (PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
F"""Input is in incorrect format: {[type(UpperCAmelCase_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" )
snake_case_ = torch.cat([prepare_image(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) for i in image] , dim=0 )
snake_case_ = image.to(dtype=image_embeds.dtype , device=UpperCAmelCase_ )
snake_case_ = self.movq.encode(UpperCAmelCase_ )["""latents"""]
snake_case_ = latents.repeat_interleave(UpperCAmelCase_ , dim=0 )
self.scheduler.set_timesteps(UpperCAmelCase_ , device=UpperCAmelCase_ )
snake_case_ , snake_case_ = self.get_timesteps(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = timesteps[:1].repeat(batch_size * num_images_per_prompt )
snake_case_ , snake_case_ = downscale_height_and_width(UpperCAmelCase_ , UpperCAmelCase_ , self.movq_scale_factor )
snake_case_ = self.prepare_latents(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , image_embeds.dtype , UpperCAmelCase_ , UpperCAmelCase_ )
for i, t in enumerate(self.progress_bar(UpperCAmelCase_ ) ):
# expand the latents if we are doing classifier free guidance
snake_case_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
snake_case_ = {"""image_embeds""": image_embeds}
snake_case_ = self.unet(
sample=UpperCAmelCase_ , timestep=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , added_cond_kwargs=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0]
if do_classifier_free_guidance:
snake_case_ , snake_case_ = noise_pred.split(latents.shape[1] , dim=1 )
snake_case_ , snake_case_ = noise_pred.chunk(2 )
snake_case_ , snake_case_ = variance_pred.chunk(2 )
snake_case_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
snake_case_ = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
snake_case_ , snake_case_ = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
snake_case_ = self.scheduler.step(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ , )[0]
# post-processing
snake_case_ = self.movq.decode(UpperCAmelCase_ , force_not_quantize=UpperCAmelCase_ )["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
snake_case_ = image * 0.5 + 0.5
snake_case_ = image.clamp(0 , 1 )
snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
snake_case_ = self.numpy_to_pil(UpperCAmelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCAmelCase_ )
| 720 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/'
__SCREAMING_SNAKE_CASE : List[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
snake_case_ = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
snake_case_ = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = {}
import re
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# keep original key
else:
snake_case_ = original_key
snake_case_ = replace_key(_SCREAMING_SNAKE_CASE )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
snake_case_ = original_key
snake_case_ = original_key
snake_case_ = value
return new_dict
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ):
snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE )
open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content )
snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]]
snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE )
snake_case_ = []
snake_case_ = {}
for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""]
snake_case_ = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
snake_case_ = old_dic[k]
elif k.endswith(""".w""" ):
snake_case_ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
snake_case_ = old_dic[k]
else:
snake_case_ = old_dic[k]
snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}"""
snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
weight_dict.append(_SCREAMING_SNAKE_CASE )
snake_case_ = weight_dict.pop(0 )
model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
return weight_dict
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 2 | 0 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
snake_case_ = int(_SCREAMING_SNAKE_CASE )
if n_element < 1:
snake_case_ = ValueError("""a should be a positive number""" )
raise my_error
snake_case_ = [1]
snake_case_ , snake_case_ , snake_case_ = (0, 0, 0)
snake_case_ = 1
while index < n_element:
while hamming_list[i] * 2 <= hamming_list[-1]:
i += 1
while hamming_list[j] * 3 <= hamming_list[-1]:
j += 1
while hamming_list[k] * 5 <= hamming_list[-1]:
k += 1
hamming_list.append(
min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) )
index += 1
return hamming_list
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : str = input('Enter the last number (nth term) of the Hamming Number Series: ')
print('Formula of Hamming Number Series => 2^i * 3^j * 5^k')
__SCREAMING_SNAKE_CASE : str = hamming(int(n))
print('-----------------------------------------------------')
print(f"""The list with nth numbers is: {hamming_numbers}""")
print('-----------------------------------------------------')
| 721 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__SCREAMING_SNAKE_CASE : Dict = 'zero2'
__SCREAMING_SNAKE_CASE : List[Any] = 'zero3'
__SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __A (snake_case__):
'''simple docstring'''
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = models[model]
snake_case_ = self.run_trainer(
stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
self.do_checks(UpperCAmelCase_ )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ )
snake_case_ = F"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(UpperCAmelCase_ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
snake_case_ = self.get_launcher(UpperCAmelCase_ )
snake_case_ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple:
"""simple docstring"""
snake_case_ = min(2 , get_gpu_count() ) if distributed else 1
return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 2 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__SCREAMING_SNAKE_CASE : Optional[int] = {
'configuration_conditional_detr': [
'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP',
'ConditionalDetrConfig',
'ConditionalDetrOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Union[str, Any] = ['ConditionalDetrFeatureExtractor']
__SCREAMING_SNAKE_CASE : Dict = ['ConditionalDetrImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConditionalDetrForObjectDetection',
'ConditionalDetrForSegmentation',
'ConditionalDetrModel',
'ConditionalDetrPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 700 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True})
__lowercase: ClassVar[Features] = Features({"""audio""": Audio()})
__lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")})
__lowercase: str = "audio"
__lowercase: str = "transcription"
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int:
"""simple docstring"""
if self.audio_column not in features:
raise ValueError(F"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , UpperCAmelCase_ ):
raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" )
snake_case_ = copy.deepcopy(self )
snake_case_ = self.input_schema.copy()
snake_case_ = features[self.audio_column]
snake_case_ = input_schema
return task_template
@property
def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]:
"""simple docstring"""
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 2 | 0 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = 0
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
snake_case_ = i + 1
else:
snake_case_ = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
| 701 |
"""simple docstring"""
from functools import reduce
__SCREAMING_SNAKE_CASE : Tuple = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def _a ( _SCREAMING_SNAKE_CASE = N ) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) )
for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 | 0 |
"""simple docstring"""
from __future__ import annotations
__SCREAMING_SNAKE_CASE : Dict = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> tuple[list[list[int]], list[list[int]]]:
snake_case_ = [
[0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) )
] # the reference grid
snake_case_ = 1
snake_case_ = [
[0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) )
] # the action grid
snake_case_ = init[0]
snake_case_ = init[1]
snake_case_ = 0
snake_case_ = g + heuristic[x][y] # cost from starting cell to destination cell
snake_case_ = [[f, g, x, y]]
snake_case_ = False # flag that is set when search is complete
snake_case_ = False # flag set if we can't find expand
while not found and not resign:
if len(_SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("""Algorithm is unable to find solution""" )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
snake_case_ = cell.pop()
snake_case_ = next_cell[2]
snake_case_ = next_cell[3]
snake_case_ = next_cell[1]
if x == goal[0] and y == goal[1]:
snake_case_ = True
else:
for i in range(len(_SCREAMING_SNAKE_CASE ) ): # to try out different valid actions
snake_case_ = x + DIRECTIONS[i][0]
snake_case_ = y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(_SCREAMING_SNAKE_CASE ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
snake_case_ = g + cost
snake_case_ = ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
snake_case_ = 1
snake_case_ = i
snake_case_ = []
snake_case_ = goal[0]
snake_case_ = goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
snake_case_ = x - DIRECTIONS[action[x][y]][0]
snake_case_ = y - DIRECTIONS[action[x][y]][1]
snake_case_ = xa
snake_case_ = ya
invpath.append([x, y] )
snake_case_ = []
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
path.append(invpath[len(_SCREAMING_SNAKE_CASE ) - 1 - i] )
return path, action
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : List[str] = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
__SCREAMING_SNAKE_CASE : List[str] = [0, 0]
# all coordinates are given in format [y,x]
__SCREAMING_SNAKE_CASE : Any = [len(grid) - 1, len(grid[0]) - 1]
__SCREAMING_SNAKE_CASE : Optional[Any] = 1
# the cost map which pushes the path closer to the goal
__SCREAMING_SNAKE_CASE : Dict = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
__SCREAMING_SNAKE_CASE : Tuple = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
__SCREAMING_SNAKE_CASE : Optional[int] = 99
__SCREAMING_SNAKE_CASE : Optional[Any] = search(grid, init, goal, cost, heuristic)
print('ACTION MAP')
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 702 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : str = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Any = """mctct"""
def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = intermediate_size
snake_case_ = num_attention_heads
snake_case_ = attention_head_dim
snake_case_ = max_position_embeddings
snake_case_ = layer_norm_eps
snake_case_ = layerdrop
snake_case_ = hidden_act
snake_case_ = initializer_range
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = pad_token_id
snake_case_ = bos_token_id
snake_case_ = eos_token_id
snake_case_ = conv_glu_dim
snake_case_ = conv_dropout
snake_case_ = num_conv_layers
snake_case_ = input_feat_per_channel
snake_case_ = input_channels
snake_case_ = conv_channels
snake_case_ = ctc_loss_reduction
snake_case_ = ctc_zero_infinity
# prevents config testing fail with exporting to json
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """
F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """
F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
| 2 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 703 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int:
return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 2 | 0 |
"""simple docstring"""
from operator import delitem, getitem, setitem
import pytest
from data_structures.hashing.hash_map import HashMap
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
'''simple docstring'''
return getitem, k
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
'''simple docstring'''
return setitem, k, v
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
'''simple docstring'''
return delitem, k
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> Any:
'''simple docstring'''
try:
return fun(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ), None
except Exception as e:
return None, e
__SCREAMING_SNAKE_CASE : str = (
_set('key_a', 'val_a'),
_set('key_b', 'val_b'),
)
__SCREAMING_SNAKE_CASE : int = [
_set('key_a', 'val_a'),
_set('key_a', 'val_b'),
]
__SCREAMING_SNAKE_CASE : int = [
_set('key_a', 'val_a'),
_set('key_b', 'val_b'),
_del('key_a'),
_del('key_b'),
_set('key_a', 'val_a'),
_del('key_a'),
]
__SCREAMING_SNAKE_CASE : Union[str, Any] = [
_get('key_a'),
_del('key_a'),
_set('key_a', 'val_a'),
_del('key_a'),
_del('key_a'),
_get('key_a'),
]
__SCREAMING_SNAKE_CASE : int = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
]
__SCREAMING_SNAKE_CASE : List[str] = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
*[_del(x) for x in range(5)],
_set('key_a', 'val_b'),
]
@pytest.mark.parametrize(
"""operations""" , (
pytest.param(_add_items , id="""add items""" ),
pytest.param(_overwrite_items , id="""overwrite items""" ),
pytest.param(_delete_items , id="""delete items""" ),
pytest.param(_access_absent_items , id="""access absent items""" ),
pytest.param(_add_with_resize_up , id="""add with resize up""" ),
pytest.param(_add_with_resize_down , id="""add with resize down""" ),
) , )
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
'''simple docstring'''
snake_case_ = HashMap(initial_block_size=4 )
snake_case_ = {}
for _, (fun, *args) in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ , snake_case_ = _run_operation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )
snake_case_ , snake_case_ = _run_operation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )
assert my_res == py_res
assert str(_SCREAMING_SNAKE_CASE ) == str(_SCREAMING_SNAKE_CASE )
assert set(_SCREAMING_SNAKE_CASE ) == set(_SCREAMING_SNAKE_CASE )
assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )
assert set(my.items() ) == set(py.items() )
def _a ( ) -> Dict:
'''simple docstring'''
def is_public(_SCREAMING_SNAKE_CASE ) -> bool:
return not name.startswith("""_""" )
snake_case_ = {name for name in dir({} ) if is_public(_SCREAMING_SNAKE_CASE )}
snake_case_ = {name for name in dir(HashMap() ) if is_public(_SCREAMING_SNAKE_CASE )}
assert dict_public_names > hash_public_names
| 704 |
"""simple docstring"""
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: str = VQModel
__lowercase: Union[str, Any] = """sample"""
@property
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple:
"""simple docstring"""
snake_case_ = 4
snake_case_ = 3
snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ )
return {"sample": image}
@property
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
return (3, 32, 32)
@property
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
return (3, 32, 32)
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 3,
}
snake_case_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(UpperCAmelCase_ )
snake_case_ = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" )
model.to(UpperCAmelCase_ ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
snake_case_ = image.to(UpperCAmelCase_ )
with torch.no_grad():
snake_case_ = model(UpperCAmelCase_ ).sample
snake_case_ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] )
# fmt: on
self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[int] = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : int = [
'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'WavLMForAudioFrameClassification',
'WavLMForCTC',
'WavLMForSequenceClassification',
'WavLMForXVector',
'WavLMModel',
'WavLMPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavlm import (
WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST,
WavLMForAudioFrameClassification,
WavLMForCTC,
WavLMForSequenceClassification,
WavLMForXVector,
WavLMModel,
WavLMPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 705 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = KandinskyVaaControlnetPipeline
__lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: Union[str, Any] = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
__lowercase: Tuple = False
@property
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return 100
@property
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
snake_case_ = self.dummy_unet
snake_case_ = self.dummy_movq
snake_case_ = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , )
snake_case_ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]:
"""simple docstring"""
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase_ )
# create hint
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
if str(UpperCAmelCase_ ).startswith("""mps""" ):
snake_case_ = torch.manual_seed(UpperCAmelCase_ )
else:
snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = """cpu"""
snake_case_ = self.get_dummy_components()
snake_case_ = self.pipeline_class(**UpperCAmelCase_ )
snake_case_ = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
snake_case_ = output.images
snake_case_ = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ = np.array(
[0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0
snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case_ = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case_ = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = """A robot, 4k photo"""
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ , snake_case_ = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ = pipeline(
image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 2 | 0 |
"""simple docstring"""
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
__SCREAMING_SNAKE_CASE : Union[str, Any] = pytest.mark.integration
__SCREAMING_SNAKE_CASE : Optional[int] = {'comet'}
__SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.util.find_spec('fairseq') is not None
__SCREAMING_SNAKE_CASE : Dict = {'code_eval'}
__SCREAMING_SNAKE_CASE : str = os.name == 'nt'
__SCREAMING_SNAKE_CASE : Union[str, Any] = {'bertscore', 'frugalscore', 'perplexity'}
__SCREAMING_SNAKE_CASE : Any = importlib.util.find_spec('transformers') is not None
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
@wraps(_SCREAMING_SNAKE_CASE )
def wrapper(self , _SCREAMING_SNAKE_CASE ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest("""\"test requires Fairseq\"""" )
else:
test_case(self , _SCREAMING_SNAKE_CASE )
return wrapper
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
@wraps(_SCREAMING_SNAKE_CASE )
def wrapper(self , _SCREAMING_SNAKE_CASE ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest("""\"test requires transformers\"""" )
else:
test_case(self , _SCREAMING_SNAKE_CASE )
return wrapper
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
@wraps(_SCREAMING_SNAKE_CASE )
def wrapper(self , _SCREAMING_SNAKE_CASE ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest("""\"test not supported on Windows\"""" )
else:
test_case(self , _SCREAMING_SNAKE_CASE )
return wrapper
def _a ( ) -> List[str]:
snake_case_ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names())
@for_all_test_methods(
snake_case__ , snake_case__ , snake_case__)
@local
class __A (parameterized.TestCase):
'''simple docstring'''
__lowercase: Tuple = {}
__lowercase: Tuple = None
@pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" )
@pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = """[...]"""
snake_case_ = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("""metrics""" , UpperCAmelCase_ ) ).module_path )
snake_case_ = datasets.load.import_main_class(metric_module.__name__ , dataset=UpperCAmelCase_ )
# check parameters
snake_case_ = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(UpperCAmelCase_ , metric_module.__name__ ):
with self.use_local_metrics():
try:
snake_case_ = doctest.testmod(UpperCAmelCase_ , verbose=UpperCAmelCase_ , raise_on_error=UpperCAmelCase_ )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[str] ) ->Any:
"""simple docstring"""
snake_case_ = """[...]"""
snake_case_ = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("""metrics""" , UpperCAmelCase_ ) ).module_path )
# run doctest
with self.use_local_metrics():
snake_case_ = doctest.testmod(UpperCAmelCase_ , verbose=UpperCAmelCase_ , raise_on_error=UpperCAmelCase_ )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) ->int:
"""simple docstring"""
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](UpperCAmelCase_ ):
yield
else:
yield
@contextmanager
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
def load_local_metric(UpperCAmelCase_ : Optional[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str ):
return load_metric(os.path.join("""metrics""" , UpperCAmelCase_ ) , *UpperCAmelCase_ , **UpperCAmelCase_ )
with patch("""datasets.load_metric""" ) as mock_load_metric:
snake_case_ = load_local_metric
yield
@classmethod
def lowerCAmelCase ( cls : Any , UpperCAmelCase_ : Dict ) ->List[Any]:
"""simple docstring"""
def wrapper(UpperCAmelCase_ : Optional[int] ):
snake_case_ = contextmanager(UpperCAmelCase_ )
snake_case_ = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher("""bleurt""" )
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags
class __A (snake_case__):
'''simple docstring'''
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
assert len(input_dict["""input_ids"""] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor:
snake_case_ = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher("""bertscore""" )
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
import torch
def bert_cos_score_idf(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(_SCREAMING_SNAKE_CASE ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch("""bert_score.scorer.get_model""" ), patch(
"""bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf:
snake_case_ = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher("""comet""" )
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
def load_from_checkpoint(_SCREAMING_SNAKE_CASE ):
class __A :
'''simple docstring'''
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : str ) ->Any:
"""simple docstring"""
assert len(UpperCAmelCase_ ) == 2
snake_case_ = [0.19, 0.92]
return scores, sum(UpperCAmelCase_ ) / len(UpperCAmelCase_ )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch("""comet.download_model""" ) as mock_download_model:
snake_case_ = None
with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint:
snake_case_ = load_from_checkpoint
yield
def _a ( ) -> List[str]:
snake_case_ = load_metric(os.path.join("""metrics""" , """seqeval""" ) )
snake_case_ = """ERROR"""
snake_case_ = f"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}"""
with pytest.raises(_SCREAMING_SNAKE_CASE , match=re.escape(_SCREAMING_SNAKE_CASE ) ):
metric.compute(predictions=[] , references=[] , scheme=_SCREAMING_SNAKE_CASE )
| 706 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
class __A :
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = []
self.adlist.append(
{"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} )
for keyword in keywords:
self.add_keyword(UpperCAmelCase_ )
self.set_fail_transitions()
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None:
"""simple docstring"""
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None:
"""simple docstring"""
snake_case_ = 0
for character in keyword:
snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ )
if next_state is None:
self.adlist.append(
{
"""value""": character,
"""next_states""": [],
"""fail_state""": 0,
"""output""": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
snake_case_ = len(self.adlist ) - 1
else:
snake_case_ = next_state
self.adlist[current_state]["output"].append(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->None:
"""simple docstring"""
snake_case_ = deque()
for node in self.adlist[0]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = 0
while q:
snake_case_ = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = self.adlist[r]["""fail_state"""]
while (
self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None
and state != 0
):
snake_case_ = self.adlist[state]["""fail_state"""]
snake_case_ = self.find_next_state(
UpperCAmelCase_ , self.adlist[child]["""value"""] )
if self.adlist[child]["fail_state"] is None:
snake_case_ = 0
snake_case_ = (
self.adlist[child]["""output"""]
+ self.adlist[self.adlist[child]["""fail_state"""]]["""output"""]
)
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]:
"""simple docstring"""
snake_case_ = {} # returns a dict with keywords and list of its occurrences
snake_case_ = 0
for i in range(len(UpperCAmelCase_ ) ):
while (
self.find_next_state(UpperCAmelCase_ , string[i] ) is None
and current_state != 0
):
snake_case_ = self.adlist[current_state]["""fail_state"""]
snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] )
if next_state is None:
snake_case_ = 0
else:
snake_case_ = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
snake_case_ = []
result[key].append(i - len(UpperCAmelCase_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append('.')
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
snake_case_ = test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
"""`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """
f"""{test_file} instead.""" )
snake_case_ = components[-1]
if not test_fn.endswith("""py""" ):
raise ValueError(f"""`test_file` should be a python file. Got {test_fn} instead.""" )
if not test_fn.startswith("""test_modeling_""" ):
raise ValueError(
f"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" )
snake_case_ = components[:-1] + [test_fn.replace(""".py""" , """""" )]
snake_case_ = """.""".join(_SCREAMING_SNAKE_CASE )
return test_module_path
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
snake_case_ = get_module_path(_SCREAMING_SNAKE_CASE )
snake_case_ = importlib.import_module(_SCREAMING_SNAKE_CASE )
return test_module
def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]:
snake_case_ = []
snake_case_ = get_test_module(_SCREAMING_SNAKE_CASE )
for attr in dir(_SCREAMING_SNAKE_CASE ):
if attr.endswith("""ModelTester""" ):
tester_classes.append(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
# sort with class names
return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ )
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
snake_case_ = []
snake_case_ = get_test_module(_SCREAMING_SNAKE_CASE )
for attr in dir(_SCREAMING_SNAKE_CASE ):
snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """all_model_classes""" , [] )
if len(_SCREAMING_SNAKE_CASE ) > 0:
test_classes.append(_SCREAMING_SNAKE_CASE )
# sort with class names
return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ )
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
snake_case_ = get_test_classes(_SCREAMING_SNAKE_CASE )
snake_case_ = set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ )
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
snake_case_ = test_class()
if hasattr(_SCREAMING_SNAKE_CASE , """setUp""" ):
test.setUp()
snake_case_ = None
if hasattr(_SCREAMING_SNAKE_CASE , """model_tester""" ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
snake_case_ = test.model_tester.__class__
return model_tester
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
snake_case_ = get_test_classes(_SCREAMING_SNAKE_CASE )
snake_case_ = []
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(_SCREAMING_SNAKE_CASE )
# sort with class names
return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
snake_case_ = get_test_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = []
for test_class in test_classes:
snake_case_ = get_model_tester_from_test_class(_SCREAMING_SNAKE_CASE )
if tester_class is not None:
tester_classes.append(_SCREAMING_SNAKE_CASE )
# sort with class names
return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ )
def _a ( _SCREAMING_SNAKE_CASE ) -> Dict:
snake_case_ = get_test_classes(_SCREAMING_SNAKE_CASE )
snake_case_ = {test_class: get_model_tester_from_test_class(_SCREAMING_SNAKE_CASE ) for test_class in test_classes}
return test_tester_mapping
def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]:
snake_case_ = get_model_classes(_SCREAMING_SNAKE_CASE )
snake_case_ = {
model_class: get_test_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in model_classes
}
return model_test_mapping
def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = get_model_classes(_SCREAMING_SNAKE_CASE )
snake_case_ = {
model_class: get_tester_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in model_classes
}
return model_to_tester_mapping
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return o
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return o.__name__
elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ):
return [to_json(_SCREAMING_SNAKE_CASE ) for x in o]
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return {to_json(_SCREAMING_SNAKE_CASE ): to_json(_SCREAMING_SNAKE_CASE ) for k, v in o.items()}
else:
return o | 707 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = num_channels
snake_case_ = num_stages
snake_case_ = hidden_sizes
snake_case_ = depths
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = num_labels
snake_case_ = initializer_range
snake_case_ = out_features
snake_case_ = out_indices
snake_case_ = scope
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case_ = None
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[Any] = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
__lowercase: Union[str, Any] = (
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Optional[Any] = False
__lowercase: Any = False
__lowercase: Union[str, Any] = False
__lowercase: Dict = False
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = True
if model_class.__name__ in [
*get_values(UpperCAmelCase_ ),
*get_values(UpperCAmelCase_ ),
]:
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = False
snake_case_ = True
if (
model_class.__name__
in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )]
or not model_class.supports_gradient_checkpointing
):
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.gradient_checkpointing_enable()
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ):
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case_ = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _a ( ) -> str:
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ )
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
# verify the logits
snake_case_ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
| 2 | 0 |
"""simple docstring"""
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : int ) ->str:
"""simple docstring"""
snake_case_ = tempfile.mkdtemp()
snake_case_ = SamImageProcessor()
snake_case_ = SamProcessor(UpperCAmelCase_ )
processor.save_pretrained(self.tmpdirname )
def lowerCAmelCase ( self : List[Any] , **UpperCAmelCase_ : Any ) ->Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).image_processor
def lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
snake_case_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
snake_case_ = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCAmelCase ( self : Any ) ->str:
"""simple docstring"""
snake_case_ = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
snake_case_ = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 )
snake_case_ = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCAmelCase_ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = SamProcessor(image_processor=UpperCAmelCase_ )
snake_case_ = self.prepare_image_inputs()
snake_case_ = image_processor(UpperCAmelCase_ , return_tensors="""np""" )
snake_case_ = processor(images=UpperCAmelCase_ , return_tensors="""np""" )
input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_torch
def lowerCAmelCase ( self : Optional[Any] ) ->int:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = SamProcessor(image_processor=UpperCAmelCase_ )
snake_case_ = [torch.ones((1, 3, 5, 5) )]
snake_case_ = [[1_764, 2_646]]
snake_case_ = [[683, 1_024]]
snake_case_ = processor.post_process_masks(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) )
snake_case_ = processor.post_process_masks(
UpperCAmelCase_ , torch.tensor(UpperCAmelCase_ ) , torch.tensor(UpperCAmelCase_ ) )
self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) )
# should also work with np
snake_case_ = [np.ones((1, 3, 5, 5) )]
snake_case_ = processor.post_process_masks(UpperCAmelCase_ , np.array(UpperCAmelCase_ ) , np.array(UpperCAmelCase_ ) )
self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) )
snake_case_ = [[1, 0], [0, 1]]
with self.assertRaises(UpperCAmelCase_ ):
snake_case_ = processor.post_process_masks(UpperCAmelCase_ , np.array(UpperCAmelCase_ ) , np.array(UpperCAmelCase_ ) )
@require_vision
@require_tf
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
snake_case_ = tempfile.mkdtemp()
snake_case_ = SamImageProcessor()
snake_case_ = SamProcessor(UpperCAmelCase_ )
processor.save_pretrained(self.tmpdirname )
def lowerCAmelCase ( self : Optional[Any] , **UpperCAmelCase_ : Tuple ) ->Dict:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).image_processor
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowerCAmelCase ( self : Dict ) ->List[Any]:
"""simple docstring"""
snake_case_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
snake_case_ = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
snake_case_ = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 )
snake_case_ = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCAmelCase_ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = SamProcessor(image_processor=UpperCAmelCase_ )
snake_case_ = self.prepare_image_inputs()
snake_case_ = image_processor(UpperCAmelCase_ , return_tensors="""np""" )
snake_case_ = processor(images=UpperCAmelCase_ , return_tensors="""np""" )
input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_tf
def lowerCAmelCase ( self : List[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = SamProcessor(image_processor=UpperCAmelCase_ )
snake_case_ = [tf.ones((1, 3, 5, 5) )]
snake_case_ = [[1_764, 2_646]]
snake_case_ = [[683, 1_024]]
snake_case_ = processor.post_process_masks(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""tf""" )
self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) )
snake_case_ = processor.post_process_masks(
UpperCAmelCase_ , tf.convert_to_tensor(UpperCAmelCase_ ) , tf.convert_to_tensor(UpperCAmelCase_ ) , return_tensors="""tf""" , )
self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) )
# should also work with np
snake_case_ = [np.ones((1, 3, 5, 5) )]
snake_case_ = processor.post_process_masks(
UpperCAmelCase_ , np.array(UpperCAmelCase_ ) , np.array(UpperCAmelCase_ ) , return_tensors="""tf""" )
self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) )
snake_case_ = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
snake_case_ = processor.post_process_masks(
UpperCAmelCase_ , np.array(UpperCAmelCase_ ) , np.array(UpperCAmelCase_ ) , return_tensors="""tf""" )
@require_vision
@require_torchvision
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
snake_case_ = tempfile.mkdtemp()
snake_case_ = SamImageProcessor()
snake_case_ = SamProcessor(UpperCAmelCase_ )
processor.save_pretrained(self.tmpdirname )
def lowerCAmelCase ( self : Dict , **UpperCAmelCase_ : List[Any] ) ->str:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).image_processor
def lowerCAmelCase ( self : int ) ->Tuple:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
snake_case_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
snake_case_ = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = SamProcessor(image_processor=UpperCAmelCase_ )
snake_case_ = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
snake_case_ = [tf.convert_to_tensor(UpperCAmelCase_ )]
snake_case_ = [torch.tensor(UpperCAmelCase_ )]
snake_case_ = [[1_764, 2_646]]
snake_case_ = [[683, 1_024]]
snake_case_ = processor.post_process_masks(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""tf""" )
snake_case_ = processor.post_process_masks(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""pt""" )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def lowerCAmelCase ( self : Optional[Any] ) ->int:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = SamProcessor(image_processor=UpperCAmelCase_ )
snake_case_ = self.prepare_image_inputs()
snake_case_ = image_processor(UpperCAmelCase_ , return_tensors="""pt""" )["""pixel_values"""].numpy()
snake_case_ = processor(images=UpperCAmelCase_ , return_tensors="""pt""" )["""pixel_values"""].numpy()
snake_case_ = image_processor(UpperCAmelCase_ , return_tensors="""tf""" )["""pixel_values"""].numpy()
snake_case_ = processor(images=UpperCAmelCase_ , return_tensors="""tf""" )["""pixel_values"""].numpy()
self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) )
self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) )
self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) )
| 708 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights']
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
if "emb" in name:
snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
snake_case_ = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
snake_case_ = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
snake_case_ = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
snake_case_ = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
snake_case_ = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]:
snake_case_ = list(state_dict.keys() )
snake_case_ = {}
for key in keys:
snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE )
if "in_proj_weight" in key:
# split fused qkv proj
snake_case_ = val[:hidden_size, :]
snake_case_ = val[hidden_size : 2 * hidden_size, :]
snake_case_ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
snake_case_ = val
else:
snake_case_ = val
return state_dict, enc_dec_proj_state_dict
def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
snake_case_ = 1_024
snake_case_ = 24
snake_case_ = 16
elif checkpoint == "medium":
snake_case_ = 1_536
snake_case_ = 48
snake_case_ = 24
elif checkpoint == "large":
snake_case_ = 2_048
snake_case_ = 48
snake_case_ = 32
else:
raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
snake_case_ = MusicgenDecoderConfig(
hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , )
return config
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple:
snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE )
snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE )
snake_case_ = fairseq_model.lm.state_dict()
snake_case_ , snake_case_ = rename_state_dict(
_SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size )
snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" )
snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE )
# check we can do a forward pass
snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
snake_case_ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" )
snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
# set the appropriate bos/pad token ids
snake_case_ = 2_048
snake_case_ = 2_048
# set other default generation config params
snake_case_ = int(30 * audio_encoder.config.frame_rate )
snake_case_ = True
snake_case_ = 3.0
if pytorch_dump_folder is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if repo_id:
logger.info(f"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
processor.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint',
default='small',
type=str,
help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.',
)
parser.add_argument(
'--pytorch_dump_folder',
required=True,
default=None,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
parser.add_argument(
'--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.'
)
__SCREAMING_SNAKE_CASE : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 2 | 0 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool:
if len(_SCREAMING_SNAKE_CASE ) == 0:
return False
snake_case_ = len(_SCREAMING_SNAKE_CASE ) // 2
if a_list[midpoint] == item:
return True
if item < a_list[midpoint]:
return binary_search(a_list[:midpoint] , _SCREAMING_SNAKE_CASE )
else:
return binary_search(a_list[midpoint + 1 :] , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : List[str] = input('Enter numbers separated by comma:\n').strip()
__SCREAMING_SNAKE_CASE : Tuple = [int(item.strip()) for item in user_input.split(',')]
__SCREAMING_SNAKE_CASE : Union[str, Any] = int(input('Enter the number to be found in the list:\n').strip())
__SCREAMING_SNAKE_CASE : int = '' if binary_search(sequence, target) else 'not '
print(f"""{target} was {not_str}found in {sequence}""")
| 709 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
if index == number_of_items:
return 0
snake_case_ = 0
snake_case_ = 0
snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 )
if weights[index] <= max_weight:
snake_case_ = values[index] + knapsack(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 )
return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Tuple:
snake_case_ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"""module.blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""module.blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(f"""module.blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((f"""module.blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((f"""module.blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""module.blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((f"""module.blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((f"""module.blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((f"""module.blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""module.blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
("""module.cls_token""", """vit.embeddings.cls_token"""),
("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""module.pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""module.norm.weight""", """layernorm.weight"""),
("""module.norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
snake_case_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> int:
for i in range(config.num_hidden_layers ):
if base_model:
snake_case_ = """"""
else:
snake_case_ = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
snake_case_ = state_dict.pop(f"""module.blocks.{i}.attn.qkv.weight""" )
snake_case_ = state_dict.pop(f"""module.blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
snake_case_ = in_proj_weight[
: config.hidden_size, :
]
snake_case_ = in_proj_bias[: config.hidden_size]
snake_case_ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
snake_case_ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
snake_case_ = in_proj_weight[
-config.hidden_size :, :
]
snake_case_ = in_proj_bias[-config.hidden_size :]
def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]:
snake_case_ = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]:
# projection head is used in the self-supervised pre-training in MSN,
# for downstream task it's not needed.
snake_case_ = [
"""module.fc.fc1.weight""",
"""module.fc.fc1.bias""",
"""module.fc.bn1.weight""",
"""module.fc.bn1.bias""",
"""module.fc.bn1.running_mean""",
"""module.fc.bn1.running_var""",
"""module.fc.bn1.num_batches_tracked""",
"""module.fc.fc2.weight""",
"""module.fc.fc2.bias""",
"""module.fc.bn2.weight""",
"""module.fc.bn2.bias""",
"""module.fc.bn2.running_mean""",
"""module.fc.bn2.running_var""",
"""module.fc.bn2.num_batches_tracked""",
"""module.fc.fc3.weight""",
"""module.fc.fc3.bias""",
]
for k in ignore_keys:
state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
snake_case_ = dct.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = val
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
snake_case_ = ViTMSNConfig()
snake_case_ = 1_000
snake_case_ = """datasets/huggingface/label-files"""
snake_case_ = """imagenet-1k-id2label.json"""
snake_case_ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , """r""" ) )
snake_case_ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
snake_case_ = idalabel
snake_case_ = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
snake_case_ = 384
snake_case_ = 1_536
snake_case_ = 6
elif "l16" in checkpoint_url:
snake_case_ = 1_024
snake_case_ = 4_096
snake_case_ = 24
snake_case_ = 16
snake_case_ = 0.1
elif "b4" in checkpoint_url:
snake_case_ = 4
elif "l7" in checkpoint_url:
snake_case_ = 7
snake_case_ = 1_024
snake_case_ = 4_096
snake_case_ = 24
snake_case_ = 16
snake_case_ = 0.1
snake_case_ = ViTMSNModel(_SCREAMING_SNAKE_CASE )
snake_case_ = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )["""target_encoder"""]
snake_case_ = ViTImageProcessor(size=config.image_size )
remove_projection_head(_SCREAMING_SNAKE_CASE )
snake_case_ = create_rename_keys(_SCREAMING_SNAKE_CASE , base_model=_SCREAMING_SNAKE_CASE )
for src, dest in rename_keys:
rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
read_in_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , base_model=_SCREAMING_SNAKE_CASE )
model.load_state_dict(_SCREAMING_SNAKE_CASE )
model.eval()
snake_case_ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
snake_case_ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw )
snake_case_ = ViTImageProcessor(
size=config.image_size , image_mean=_SCREAMING_SNAKE_CASE , image_std=_SCREAMING_SNAKE_CASE )
snake_case_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" )
# forward pass
torch.manual_seed(2 )
snake_case_ = model(**_SCREAMING_SNAKE_CASE )
snake_case_ = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
snake_case_ = torch.tensor([[-1.0915, -1.4876, -1.1809]] )
elif "b16" in checkpoint_url:
snake_case_ = torch.tensor([[14.2889, -18.9045, 11.7281]] )
elif "l16" in checkpoint_url:
snake_case_ = torch.tensor([[41.5028, -22.8681, 45.6475]] )
elif "b4" in checkpoint_url:
snake_case_ = torch.tensor([[-4.3868, 5.2932, -0.4137]] )
else:
snake_case_ = torch.tensor([[-0.1792, -0.6465, 2.4263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar',
type=str,
help='URL of the checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
__SCREAMING_SNAKE_CASE : Any = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 710 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int:
snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
snake_case_ = n // 2
return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
__SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 2 | 0 |
"""simple docstring"""
import sys
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__SCREAMING_SNAKE_CASE : Dict = 'zero2'
__SCREAMING_SNAKE_CASE : List[Any] = 'zero3'
__SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __A (snake_case__):
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = models[model]
snake_case_ = self.run_trainer(
stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
self.do_checks(UpperCAmelCase_ )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ )
snake_case_ = F"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(UpperCAmelCase_ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
snake_case_ = self.get_launcher(UpperCAmelCase_ )
snake_case_ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple:
"""simple docstring"""
snake_case_ = min(2 , get_gpu_count() ) if distributed else 1
return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 711 |
"""simple docstring"""
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str:
snake_case_ = ascii_letters + digits + punctuation
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(_SCREAMING_SNAKE_CASE )
snake_case_ = i // 3
snake_case_ = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
snake_case_ = (
chars_incl
+ random(_SCREAMING_SNAKE_CASE , quotient + remainder )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
)
snake_case_ = list(_SCREAMING_SNAKE_CASE )
shuffle(_SCREAMING_SNAKE_CASE )
return "".join(_SCREAMING_SNAKE_CASE )
# random is a generalised function for letters, characters and numbers
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool:
if len(_SCREAMING_SNAKE_CASE ) < min_length:
# Your Password must be at least 8 characters long
return False
snake_case_ = any(char in ascii_uppercase for char in password )
snake_case_ = any(char in ascii_lowercase for char in password )
snake_case_ = any(char in digits for char in password )
snake_case_ = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def _a ( ) -> str:
snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() )
snake_case_ = input(
"""Please indicate the characters that must be in your password: """ ).strip()
print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) )
print(
"""Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , )
print("""[If you are thinking of using this passsword, You better save it.]""" )
if __name__ == "__main__":
main()
| 2 | 0 |
"""simple docstring"""
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : WhisperForConditionalGeneration , UpperCAmelCase_ : WhisperProcessor , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : CLIPTextModel , UpperCAmelCase_ : CLIPTokenizer , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase_ : StableDiffusionSafetyChecker , UpperCAmelCase_ : CLIPImageProcessor , ) ->Any:
"""simple docstring"""
super().__init__()
if safety_checker is None:
logger.warning(
F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"""
""" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"""
""" results in services or applications open to the public. Both the diffusers team and Hugging Face"""
""" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"""
""" it only for use-cases that involve analyzing network behavior or auditing its results. For more"""
""" information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" )
self.register_modules(
speech_model=UpperCAmelCase_ , speech_processor=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[Union[str, int]] = "auto" ) ->Dict:
"""simple docstring"""
if slice_size == "auto":
snake_case_ = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase_ )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.enable_attention_slicing(UpperCAmelCase_ )
@torch.no_grad()
def __call__( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=16_000 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : float = 7.5 , UpperCAmelCase_ : Optional[Union[str, List[str]]] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , **UpperCAmelCase_ : int , ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.speech_processor.feature_extractor(
UpperCAmelCase_ , return_tensors="""pt""" , sampling_rate=UpperCAmelCase_ ).input_features.to(self.device )
snake_case_ = self.speech_model.generate(UpperCAmelCase_ , max_length=480_000 )
snake_case_ = self.speech_processor.tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , normalize=UpperCAmelCase_ )[
0
]
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = 1
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = len(UpperCAmelCase_ )
else:
raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(UpperCAmelCase_ )}""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or callback_steps <= 0)
):
raise ValueError(
F"""`callback_steps` has to be a positive integer but is {callback_steps} of type"""
F""" {type(UpperCAmelCase_ )}.""" )
# get prompt text embeddings
snake_case_ = self.tokenizer(
UpperCAmelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , )
snake_case_ = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
snake_case_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"""The following part of your input was truncated because CLIP can only handle sequences up to"""
F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" )
snake_case_ = text_input_ids[:, : self.tokenizer.model_max_length]
snake_case_ = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
snake_case_ , snake_case_ , snake_case_ = text_embeddings.shape
snake_case_ = text_embeddings.repeat(1 , UpperCAmelCase_ , 1 )
snake_case_ = text_embeddings.view(bs_embed * num_images_per_prompt , UpperCAmelCase_ , -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
snake_case_ = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
snake_case_ = 42
if negative_prompt is None:
snake_case_ = [""""""] * batch_size
elif type(UpperCAmelCase_ ) is not type(UpperCAmelCase_ ):
raise TypeError(
F"""`negative_prompt` should be the same type to `prompt`, but got {type(UpperCAmelCase_ )} !="""
F""" {type(UpperCAmelCase_ )}.""" )
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = [negative_prompt]
elif batch_size != len(UpperCAmelCase_ ):
raise ValueError(
F"""`negative_prompt`: {negative_prompt} has batch size {len(UpperCAmelCase_ )}, but `prompt`:"""
F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"""
""" the batch size of `prompt`.""" )
else:
snake_case_ = negative_prompt
snake_case_ = text_input_ids.shape[-1]
snake_case_ = self.tokenizer(
UpperCAmelCase_ , padding="""max_length""" , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="""pt""" , )
snake_case_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
snake_case_ = uncond_embeddings.shape[1]
snake_case_ = uncond_embeddings.repeat(1 , UpperCAmelCase_ , 1 )
snake_case_ = uncond_embeddings.view(batch_size * num_images_per_prompt , UpperCAmelCase_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
snake_case_ = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
snake_case_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
snake_case_ = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
snake_case_ = torch.randn(UpperCAmelCase_ , generator=UpperCAmelCase_ , device="""cpu""" , dtype=UpperCAmelCase_ ).to(
self.device )
else:
snake_case_ = torch.randn(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=self.device , dtype=UpperCAmelCase_ )
else:
if latents.shape != latents_shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
snake_case_ = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(UpperCAmelCase_ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
snake_case_ = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
snake_case_ = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
snake_case_ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
snake_case_ = {}
if accepts_eta:
snake_case_ = eta
for i, t in enumerate(self.progress_bar(UpperCAmelCase_ ) ):
# expand the latents if we are doing classifier free guidance
snake_case_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
snake_case_ = self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ )
# predict the noise residual
snake_case_ = self.unet(UpperCAmelCase_ , UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ ).sample
# perform guidance
if do_classifier_free_guidance:
snake_case_ , snake_case_ = noise_pred.chunk(2 )
snake_case_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
snake_case_ = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = 1 / 0.18_215 * latents
snake_case_ = self.vae.decode(UpperCAmelCase_ ).sample
snake_case_ = (image / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
snake_case_ = self.numpy_to_pil(UpperCAmelCase_ )
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=UpperCAmelCase_ , nsfw_content_detected=UpperCAmelCase_ )
| 712 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_normalize
def lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
snake_case_ = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" )
image_processor_first.to_json_file(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
pass
def _a ( ) -> str:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
snake_case_ = Image.open(dataset[4]["""file"""] )
snake_case_ = Image.open(dataset[5]["""file"""] )
snake_case_ = [imagea, imagea]
return images
@require_vision
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
snake_case_ = prepare_images()
# test non-batched
snake_case_ = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_024) )
snake_case_ = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ )
# test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_024) )
snake_case_ = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
| 2 | 0 |
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
snake_case_ = 1
snake_case_ = 2
while i * i <= n:
snake_case_ = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def _a ( ) -> Tuple:
snake_case_ = 1
snake_case_ = 1
while True:
i += 1
t_num += i
if count_divisors(_SCREAMING_SNAKE_CASE ) > 500:
break
return t_num
if __name__ == "__main__":
print(solution())
| 713 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = scope
snake_case_ = range_bbox
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case_ = bbox[i, j, 3]
snake_case_ = bbox[i, j, 1]
snake_case_ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case_ = bbox[i, j, 2]
snake_case_ = bbox[i, j, 0]
snake_case_ = t
snake_case_ = None
if self.use_input_mask:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str:
"""simple docstring"""
snake_case_ = LiltModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict:
"""simple docstring"""
snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowercase: Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return True
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = LiltModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_torch
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ )
snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ )
snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ )
snake_case_ = torch.Size([1, 2, 768] )
snake_case_ = torch.tensor(
[[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 0 |
"""simple docstring"""
import argparse
import torch
from torch import nn
from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration
def _a ( _SCREAMING_SNAKE_CASE ) -> Tuple:
snake_case_ = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""decoder.output_projection.weight""",
"""_float_tensor""",
"""encoder.embed_positions._float_tensor""",
"""decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]:
snake_case_ = list(s_dict.keys() )
for key in keys:
if "transformer_layers" in key:
snake_case_ = s_dict.pop(_SCREAMING_SNAKE_CASE )
elif "subsample" in key:
snake_case_ = s_dict.pop(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
snake_case_ , snake_case_ = emb.weight.shape
snake_case_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE )
snake_case_ = emb.weight.data
return lin_layer
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
snake_case_ = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )
snake_case_ = mam_aaa["""args"""]
snake_case_ = mam_aaa["""model"""]
snake_case_ = state_dict["""decoder.output_projection.weight"""]
remove_ignore_keys_(_SCREAMING_SNAKE_CASE )
rename_keys(_SCREAMING_SNAKE_CASE )
snake_case_ = state_dict["""decoder.embed_tokens.weight"""].shape[0]
snake_case_ = args.share_decoder_input_output_embed
snake_case_ = [int(_SCREAMING_SNAKE_CASE ) for i in args.conv_kernel_sizes.split(""",""" )]
snake_case_ = SpeechaTextConfig(
vocab_size=_SCREAMING_SNAKE_CASE , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , num_conv_layers=len(_SCREAMING_SNAKE_CASE ) , conv_channels=args.conv_channels , conv_kernel_sizes=_SCREAMING_SNAKE_CASE , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=_SCREAMING_SNAKE_CASE , num_beams=5 , max_length=200 , use_cache=_SCREAMING_SNAKE_CASE , decoder_start_token_id=2 , early_stopping=_SCREAMING_SNAKE_CASE , )
snake_case_ = SpeechaTextForConditionalGeneration(_SCREAMING_SNAKE_CASE )
snake_case_ , snake_case_ = model.model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0 and not set(_SCREAMING_SNAKE_CASE ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
"""Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,"""
f""" but all the following weights are missing {missing}""" )
if tie_embeds:
snake_case_ = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
snake_case_ = lm_head_weights
model.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.')
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
| 714 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = 0
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
snake_case_ = i + 1
else:
snake_case_ = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
| 2 | 0 |
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
__SCREAMING_SNAKE_CASE : int = logging.getLogger(__name__)
@dataclass
class __A :
'''simple docstring'''
__lowercase: str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""})
__lowercase: Optional[str] = field(
default=snake_case__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""})
__lowercase: Optional[str] = field(
default=snake_case__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""})
__lowercase: Optional[str] = field(
default=snake_case__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
__lowercase: bool = field(default=snake_case__ , metadata={"""help""": """Whether tp freeze the encoder."""})
__lowercase: bool = field(default=snake_case__ , metadata={"""help""": """Whether to freeze the embeddings."""})
@dataclass
class __A :
'''simple docstring'''
__lowercase: str = field(
metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""})
__lowercase: Optional[str] = field(
default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , )
__lowercase: Optional[int] = field(
default=10_24 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__lowercase: Optional[int] = field(
default=1_28 , metadata={
"""help""": (
"""The maximum total sequence length for target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__lowercase: Optional[int] = field(
default=1_42 , metadata={
"""help""": (
"""The maximum total sequence length for validation target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded. """
"""This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """
"""during ``evaluate`` and ``predict``."""
)
} , )
__lowercase: Optional[int] = field(
default=1_42 , metadata={
"""help""": (
"""The maximum total sequence length for test target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__lowercase: Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""})
__lowercase: Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""})
__lowercase: Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""})
__lowercase: Optional[str] = field(default=snake_case__ , metadata={"""help""": """Source language id for translation."""})
__lowercase: Optional[str] = field(default=snake_case__ , metadata={"""help""": """Target language id for translation."""})
__lowercase: Optional[int] = field(default=snake_case__ , metadata={"""help""": """# num_beams to use for evaluation."""})
__lowercase: bool = field(
default=snake_case__ , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
logger.info(f"""***** {split} metrics *****""" )
for key in sorted(metrics.keys() ):
logger.info(f""" {key} = {metrics[key]}""" )
save_json(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , f"""{split}_results.json""" ) )
def _a ( ) -> Union[str, Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
snake_case_ , snake_case_ , snake_case_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses()
check_output_dir(_SCREAMING_SNAKE_CASE )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info("""Training/evaluation parameters %s""" , _SCREAMING_SNAKE_CASE )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
snake_case_ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case_ = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""")
for p in extra_model_params:
if getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
assert hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute"""
setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
snake_case_ = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case_ = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(_SCREAMING_SNAKE_CASE , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
snake_case_ = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(_SCREAMING_SNAKE_CASE , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
snake_case_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(_SCREAMING_SNAKE_CASE )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
snake_case_ = SeqaSeqDataset
# Get datasets
snake_case_ = (
dataset_class(
_SCREAMING_SNAKE_CASE , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , )
if training_args.do_train
else None
)
snake_case_ = (
dataset_class(
_SCREAMING_SNAKE_CASE , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
snake_case_ = (
dataset_class(
_SCREAMING_SNAKE_CASE , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , )
if training_args.do_predict
else None
)
# Initialize our Trainer
snake_case_ = (
build_compute_metrics_fn(data_args.task , _SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate else None
)
snake_case_ = SeqaSeqTrainer(
model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , data_args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , data_collator=SeqaSeqDataCollator(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , )
snake_case_ = {}
# Training
if training_args.do_train:
logger.info("""*** Train ***""" )
snake_case_ = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
snake_case_ = train_result.metrics
snake_case_ = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics("""train""" , _SCREAMING_SNAKE_CASE , training_args.output_dir )
all_metrics.update(_SCREAMING_SNAKE_CASE )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
snake_case_ = trainer.evaluate(metric_key_prefix="""val""" )
snake_case_ = data_args.n_val
snake_case_ = round(metrics["""val_loss"""] , 4 )
if trainer.is_world_process_zero():
handle_metrics("""val""" , _SCREAMING_SNAKE_CASE , training_args.output_dir )
all_metrics.update(_SCREAMING_SNAKE_CASE )
if training_args.do_predict:
logger.info("""*** Predict ***""" )
snake_case_ = trainer.predict(test_dataset=_SCREAMING_SNAKE_CASE , metric_key_prefix="""test""" )
snake_case_ = test_output.metrics
snake_case_ = data_args.n_test
if trainer.is_world_process_zero():
snake_case_ = round(metrics["""test_loss"""] , 4 )
handle_metrics("""test""" , _SCREAMING_SNAKE_CASE , training_args.output_dir )
all_metrics.update(_SCREAMING_SNAKE_CASE )
if training_args.predict_with_generate:
snake_case_ = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE )
snake_case_ = lmap(str.strip , _SCREAMING_SNAKE_CASE )
write_txt_file(_SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , """test_generations.txt""" ) )
if trainer.is_world_process_zero():
save_json(_SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , """all_results.json""" ) )
return all_metrics
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 715 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 0 |
"""simple docstring"""
import os
import pytest
from attr import dataclass
__SCREAMING_SNAKE_CASE : Tuple = 'us-east-1' # defaults region
@dataclass
class __A :
'''simple docstring'''
__lowercase: str
__lowercase: Optional[Any] = """arn:aws:iam::558105141721:role/sagemaker_execution_role"""
__lowercase: str = {
"""task_name""": """mnli""",
"""per_device_train_batch_size""": 16,
"""per_device_eval_batch_size""": 16,
"""do_train""": True,
"""do_eval""": True,
"""do_predict""": True,
"""output_dir""": """/opt/ml/model""",
"""overwrite_output_dir""": True,
"""max_steps""": 5_00,
"""save_steps""": 55_00,
}
__lowercase: Dict = {**hyperparameters, """max_steps""": 10_00}
@property
def lowerCAmelCase ( self : Any ) ->str:
"""simple docstring"""
if self.framework == "pytorch":
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"},
{"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"},
]
else:
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"},
{"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"},
]
@property
def lowerCAmelCase ( self : Optional[int] ) ->str:
"""simple docstring"""
return F"""{self.framework}-transfromers-test"""
@property
def lowerCAmelCase ( self : Any ) ->str:
"""simple docstring"""
return F"""./tests/sagemaker/scripts/{self.framework}"""
@property
def lowerCAmelCase ( self : Any ) ->str:
"""simple docstring"""
if self.framework == "pytorch":
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04"
else:
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04"
@pytest.fixture(scope="""class""" )
def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]:
snake_case_ = SageMakerTestEnvironment(framework=request.cls.framework )
| 716 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter'
__SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE'
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}"""
raise TypeError(_SCREAMING_SNAKE_CASE )
snake_case_ = spanish_id.replace("""-""" , """""" ).upper()
if len(_SCREAMING_SNAKE_CASE ) != 9:
raise ValueError(_SCREAMING_SNAKE_CASE )
try:
snake_case_ = int(spanish_id_clean[0:8] )
snake_case_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_SCREAMING_SNAKE_CASE ) from ex
if letter.isdigit():
raise ValueError(_SCREAMING_SNAKE_CASE )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : int = {'configuration_mmbt': ['MMBTConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : List[Any] = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings']
if TYPE_CHECKING:
from .configuration_mmbt import MMBTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
else:
import sys
__SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 717 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'}
__SCREAMING_SNAKE_CASE : List[str] = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
}
}
__SCREAMING_SNAKE_CASE : List[str] = {
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
__SCREAMING_SNAKE_CASE : int = '▁'
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = VOCAB_FILES_NAMES
__lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None:
"""simple docstring"""
snake_case_ = (
AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
else mask_token
)
snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
snake_case_ = do_lower_case
snake_case_ = remove_space
snake_case_ = keep_accents
snake_case_ = vocab_file
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
return len(self.sp_model )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) ->List[str]:
"""simple docstring"""
snake_case_ = self.__dict__.copy()
snake_case_ = None
return state
def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
snake_case_ = {}
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str:
"""simple docstring"""
if self.remove_space:
snake_case_ = """ """.join(inputs.strip().split() )
else:
snake_case_ = inputs
snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ )
snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] )
if self.do_lower_case:
snake_case_ = outputs.lower()
return outputs
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
snake_case_ = self.preprocess_text(UpperCAmelCase_ )
snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
snake_case_ = []
for piece in pieces:
if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
snake_case_ = cur_pieces[1:]
else:
snake_case_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCAmelCase_ )
else:
new_pieces.append(UpperCAmelCase_ )
return new_pieces
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict:
"""simple docstring"""
return self.sp_model.PieceToId(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return self.sp_model.IdToPiece(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any:
"""simple docstring"""
snake_case_ = []
snake_case_ = """"""
snake_case_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase_ ) + token
snake_case_ = True
snake_case_ = []
else:
current_sub_tokens.append(UpperCAmelCase_ )
snake_case_ = False
out_string += self.sp_model.decode(UpperCAmelCase_ )
return out_string.strip()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , """wb""" ) as fi:
snake_case_ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
return (out_vocab_file,)
| 2 | 0 |
"""simple docstring"""
from pathlib import Path
import fire
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]:
snake_case_ = Path(_SCREAMING_SNAKE_CASE )
snake_case_ = Path(_SCREAMING_SNAKE_CASE )
dest_dir.mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
for path in src_dir.iterdir():
snake_case_ = [x.rstrip() for x in list(path.open().readlines() )][:n]
snake_case_ = dest_dir.joinpath(path.name )
print(_SCREAMING_SNAKE_CASE )
dest_path.open("""w""" ).write("""\n""".join(_SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
fire.Fire(minify)
| 718 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("""The given input must be positive""" )
# get the generated string sequence
snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = int(sequence[i] , 2 )
return sequence
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
snake_case_ = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
snake_case_ = gray_code_sequence_string(bit_count - 1 )
snake_case_ = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
snake_case_ = """0""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
snake_case_ = """1""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[int] = """"""
__lowercase: Union[str, Any] = """hf-legacy""" # "hf://"" is reserved for hffs
def __init__( self : Dict , UpperCAmelCase_ : Optional[DatasetInfo] = None , UpperCAmelCase_ : Optional[str] = None , **UpperCAmelCase_ : str , ) ->List[Any]:
"""simple docstring"""
super().__init__(self , **UpperCAmelCase_ )
snake_case_ = repo_info
snake_case_ = token
snake_case_ = None
def lowerCAmelCase ( self : int ) ->List[Any]:
"""simple docstring"""
if self.dir_cache is None:
snake_case_ = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
snake_case_ = {
"""name""": hf_file.rfilename,
"""size""": None,
"""type""": """file""",
}
self.dir_cache.update(
{
str(UpperCAmelCase_ ): {"""name""": str(UpperCAmelCase_ ), """size""": None, """type""": """directory"""}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : str = "rb" , **UpperCAmelCase_ : List[Any] , ) ->Union[str, Any]:
"""simple docstring"""
if not isinstance(self.repo_info , UpperCAmelCase_ ):
raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""" )
snake_case_ = hf_hub_url(self.repo_info.id , UpperCAmelCase_ , revision=self.repo_info.sha )
return fsspec.open(
UpperCAmelCase_ , mode=UpperCAmelCase_ , headers=get_authentication_headers_for_url(UpperCAmelCase_ , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open()
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[Any] ) ->Dict:
"""simple docstring"""
self._get_dirs()
snake_case_ = self._strip_protocol(UpperCAmelCase_ )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Dict ) ->List[str]:
"""simple docstring"""
self._get_dirs()
snake_case_ = PurePosixPath(path.strip("""/""" ) )
snake_case_ = {}
for p, f in self.dir_cache.items():
snake_case_ = PurePosixPath(p.strip("""/""" ) )
snake_case_ = p.parent
if root == path:
snake_case_ = f
snake_case_ = list(paths.values() )
if detail:
return out
else:
return sorted(f["""name"""] for f in out )
| 719 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 0 |
"""simple docstring"""
from urllib.parse import quote
import pytest
from datasets.utils.hub import hf_hub_url
@pytest.mark.parametrize("""repo_id""" , ["""canonical_dataset_name""", """org-name/dataset-name"""] )
@pytest.mark.parametrize("""path""" , ["""filename.csv""", """filename with blanks.csv"""] )
@pytest.mark.parametrize("""revision""" , [None, """v2"""] )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
snake_case_ = hf_hub_url(repo_id=_SCREAMING_SNAKE_CASE , path=_SCREAMING_SNAKE_CASE , revision=_SCREAMING_SNAKE_CASE )
assert url == f"""https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(_SCREAMING_SNAKE_CASE )}"""
| 720 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/'
__SCREAMING_SNAKE_CASE : List[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
snake_case_ = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
snake_case_ = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = {}
import re
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# keep original key
else:
snake_case_ = original_key
snake_case_ = replace_key(_SCREAMING_SNAKE_CASE )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
snake_case_ = original_key
snake_case_ = original_key
snake_case_ = value
return new_dict
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ):
snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE )
open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content )
snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]]
snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE )
snake_case_ = []
snake_case_ = {}
for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""]
snake_case_ = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
snake_case_ = old_dic[k]
elif k.endswith(""".w""" ):
snake_case_ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
snake_case_ = old_dic[k]
else:
snake_case_ = old_dic[k]
snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}"""
snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
weight_dict.append(_SCREAMING_SNAKE_CASE )
snake_case_ = weight_dict.pop(0 )
model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
return weight_dict
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 2 | 0 |
"""simple docstring"""
from .configuration_bert_masked import MaskedBertConfig
from .modeling_bert_masked import (
MaskedBertForMultipleChoice,
MaskedBertForQuestionAnswering,
MaskedBertForSequenceClassification,
MaskedBertForTokenClassification,
MaskedBertModel,
)
from .modules import *
| 721 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__SCREAMING_SNAKE_CASE : Dict = 'zero2'
__SCREAMING_SNAKE_CASE : List[Any] = 'zero3'
__SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __A (snake_case__):
'''simple docstring'''
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = models[model]
snake_case_ = self.run_trainer(
stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
self.do_checks(UpperCAmelCase_ )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ )
snake_case_ = F"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(UpperCAmelCase_ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
snake_case_ = self.get_launcher(UpperCAmelCase_ )
snake_case_ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple:
"""simple docstring"""
snake_case_ = min(2 , get_gpu_count() ) if distributed else 1
return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 2 | 0 |
"""simple docstring"""
import os
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen, xsplitext
from ..table import array_cast
from ..utils.py_utils import no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
from .features import FeatureType
__SCREAMING_SNAKE_CASE : Dict = False, False, False
@dataclass
class __A :
'''simple docstring'''
__lowercase: Optional[int] = None
__lowercase: bool = True
__lowercase: bool = True
__lowercase: Optional[str] = None
# Automatically constructed
__lowercase: ClassVar[str] = "dict"
__lowercase: ClassVar[Any] = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()})
__lowercase: str = field(default="""Audio""" , init=snake_case__ , repr=snake_case__)
def __call__( self : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
return self.pa_type
def lowerCAmelCase ( self : int , UpperCAmelCase_ : Union[str, bytes, dict] ) ->dict:
"""simple docstring"""
try:
import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files.
except ImportError as err:
raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
return {"bytes": None, "path": value}
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
return {"bytes": value, "path": None}
elif "array" in value:
# convert the audio array to wav bytes
snake_case_ = BytesIO()
sf.write(UpperCAmelCase_ , value["""array"""] , value["""sampling_rate"""] , format="""wav""" )
return {"bytes": buffer.getvalue(), "path": None}
elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ):
# we set "bytes": None to not duplicate the data if they're already available locally
if value["path"].endswith("""pcm""" ):
# "PCM" only has raw audio bytes
if value.get("""sampling_rate""" ) is None:
# At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate
raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" )
if value.get("""bytes""" ):
# If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!)
snake_case_ = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 32_767
else:
snake_case_ = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 32_767
snake_case_ = BytesIO(bytes() )
sf.write(UpperCAmelCase_ , UpperCAmelCase_ , value["""sampling_rate"""] , format="""wav""" )
return {"bytes": buffer.getvalue(), "path": None}
else:
return {"bytes": None, "path": value.get("""path""" )}
elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None:
# store the audio bytes, and path is used to infer the audio format using the file extension
return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )}
else:
raise ValueError(
F"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : dict , UpperCAmelCase_ : Optional[Dict[str, Union[str, bool, None]]] = None ) ->dict:
"""simple docstring"""
if not self.decode:
raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" )
snake_case_ , snake_case_ = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None)
if path is None and file is None:
raise ValueError(F"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" )
try:
import librosa
import soundfile as sf
except ImportError as err:
raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err
snake_case_ = xsplitext(UpperCAmelCase_ )[1][1:].lower() if path is not None else None
if not config.IS_OPUS_SUPPORTED and audio_format == "opus":
raise RuntimeError(
"""Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """
"""You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ )
elif not config.IS_MP3_SUPPORTED and audio_format == "mp3":
raise RuntimeError(
"""Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """
"""You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ )
if file is None:
snake_case_ = token_per_repo_id or {}
snake_case_ = path.split("""::""" )[-1]
try:
snake_case_ = string_to_dict(UpperCAmelCase_ , config.HUB_DATASETS_URL )["""repo_id"""]
snake_case_ = token_per_repo_id[repo_id]
except (ValueError, KeyError):
snake_case_ = None
with xopen(UpperCAmelCase_ , """rb""" , use_auth_token=UpperCAmelCase_ ) as f:
snake_case_ , snake_case_ = sf.read(UpperCAmelCase_ )
else:
snake_case_ , snake_case_ = sf.read(UpperCAmelCase_ )
snake_case_ = array.T
if self.mono:
snake_case_ = librosa.to_mono(UpperCAmelCase_ )
if self.sampling_rate and self.sampling_rate != sampling_rate:
snake_case_ = librosa.resample(UpperCAmelCase_ , orig_sr=UpperCAmelCase_ , target_sr=self.sampling_rate )
snake_case_ = self.sampling_rate
return {"path": path, "array": array, "sampling_rate": sampling_rate}
def lowerCAmelCase ( self : Dict ) ->Union["FeatureType", Dict[str, "FeatureType"]]:
"""simple docstring"""
from .features import Value
if self.decode:
raise ValueError("""Cannot flatten a decoded Audio feature.""" )
return {
"bytes": Value("""binary""" ),
"path": Value("""string""" ),
}
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[pa.StringArray, pa.StructArray] ) ->pa.StructArray:
"""simple docstring"""
if pa.types.is_string(storage.type ):
snake_case_ = pa.array([None] * len(UpperCAmelCase_ ) , type=pa.binary() )
snake_case_ = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
snake_case_ = pa.array([None] * len(UpperCAmelCase_ ) , type=pa.string() )
snake_case_ = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ):
snake_case_ = pa.array([Audio().encode_example(UpperCAmelCase_ ) if x is not None else None for x in storage.to_pylist()] )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("""bytes""" ) >= 0:
snake_case_ = storage.field("""bytes""" )
else:
snake_case_ = pa.array([None] * len(UpperCAmelCase_ ) , type=pa.binary() )
if storage.type.get_field_index("""path""" ) >= 0:
snake_case_ = storage.field("""path""" )
else:
snake_case_ = pa.array([None] * len(UpperCAmelCase_ ) , type=pa.string() )
snake_case_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
return array_cast(UpperCAmelCase_ , self.pa_type )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : pa.StructArray ) ->pa.StructArray:
"""simple docstring"""
@no_op_if_value_is_null
def path_to_bytes(UpperCAmelCase_ : Dict ):
with xopen(UpperCAmelCase_ , """rb""" ) as f:
snake_case_ = f.read()
return bytes_
snake_case_ = pa.array(
[
(path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
snake_case_ = pa.array(
[os.path.basename(UpperCAmelCase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , )
snake_case_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(UpperCAmelCase_ , self.pa_type )
| 700 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True})
__lowercase: ClassVar[Features] = Features({"""audio""": Audio()})
__lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")})
__lowercase: str = "audio"
__lowercase: str = "transcription"
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int:
"""simple docstring"""
if self.audio_column not in features:
raise ValueError(F"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , UpperCAmelCase_ ):
raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" )
snake_case_ = copy.deepcopy(self )
snake_case_ = self.input_schema.copy()
snake_case_ = features[self.audio_column]
snake_case_ = input_schema
return task_template
@property
def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]:
"""simple docstring"""
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 2 | 0 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = num_channels
snake_case_ = num_stages
snake_case_ = hidden_sizes
snake_case_ = depths
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = num_labels
snake_case_ = initializer_range
snake_case_ = out_features
snake_case_ = out_indices
snake_case_ = scope
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case_ = None
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[Any] = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
__lowercase: Union[str, Any] = (
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Optional[Any] = False
__lowercase: Any = False
__lowercase: Union[str, Any] = False
__lowercase: Dict = False
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = True
if model_class.__name__ in [
*get_values(UpperCAmelCase_ ),
*get_values(UpperCAmelCase_ ),
]:
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = False
snake_case_ = True
if (
model_class.__name__
in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )]
or not model_class.supports_gradient_checkpointing
):
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.gradient_checkpointing_enable()
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ):
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case_ = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _a ( ) -> str:
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ )
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
# verify the logits
snake_case_ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
| 701 |
"""simple docstring"""
from functools import reduce
__SCREAMING_SNAKE_CASE : Tuple = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def _a ( _SCREAMING_SNAKE_CASE = N ) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) )
for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 | 0 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class __A :
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0 ) ->None:
"""simple docstring"""
snake_case_ , snake_case_ = row, column
snake_case_ = [[default_value for c in range(UpperCAmelCase_ )] for r in range(UpperCAmelCase_ )]
def __str__( self : Optional[int] ) ->str:
"""simple docstring"""
snake_case_ = F"""Matrix consist of {self.row} rows and {self.column} columns\n"""
# Make string identifier
snake_case_ = 0
for row_vector in self.array:
for obj in row_vector:
snake_case_ = max(UpperCAmelCase_ , len(str(UpperCAmelCase_ ) ) )
snake_case_ = F"""%{max_element_length}s"""
# Make string and return
def single_line(UpperCAmelCase_ : list[float] ) -> str:
nonlocal string_format_identifier
snake_case_ = """["""
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(UpperCAmelCase_ ) for row_vector in self.array )
return s
def __repr__( self : Tuple ) ->str:
"""simple docstring"""
return str(self )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : tuple[int, int] ) ->bool:
"""simple docstring"""
if not (isinstance(UpperCAmelCase_ , (list, tuple) ) and len(UpperCAmelCase_ ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self : Union[str, Any] , UpperCAmelCase_ : tuple[int, int] ) ->Any:
"""simple docstring"""
assert self.validate_indicies(UpperCAmelCase_ )
return self.array[loc[0]][loc[1]]
def __setitem__( self : Dict , UpperCAmelCase_ : tuple[int, int] , UpperCAmelCase_ : float ) ->None:
"""simple docstring"""
assert self.validate_indicies(UpperCAmelCase_ )
snake_case_ = value
def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix ) ->Matrix:
"""simple docstring"""
assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
assert self.row == another.row and self.column == another.column
# Add
snake_case_ = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
snake_case_ = self[r, c] + another[r, c]
return result
def __neg__( self : int ) ->Matrix:
"""simple docstring"""
snake_case_ = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
snake_case_ = -self[r, c]
return result
def __sub__( self : Optional[Any] , UpperCAmelCase_ : Matrix ) ->Matrix:
"""simple docstring"""
return self + (-another)
def __mul__( self : List[str] , UpperCAmelCase_ : int | float | Matrix ) ->Matrix:
"""simple docstring"""
if isinstance(UpperCAmelCase_ , (int, float) ): # Scalar multiplication
snake_case_ = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
snake_case_ = self[r, c] * another
return result
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): # Matrix multiplication
assert self.column == another.row
snake_case_ = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
snake_case_ = F"""Unsupported type given for another ({type(UpperCAmelCase_ )})"""
raise TypeError(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Matrix:
"""simple docstring"""
snake_case_ = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
snake_case_ = self[r, c]
return result
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Matrix , UpperCAmelCase_ : Matrix ) ->Any:
"""simple docstring"""
assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
snake_case_ = v.transpose()
snake_case_ = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def _a ( ) -> None:
# a^(-1)
snake_case_ = Matrix(3 , 3 , 0 )
for i in range(3 ):
snake_case_ = 1
print(f"""a^(-1) is {ainv}""" )
# u, v
snake_case_ = Matrix(3 , 1 , 0 )
snake_case_ , snake_case_ , snake_case_ = 1, 2, -3
snake_case_ = Matrix(3 , 1 , 0 )
snake_case_ , snake_case_ , snake_case_ = 4, -2, 5
print(f"""u is {u}""" )
print(f"""v is {v}""" )
print(f"""uv^T is {u * v.transpose()}""" )
# Sherman Morrison
print(f"""(a + uv^T)^(-1) is {ainv.sherman_morrison(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}""" )
def _a ( ) -> None:
import doctest
doctest.testmod()
testa()
| 702 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : str = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Any = """mctct"""
def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = intermediate_size
snake_case_ = num_attention_heads
snake_case_ = attention_head_dim
snake_case_ = max_position_embeddings
snake_case_ = layer_norm_eps
snake_case_ = layerdrop
snake_case_ = hidden_act
snake_case_ = initializer_range
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = pad_token_id
snake_case_ = bos_token_id
snake_case_ = eos_token_id
snake_case_ = conv_glu_dim
snake_case_ = conv_dropout
snake_case_ = num_conv_layers
snake_case_ = input_feat_per_channel
snake_case_ = input_channels
snake_case_ = conv_channels
snake_case_ = ctc_loss_reduction
snake_case_ = ctc_zero_infinity
# prevents config testing fail with exporting to json
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """
F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """
F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
| 2 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
__SCREAMING_SNAKE_CASE : Dict = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
__SCREAMING_SNAKE_CASE : str = TaTokenizerFast
__SCREAMING_SNAKE_CASE : List[str] = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Dict = [
'MT5EncoderModel',
'MT5ForConditionalGeneration',
'MT5ForQuestionAnswering',
'MT5Model',
'MT5PreTrainedModel',
'MT5Stack',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Union[str, Any] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model']
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
__SCREAMING_SNAKE_CASE : List[str] = _LazyModule(
__name__,
globals()['__file__'],
_import_structure,
extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast},
module_spec=__spec__,
)
| 703 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int:
return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 2 | 0 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
'''simple docstring'''
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise ValueError("""Input must be an integer""" )
if input_num <= 0:
raise ValueError("""Input must be positive""" )
return sum(
divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 704 |
"""simple docstring"""
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: str = VQModel
__lowercase: Union[str, Any] = """sample"""
@property
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple:
"""simple docstring"""
snake_case_ = 4
snake_case_ = 3
snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ )
return {"sample": image}
@property
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
return (3, 32, 32)
@property
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
return (3, 32, 32)
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 3,
}
snake_case_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(UpperCAmelCase_ )
snake_case_ = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" )
model.to(UpperCAmelCase_ ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
snake_case_ = image.to(UpperCAmelCase_ )
with torch.no_grad():
snake_case_ = model(UpperCAmelCase_ ).sample
snake_case_ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] )
# fmt: on
self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 0 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter'
__SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE'
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}"""
raise TypeError(_SCREAMING_SNAKE_CASE )
snake_case_ = spanish_id.replace("""-""" , """""" ).upper()
if len(_SCREAMING_SNAKE_CASE ) != 9:
raise ValueError(_SCREAMING_SNAKE_CASE )
try:
snake_case_ = int(spanish_id_clean[0:8] )
snake_case_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_SCREAMING_SNAKE_CASE ) from ex
if letter.isdigit():
raise ValueError(_SCREAMING_SNAKE_CASE )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 705 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = KandinskyVaaControlnetPipeline
__lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: Union[str, Any] = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
__lowercase: Tuple = False
@property
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return 100
@property
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
snake_case_ = self.dummy_unet
snake_case_ = self.dummy_movq
snake_case_ = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , )
snake_case_ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]:
"""simple docstring"""
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase_ )
# create hint
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
if str(UpperCAmelCase_ ).startswith("""mps""" ):
snake_case_ = torch.manual_seed(UpperCAmelCase_ )
else:
snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = """cpu"""
snake_case_ = self.get_dummy_components()
snake_case_ = self.pipeline_class(**UpperCAmelCase_ )
snake_case_ = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
snake_case_ = output.images
snake_case_ = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ = np.array(
[0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0
snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case_ = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case_ = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = """A robot, 4k photo"""
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ , snake_case_ = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ = pipeline(
image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 2 | 0 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True})
__lowercase: ClassVar[Features] = Features({"""audio""": Audio()})
__lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")})
__lowercase: str = "audio"
__lowercase: str = "transcription"
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int:
"""simple docstring"""
if self.audio_column not in features:
raise ValueError(F"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , UpperCAmelCase_ ):
raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" )
snake_case_ = copy.deepcopy(self )
snake_case_ = self.input_schema.copy()
snake_case_ = features[self.audio_column]
snake_case_ = input_schema
return task_template
@property
def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]:
"""simple docstring"""
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 706 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
class __A :
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = []
self.adlist.append(
{"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} )
for keyword in keywords:
self.add_keyword(UpperCAmelCase_ )
self.set_fail_transitions()
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None:
"""simple docstring"""
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None:
"""simple docstring"""
snake_case_ = 0
for character in keyword:
snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ )
if next_state is None:
self.adlist.append(
{
"""value""": character,
"""next_states""": [],
"""fail_state""": 0,
"""output""": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
snake_case_ = len(self.adlist ) - 1
else:
snake_case_ = next_state
self.adlist[current_state]["output"].append(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->None:
"""simple docstring"""
snake_case_ = deque()
for node in self.adlist[0]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = 0
while q:
snake_case_ = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = self.adlist[r]["""fail_state"""]
while (
self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None
and state != 0
):
snake_case_ = self.adlist[state]["""fail_state"""]
snake_case_ = self.find_next_state(
UpperCAmelCase_ , self.adlist[child]["""value"""] )
if self.adlist[child]["fail_state"] is None:
snake_case_ = 0
snake_case_ = (
self.adlist[child]["""output"""]
+ self.adlist[self.adlist[child]["""fail_state"""]]["""output"""]
)
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]:
"""simple docstring"""
snake_case_ = {} # returns a dict with keywords and list of its occurrences
snake_case_ = 0
for i in range(len(UpperCAmelCase_ ) ):
while (
self.find_next_state(UpperCAmelCase_ , string[i] ) is None
and current_state != 0
):
snake_case_ = self.adlist[current_state]["""fail_state"""]
snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] )
if next_state is None:
snake_case_ = 0
else:
snake_case_ = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
snake_case_ = []
result[key].append(i - len(UpperCAmelCase_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
__SCREAMING_SNAKE_CASE : Optional[Any] = '\\n Text data.\n Second line of data.'
__SCREAMING_SNAKE_CASE : List[str] = 'file'
@pytest.fixture(scope="""session""" )
def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]:
snake_case_ = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""")
snake_case_ = bytes(_SCREAMING_SNAKE_CASE , """utf-8""" )
with zstd.open(_SCREAMING_SNAKE_CASE , """wb""" ) as f:
f.write(_SCREAMING_SNAKE_CASE )
return path
@pytest.fixture
def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
with open(os.path.join(tmpfs.local_root_dir , _SCREAMING_SNAKE_CASE ) , """w""" ) as f:
f.write(_SCREAMING_SNAKE_CASE )
return FILE_PATH
@pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
snake_case_ = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path}
snake_case_ = input_paths[compression_format]
snake_case_ = tmp_path / """cache"""
snake_case_ = DownloadConfig(cache_dir=_SCREAMING_SNAKE_CASE , extract_compressed_file=_SCREAMING_SNAKE_CASE )
snake_case_ = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE )
with open(_SCREAMING_SNAKE_CASE ) as f:
snake_case_ = f.read()
with open(_SCREAMING_SNAKE_CASE ) as f:
snake_case_ = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize("""default_extracted""" , [True, False] )
@pytest.mark.parametrize("""default_cache_dir""" , [True, False] )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
snake_case_ = """custom_cache"""
snake_case_ = """custom_extracted_dir"""
snake_case_ = tmp_path / """custom_extracted_path"""
if default_extracted:
snake_case_ = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""")
else:
monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , _SCREAMING_SNAKE_CASE )
monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(_SCREAMING_SNAKE_CASE ) )
snake_case_ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
snake_case_ = xz_file
snake_case_ = (
DownloadConfig(extract_compressed_file=_SCREAMING_SNAKE_CASE )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_SCREAMING_SNAKE_CASE )
)
snake_case_ = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE )
assert Path(_SCREAMING_SNAKE_CASE ).parent.parts[-2:] == expected
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
# absolute path
snake_case_ = str(Path(_SCREAMING_SNAKE_CASE ).resolve() )
assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file
# relative path
snake_case_ = str(Path(_SCREAMING_SNAKE_CASE ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file
def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]:
# absolute path
snake_case_ = str(tmp_path.resolve() / """__missing_file__.txt""" )
with pytest.raises(_SCREAMING_SNAKE_CASE ):
cached_path(_SCREAMING_SNAKE_CASE )
# relative path
snake_case_ = """./__missing_file__.txt"""
with pytest.raises(_SCREAMING_SNAKE_CASE ):
cached_path(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
snake_case_ = get_from_cache(f"""tmp://{tmpfs_file}""" )
with open(_SCREAMING_SNAKE_CASE ) as f:
snake_case_ = f.read()
assert output_file_content == FILE_CONTENT
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE )
def _a ( ) -> Tuple:
with pytest.raises(_SCREAMING_SNAKE_CASE ):
cached_path("""https://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Dict:
snake_case_ = tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(_SCREAMING_SNAKE_CASE ):
http_get("""https://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE )
with pytest.raises(_SCREAMING_SNAKE_CASE ):
http_head("""https://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Dict:
snake_case_ = tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(_SCREAMING_SNAKE_CASE ):
ftp_get("""ftp://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE )
with pytest.raises(_SCREAMING_SNAKE_CASE ):
ftp_head("""ftp://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Tuple:
snake_case_ = tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(_SCREAMING_SNAKE_CASE ):
fsspec_get("""s3://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE )
with pytest.raises(_SCREAMING_SNAKE_CASE ):
fsspec_head("""s3://huggingface.co""" ) | 707 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = num_channels
snake_case_ = num_stages
snake_case_ = hidden_sizes
snake_case_ = depths
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = num_labels
snake_case_ = initializer_range
snake_case_ = out_features
snake_case_ = out_indices
snake_case_ = scope
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case_ = None
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[Any] = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
__lowercase: Union[str, Any] = (
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Optional[Any] = False
__lowercase: Any = False
__lowercase: Union[str, Any] = False
__lowercase: Dict = False
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = True
if model_class.__name__ in [
*get_values(UpperCAmelCase_ ),
*get_values(UpperCAmelCase_ ),
]:
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = False
snake_case_ = True
if (
model_class.__name__
in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )]
or not model_class.supports_gradient_checkpointing
):
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.gradient_checkpointing_enable()
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ):
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case_ = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _a ( ) -> str:
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ )
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
# verify the logits
snake_case_ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
| 2 | 0 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AlignProcessor, EfficientNetImageProcessor
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Union[str, Any] ) ->int:
"""simple docstring"""
snake_case_ = tempfile.mkdtemp()
snake_case_ = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
snake_case_ = {
"""do_resize""": True,
"""size""": 20,
"""do_center_crop""": True,
"""crop_size""": 18,
"""do_normalize""": True,
"""image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073],
"""image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711],
}
snake_case_ = os.path.join(self.tmpdirname , UpperCAmelCase_ )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : List[str] , **UpperCAmelCase_ : Dict ) ->Dict:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , **UpperCAmelCase_ : Tuple ) ->str:
"""simple docstring"""
return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , **UpperCAmelCase_ : Tuple ) ->Dict:
"""simple docstring"""
return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def lowerCAmelCase ( self : int ) ->Dict:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
snake_case_ = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.get_tokenizer()
snake_case_ = self.get_rust_tokenizer()
snake_case_ = self.get_image_processor()
snake_case_ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
processor_slow.save_pretrained(self.tmpdirname )
snake_case_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ )
snake_case_ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
processor_fast.save_pretrained(self.tmpdirname )
snake_case_ = AlignProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ )
self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ )
self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ )
def lowerCAmelCase ( self : int ) ->int:
"""simple docstring"""
snake_case_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
snake_case_ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
snake_case_ = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 )
snake_case_ = AlignProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCAmelCase_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
snake_case_ = self.prepare_image_inputs()
snake_case_ = image_processor(UpperCAmelCase_ , return_tensors="""np""" )
snake_case_ = processor(images=UpperCAmelCase_ , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
snake_case_ = """lower newer"""
snake_case_ = processor(text=UpperCAmelCase_ )
snake_case_ = tokenizer(UpperCAmelCase_ , padding="""max_length""" , max_length=64 )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowerCAmelCase ( self : Dict ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
snake_case_ = """lower newer"""
snake_case_ = self.prepare_image_inputs()
snake_case_ = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase_ ):
processor()
def lowerCAmelCase ( self : int ) ->int:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
snake_case_ = processor.batch_decode(UpperCAmelCase_ )
snake_case_ = tokenizer.batch_decode(UpperCAmelCase_ )
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : int ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.get_image_processor()
snake_case_ = self.get_tokenizer()
snake_case_ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ )
snake_case_ = """lower newer"""
snake_case_ = self.prepare_image_inputs()
snake_case_ = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 708 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights']
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
if "emb" in name:
snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
snake_case_ = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
snake_case_ = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
snake_case_ = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
snake_case_ = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
snake_case_ = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]:
snake_case_ = list(state_dict.keys() )
snake_case_ = {}
for key in keys:
snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE )
if "in_proj_weight" in key:
# split fused qkv proj
snake_case_ = val[:hidden_size, :]
snake_case_ = val[hidden_size : 2 * hidden_size, :]
snake_case_ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
snake_case_ = val
else:
snake_case_ = val
return state_dict, enc_dec_proj_state_dict
def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
snake_case_ = 1_024
snake_case_ = 24
snake_case_ = 16
elif checkpoint == "medium":
snake_case_ = 1_536
snake_case_ = 48
snake_case_ = 24
elif checkpoint == "large":
snake_case_ = 2_048
snake_case_ = 48
snake_case_ = 32
else:
raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
snake_case_ = MusicgenDecoderConfig(
hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , )
return config
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple:
snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE )
snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE )
snake_case_ = fairseq_model.lm.state_dict()
snake_case_ , snake_case_ = rename_state_dict(
_SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size )
snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" )
snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE )
# check we can do a forward pass
snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
snake_case_ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" )
snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
# set the appropriate bos/pad token ids
snake_case_ = 2_048
snake_case_ = 2_048
# set other default generation config params
snake_case_ = int(30 * audio_encoder.config.frame_rate )
snake_case_ = True
snake_case_ = 3.0
if pytorch_dump_folder is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if repo_id:
logger.info(f"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
processor.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint',
default='small',
type=str,
help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.',
)
parser.add_argument(
'--pytorch_dump_folder',
required=True,
default=None,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
parser.add_argument(
'--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.'
)
__SCREAMING_SNAKE_CASE : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 2 | 0 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class __A :
'''simple docstring'''
def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = 13
snake_case_ = 7
snake_case_ = True
snake_case_ = True
snake_case_ = False
snake_case_ = True
snake_case_ = 99
snake_case_ = 32
snake_case_ = 2
snake_case_ = 4
snake_case_ = 37
snake_case_ = """gelu"""
snake_case_ = 0.1
snake_case_ = 0.1
snake_case_ = 512
snake_case_ = 16
snake_case_ = 2
snake_case_ = 0.02
snake_case_ = 3
snake_case_ = 4
snake_case_ = None
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = None
if self.use_input_mask:
snake_case_ = random_attention_mask([self.batch_size, self.seq_length] )
snake_case_ = None
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = ids_tensor([self.batch_size] , self.num_choices )
snake_case_ = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int ) ->str:
"""simple docstring"""
snake_case_ = TFDistilBertModel(config=UpperCAmelCase_ )
snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask}
snake_case_ = model(UpperCAmelCase_ )
snake_case_ = [input_ids, input_mask]
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] ) ->int:
"""simple docstring"""
snake_case_ = TFDistilBertForMaskedLM(config=UpperCAmelCase_ )
snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask}
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ) ->Optional[int]:
"""simple docstring"""
snake_case_ = TFDistilBertForQuestionAnswering(config=UpperCAmelCase_ )
snake_case_ = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
}
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) ->int:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = TFDistilBertForSequenceClassification(UpperCAmelCase_ )
snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask}
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict ) ->int:
"""simple docstring"""
snake_case_ = self.num_choices
snake_case_ = TFDistilBertForMultipleChoice(UpperCAmelCase_ )
snake_case_ = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) )
snake_case_ = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) )
snake_case_ = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
}
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = TFDistilBertForTokenClassification(UpperCAmelCase_ )
snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask}
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : str ) ->Tuple:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
((snake_case_) , (snake_case_) , (snake_case_) , (snake_case_) , (snake_case_) , (snake_case_)) = config_and_inputs
snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: str = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
__lowercase: int = (
{
"""feature-extraction""": TFDistilBertModel,
"""fill-mask""": TFDistilBertForMaskedLM,
"""question-answering""": TFDistilBertForQuestionAnswering,
"""text-classification""": TFDistilBertForSequenceClassification,
"""token-classification""": TFDistilBertForTokenClassification,
"""zero-shot""": TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__lowercase: Any = False
__lowercase: Optional[int] = False
def lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
snake_case_ = TFDistilBertModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , dim=37 )
def lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ) ->Tuple:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->str:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : List[Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
snake_case_ = TFDistilBertModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_tf
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" )
snake_case_ = tf.constant([[0, 1, 2, 3, 4, 5]] )
snake_case_ = model(UpperCAmelCase_ )[0]
snake_case_ = [1, 6, 768]
self.assertEqual(output.shape , UpperCAmelCase_ )
snake_case_ = tf.constant(
[
[
[0.19_261_885, -0.13_732_955, 0.4_119_799],
[0.22_150_156, -0.07_422_661, 0.39_037_204],
[0.22_756_018, -0.0_896_414, 0.3_701_467],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 )
| 709 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
if index == number_of_items:
return 0
snake_case_ = 0
snake_case_ = 0
snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 )
if weights[index] <= max_weight:
snake_case_ = values[index] + knapsack(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 )
return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
import argparse
import os
import pickle
import sys
import torch
from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils
from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
# We do this to be able to load python 2 datasets pickles
# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
__SCREAMING_SNAKE_CASE : List[str] = data_utils.TransfoXLTokenizer
__SCREAMING_SNAKE_CASE : Optional[int] = data_utils.TransfoXLCorpus
__SCREAMING_SNAKE_CASE : Optional[int] = data_utils
__SCREAMING_SNAKE_CASE : int = data_utils
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
if transfo_xl_dataset_file:
# Convert a pre-processed corpus (see original TensorFlow repo)
with open(_SCREAMING_SNAKE_CASE , """rb""" ) as fp:
snake_case_ = pickle.load(_SCREAMING_SNAKE_CASE , encoding="""latin1""" )
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
snake_case_ = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""]
print(f"""Save vocabulary to {pytorch_vocab_dump_path}""" )
snake_case_ = corpus.vocab.__dict__
torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = corpus.__dict__
corpus_dict_no_vocab.pop("""vocab""" , _SCREAMING_SNAKE_CASE )
snake_case_ = pytorch_dump_folder_path + """/""" + CORPUS_NAME
print(f"""Save dataset to {pytorch_dataset_dump_path}""" )
torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if tf_checkpoint_path:
# Convert a pre-trained TensorFlow model
snake_case_ = os.path.abspath(_SCREAMING_SNAKE_CASE )
snake_case_ = os.path.abspath(_SCREAMING_SNAKE_CASE )
print(f"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" )
# Initialise PyTorch model
if transfo_xl_config_file == "":
snake_case_ = TransfoXLConfig()
else:
snake_case_ = TransfoXLConfig.from_json_file(_SCREAMING_SNAKE_CASE )
print(f"""Building PyTorch model from configuration: {config}""" )
snake_case_ = TransfoXLLMHeadModel(_SCREAMING_SNAKE_CASE )
snake_case_ = load_tf_weights_in_transfo_xl(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Save pytorch-model
snake_case_ = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"""Save PyTorch model to {os.path.abspath(_SCREAMING_SNAKE_CASE )}""" )
torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE )
print(f"""Save configuration file to {os.path.abspath(_SCREAMING_SNAKE_CASE )}""" )
with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser()
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the folder to store the PyTorch model or dataset/vocab.',
)
parser.add_argument(
'--tf_checkpoint_path',
default='',
type=str,
help='An optional path to a TensorFlow checkpoint path to be converted.',
)
parser.add_argument(
'--transfo_xl_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained BERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--transfo_xl_dataset_file',
default='',
type=str,
help='An optional dataset file to be converted in a vocabulary.',
)
__SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args()
convert_transfo_xl_checkpoint_to_pytorch(
args.tf_checkpoint_path,
args.transfo_xl_config_file,
args.pytorch_dump_folder_path,
args.transfo_xl_dataset_file,
)
| 710 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int:
snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
snake_case_ = n // 2
return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
__SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 2 | 0 |
"""simple docstring"""
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__SCREAMING_SNAKE_CASE : Tuple = {
'facebook/mask2former-swin-small-coco-instance': (
'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json'
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
class __A (snake_case__):
__lowercase: Optional[Any] = """mask2former"""
__lowercase: Any = ["""swin"""]
__lowercase: Union[str, Any] = {"""hidden_size""": """hidden_dim"""}
def __init__( self : str , UpperCAmelCase_ : Optional[Dict] = None , UpperCAmelCase_ : int = 256 , UpperCAmelCase_ : int = 256 , UpperCAmelCase_ : int = 256 , UpperCAmelCase_ : int = 1_024 , UpperCAmelCase_ : str = "relu" , UpperCAmelCase_ : int = 6 , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : int = 2_048 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : int = 4 , UpperCAmelCase_ : int = 255 , UpperCAmelCase_ : int = 100 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 2.0 , UpperCAmelCase_ : float = 5.0 , UpperCAmelCase_ : float = 5.0 , UpperCAmelCase_ : int = 12_544 , UpperCAmelCase_ : float = 3.0 , UpperCAmelCase_ : float = 0.75 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : List[int] = [4, 8, 16, 32] , UpperCAmelCase_ : bool = None , **UpperCAmelCase_ : Optional[Any] , ) ->Dict:
"""simple docstring"""
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" )
snake_case_ = CONFIG_MAPPING["""swin"""](
image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=UpperCAmelCase_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = backbone_config.pop("""model_type""" )
snake_case_ = CONFIG_MAPPING[backbone_model_type]
snake_case_ = config_class.from_dict(UpperCAmelCase_ )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """
F"""Supported model types: {",".join(self.backbones_supported )}""" )
snake_case_ = backbone_config
snake_case_ = feature_size
snake_case_ = mask_feature_size
snake_case_ = hidden_dim
snake_case_ = encoder_feedforward_dim
snake_case_ = activation_function
snake_case_ = encoder_layers
snake_case_ = decoder_layers
snake_case_ = num_attention_heads
snake_case_ = dropout
snake_case_ = dim_feedforward
snake_case_ = pre_norm
snake_case_ = enforce_input_projection
snake_case_ = common_stride
snake_case_ = ignore_value
snake_case_ = num_queries
snake_case_ = no_object_weight
snake_case_ = class_weight
snake_case_ = mask_weight
snake_case_ = dice_weight
snake_case_ = train_num_points
snake_case_ = oversample_ratio
snake_case_ = importance_sample_ratio
snake_case_ = init_std
snake_case_ = init_xavier_std
snake_case_ = use_auxiliary_loss
snake_case_ = feature_strides
snake_case_ = output_auxiliary_logits
snake_case_ = decoder_layers
super().__init__(**UpperCAmelCase_ )
@classmethod
def lowerCAmelCase ( cls : Tuple , UpperCAmelCase_ : PretrainedConfig , **UpperCAmelCase_ : List[Any] ) ->int:
"""simple docstring"""
return cls(
backbone_config=UpperCAmelCase_ , **UpperCAmelCase_ , )
def lowerCAmelCase ( self : int ) ->Dict[str, any]:
"""simple docstring"""
snake_case_ = copy.deepcopy(self.__dict__ )
snake_case_ = self.backbone_config.to_dict()
snake_case_ = self.__class__.model_type
return output
| 711 |
"""simple docstring"""
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str:
snake_case_ = ascii_letters + digits + punctuation
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(_SCREAMING_SNAKE_CASE )
snake_case_ = i // 3
snake_case_ = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
snake_case_ = (
chars_incl
+ random(_SCREAMING_SNAKE_CASE , quotient + remainder )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
)
snake_case_ = list(_SCREAMING_SNAKE_CASE )
shuffle(_SCREAMING_SNAKE_CASE )
return "".join(_SCREAMING_SNAKE_CASE )
# random is a generalised function for letters, characters and numbers
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool:
if len(_SCREAMING_SNAKE_CASE ) < min_length:
# Your Password must be at least 8 characters long
return False
snake_case_ = any(char in ascii_uppercase for char in password )
snake_case_ = any(char in ascii_lowercase for char in password )
snake_case_ = any(char in digits for char in password )
snake_case_ = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def _a ( ) -> str:
snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() )
snake_case_ = input(
"""Please indicate the characters that must be in your password: """ ).strip()
print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) )
print(
"""Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , )
print("""[If you are thinking of using this passsword, You better save it.]""" )
if __name__ == "__main__":
main()
| 2 | 0 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=10 ) -> Optional[int]:
snake_case_ = []
for _ in range(_SCREAMING_SNAKE_CASE ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=10 ) -> int:
snake_case_ = []
for step in range(_SCREAMING_SNAKE_CASE ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ = os.path.join(_SCREAMING_SNAKE_CASE , """schedule.bin""" )
torch.save(scheduler.state_dict() , _SCREAMING_SNAKE_CASE )
snake_case_ = torch.load(_SCREAMING_SNAKE_CASE )
scheduler.load_state_dict(_SCREAMING_SNAKE_CASE )
return lrs
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str ) ->Optional[Any]:
"""simple docstring"""
self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) )
for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
self.assertAlmostEqual(UpperCAmelCase_ , UpperCAmelCase_ , delta=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase_ )
snake_case_ = torch.tensor([0.4, 0.2, -0.5] )
snake_case_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
snake_case_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
snake_case_ = criterion(UpperCAmelCase_ , UpperCAmelCase_ )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
snake_case_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase_ )
snake_case_ = torch.tensor([0.4, 0.2, -0.5] )
snake_case_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
snake_case_ = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase_ , weight_decay=0.0 , relative_step=UpperCAmelCase_ , scale_parameter=UpperCAmelCase_ , warmup_init=UpperCAmelCase_ , )
for _ in range(1_000 ):
snake_case_ = criterion(UpperCAmelCase_ , UpperCAmelCase_ )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
__lowercase: int = nn.Linear(50 , 50) if is_torch_available() else None
__lowercase: Tuple = AdamW(m.parameters() , lr=10.0) if is_torch_available() else None
__lowercase: int = 10
def lowerCAmelCase ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None ) ->Union[str, Any]:
"""simple docstring"""
self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) )
for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
self.assertAlmostEqual(UpperCAmelCase_ , UpperCAmelCase_ , delta=UpperCAmelCase_ , msg=UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
snake_case_ = {"""num_warmup_steps""": 2, """num_training_steps""": 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
snake_case_ = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"""num_warmup_steps""": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, """num_cycles""": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, """power""": 2.0, """lr_end""": 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"""num_warmup_steps""": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
snake_case_ , snake_case_ = data
snake_case_ = scheduler_func(self.optimizer , **UpperCAmelCase_ )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
snake_case_ = unwrap_schedule(UpperCAmelCase_ , self.num_steps )
self.assertListAlmostEqual(
UpperCAmelCase_ , UpperCAmelCase_ , tol=1E-2 , msg=F"""failed for {scheduler_func} in normal scheduler""" , )
snake_case_ = scheduler_func(self.optimizer , **UpperCAmelCase_ )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase_ ) # wrap to test picklability of the schedule
snake_case_ = unwrap_and_save_reload_schedule(UpperCAmelCase_ , self.num_steps )
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ , msg=F"""failed for {scheduler_func} in save and reload""" )
class __A :
'''simple docstring'''
def __init__( self : str , UpperCAmelCase_ : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = fn
def __call__( self : Optional[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int ) ->str:
"""simple docstring"""
return self.fn(*UpperCAmelCase_ , **UpperCAmelCase_ )
@classmethod
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Dict ) ->List[Any]:
"""simple docstring"""
snake_case_ = list(map(self , scheduler.lr_lambdas ) )
| 712 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_normalize
def lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
snake_case_ = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" )
image_processor_first.to_json_file(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
pass
def _a ( ) -> str:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
snake_case_ = Image.open(dataset[4]["""file"""] )
snake_case_ = Image.open(dataset[5]["""file"""] )
snake_case_ = [imagea, imagea]
return images
@require_vision
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
snake_case_ = prepare_images()
# test non-batched
snake_case_ = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_024) )
snake_case_ = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ )
# test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_024) )
snake_case_ = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
| 2 | 0 |
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Dict:
snake_case_ = (path or []) + [u]
for v in graph[u]:
if visited_edge[u][v] is False:
snake_case_ , snake_case_ = True, True
snake_case_ = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return path
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]:
snake_case_ = 0
snake_case_ = -1
for i in range(_SCREAMING_SNAKE_CASE ):
if i not in graph.keys():
continue
if len(graph[i] ) % 2 == 1:
odd_degree_nodes += 1
snake_case_ = i
if odd_degree_nodes == 0:
return 1, odd_node
if odd_degree_nodes == 2:
return 2, odd_node
return 3, odd_node
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
snake_case_ = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )]
snake_case_ , snake_case_ = check_circuit_or_path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if check == 3:
print("""graph is not Eulerian""" )
print("""no path""" )
return
snake_case_ = 1
if check == 2:
snake_case_ = odd_node
print("""graph has a Euler path""" )
if check == 1:
print("""graph has a Euler cycle""" )
snake_case_ = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(_SCREAMING_SNAKE_CASE )
def _a ( ) -> Any:
snake_case_ = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]}
snake_case_ = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]}
snake_case_ = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]}
snake_case_ = {1: [2, 3], 2: [1, 3], 3: [1, 2]}
snake_case_ = {
1: [],
2: []
# all degree is zero
}
snake_case_ = 10
check_euler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
check_euler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
check_euler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
check_euler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
check_euler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 713 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = scope
snake_case_ = range_bbox
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case_ = bbox[i, j, 3]
snake_case_ = bbox[i, j, 1]
snake_case_ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case_ = bbox[i, j, 2]
snake_case_ = bbox[i, j, 0]
snake_case_ = t
snake_case_ = None
if self.use_input_mask:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str:
"""simple docstring"""
snake_case_ = LiltModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict:
"""simple docstring"""
snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowercase: Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return True
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = LiltModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_torch
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ )
snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ )
snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ )
snake_case_ = torch.Size([1, 2, 768] )
snake_case_ = torch.tensor(
[[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 0 |
"""simple docstring"""
import argparse
import os
import re
import packaging.version
__SCREAMING_SNAKE_CASE : Optional[Any] = 'examples/'
__SCREAMING_SNAKE_CASE : int = {
'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'),
'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'),
'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'),
'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'),
}
__SCREAMING_SNAKE_CASE : Optional[int] = {
'init': 'src/transformers/__init__.py',
'setup': 'setup.py',
}
__SCREAMING_SNAKE_CASE : List[Any] = 'README.md'
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
with open(_SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
snake_case_ = f.read()
snake_case_ , snake_case_ = REPLACE_PATTERNS[pattern]
snake_case_ = replace.replace("""VERSION""" , _SCREAMING_SNAKE_CASE )
snake_case_ = re_pattern.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
for folder, directories, fnames in os.walk(_SCREAMING_SNAKE_CASE ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , pattern="""examples""" )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]:
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if not patch:
update_version_in_examples(_SCREAMING_SNAKE_CASE )
def _a ( ) -> Union[str, Any]:
snake_case_ = """🤗 Transformers currently provides the following architectures"""
snake_case_ = """1. Want to contribute a new model?"""
with open(_SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
snake_case_ = f.readlines()
# Find the start of the list.
snake_case_ = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
snake_case_ = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
snake_case_ = lines[index].replace(
"""https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , )
index += 1
with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(_SCREAMING_SNAKE_CASE )
def _a ( ) -> List[str]:
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
snake_case_ = f.read()
snake_case_ = REPLACE_PATTERNS["""init"""][0].search(_SCREAMING_SNAKE_CASE ).groups()[0]
return packaging.version.parse(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE=False ) -> List[str]:
snake_case_ = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
snake_case_ = default_version.base_version
elif patch:
snake_case_ = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
snake_case_ = f"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
snake_case_ = input(f"""Which version are you releasing? [{default_version}]""" )
if len(_SCREAMING_SNAKE_CASE ) == 0:
snake_case_ = default_version
print(f"""Updating version to {version}.""" )
global_version_update(_SCREAMING_SNAKE_CASE , patch=_SCREAMING_SNAKE_CASE )
if not patch:
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
def _a ( ) -> Optional[int]:
snake_case_ = get_version()
snake_case_ = f"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
snake_case_ = current_version.base_version
# Check with the user we got that right.
snake_case_ = input(f"""Which version are we developing now? [{dev_version}]""" )
if len(_SCREAMING_SNAKE_CASE ) == 0:
snake_case_ = dev_version
print(f"""Updating version to {version}.""" )
global_version_update(_SCREAMING_SNAKE_CASE )
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser()
parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.')
parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.')
__SCREAMING_SNAKE_CASE : Any = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('Nothing to do after a patch :-)')
else:
post_release_work()
| 714 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = 0
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
snake_case_ = i + 1
else:
snake_case_ = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
| 2 | 0 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
if index == number_of_items:
return 0
snake_case_ = 0
snake_case_ = 0
snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 )
if weights[index] <= max_weight:
snake_case_ = values[index] + knapsack(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 )
return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 715 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : List[str] = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Dict = """ctrl"""
__lowercase: Optional[Any] = ["""past_key_values"""]
__lowercase: Optional[Any] = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : List[str] , UpperCAmelCase_ : Dict=246_534 , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Dict=1_280 , UpperCAmelCase_ : List[str]=8_192 , UpperCAmelCase_ : str=48 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=1E-6 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : int=True , **UpperCAmelCase_ : int , ) ->Dict:
"""simple docstring"""
snake_case_ = vocab_size
snake_case_ = n_positions
snake_case_ = n_embd
snake_case_ = n_layer
snake_case_ = n_head
snake_case_ = dff
snake_case_ = resid_pdrop
snake_case_ = embd_pdrop
snake_case_ = layer_norm_epsilon
snake_case_ = initializer_range
snake_case_ = use_cache
super().__init__(**UpperCAmelCase_ )
| 716 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter'
__SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE'
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}"""
raise TypeError(_SCREAMING_SNAKE_CASE )
snake_case_ = spanish_id.replace("""-""" , """""" ).upper()
if len(_SCREAMING_SNAKE_CASE ) != 9:
raise ValueError(_SCREAMING_SNAKE_CASE )
try:
snake_case_ = int(spanish_id_clean[0:8] )
snake_case_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_SCREAMING_SNAKE_CASE ) from ex
if letter.isdigit():
raise ValueError(_SCREAMING_SNAKE_CASE )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class __A (snake_case__):
'''simple docstring'''
__lowercase: List[str] = """char"""
__lowercase: Any = """bpe"""
__lowercase: Dict = """wp"""
__SCREAMING_SNAKE_CASE : Any = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = ["""image_processor""", """char_tokenizer"""]
__lowercase: Union[str, Any] = """ViTImageProcessor"""
__lowercase: Any = """MgpstrTokenizer"""
def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , **UpperCAmelCase_ : Dict ) ->Dict:
"""simple docstring"""
snake_case_ = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , UpperCAmelCase_ , )
snake_case_ = kwargs.pop("""feature_extractor""" )
snake_case_ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
snake_case_ = tokenizer
snake_case_ = AutoTokenizer.from_pretrained("""gpt2""" )
snake_case_ = AutoTokenizer.from_pretrained("""bert-base-uncased""" )
super().__init__(UpperCAmelCase_ , UpperCAmelCase_ )
def __call__( self : Optional[Any] , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Any ) ->Any:
"""simple docstring"""
if images is None and text is None:
raise ValueError("""You need to specify either an `images` or `text` input to process.""" )
if images is not None:
snake_case_ = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ )
if text is not None:
snake_case_ = self.char_tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ )
if text is None:
return inputs
elif images is None:
return encodings
else:
snake_case_ = encodings["""input_ids"""]
return inputs
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ , snake_case_ , snake_case_ = sequences
snake_case_ = char_preds.size(0 )
snake_case_ , snake_case_ = self._decode_helper(UpperCAmelCase_ , """char""" )
snake_case_ , snake_case_ = self._decode_helper(UpperCAmelCase_ , """bpe""" )
snake_case_ , snake_case_ = self._decode_helper(UpperCAmelCase_ , """wp""" )
snake_case_ = []
snake_case_ = []
for i in range(UpperCAmelCase_ ):
snake_case_ = [char_scores[i], bpe_scores[i], wp_scores[i]]
snake_case_ = [char_strs[i], bpe_strs[i], wp_strs[i]]
snake_case_ = scores.index(max(UpperCAmelCase_ ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
snake_case_ = {}
snake_case_ = final_strs
snake_case_ = final_scores
snake_case_ = char_strs
snake_case_ = bpe_strs
snake_case_ = wp_strs
return out
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
if format == DecodeType.CHARACTER:
snake_case_ = self.char_decode
snake_case_ = 1
snake_case_ = """[s]"""
elif format == DecodeType.BPE:
snake_case_ = self.bpe_decode
snake_case_ = 2
snake_case_ = """#"""
elif format == DecodeType.WORDPIECE:
snake_case_ = self.wp_decode
snake_case_ = 102
snake_case_ = """[SEP]"""
else:
raise ValueError(F"""Format {format} is not supported.""" )
snake_case_ , snake_case_ = [], []
snake_case_ = pred_logits.size(0 )
snake_case_ = pred_logits.size(1 )
snake_case_ , snake_case_ = pred_logits.topk(1 , dim=-1 , largest=UpperCAmelCase_ , sorted=UpperCAmelCase_ )
snake_case_ = preds_index.view(-1 , UpperCAmelCase_ )[:, 1:]
snake_case_ = decoder(UpperCAmelCase_ )
snake_case_ , snake_case_ = torch.nn.functional.softmax(UpperCAmelCase_ , dim=2 ).max(dim=2 )
snake_case_ = preds_max_prob[:, 1:]
for index in range(UpperCAmelCase_ ):
snake_case_ = preds_str[index].find(UpperCAmelCase_ )
snake_case_ = preds_str[index][:pred_eos]
snake_case_ = preds_index[index].cpu().tolist()
snake_case_ = pred_index.index(UpperCAmelCase_ ) if eos_token in pred_index else -1
snake_case_ = preds_max_prob[index][: pred_eos_index + 1]
snake_case_ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(UpperCAmelCase_ )
conf_scores.append(UpperCAmelCase_ )
return dec_strs, conf_scores
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->Dict:
"""simple docstring"""
snake_case_ = [seq.replace(""" """ , """""" ) for seq in self.char_tokenizer.batch_decode(UpperCAmelCase_ )]
return decode_strs
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Optional[Any] ) ->str:
"""simple docstring"""
return self.bpe_tokenizer.batch_decode(UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] ) ->str:
"""simple docstring"""
snake_case_ = [seq.replace(""" """ , """""" ) for seq in self.wp_tokenizer.batch_decode(UpperCAmelCase_ )]
return decode_strs
| 717 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'}
__SCREAMING_SNAKE_CASE : List[str] = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
}
}
__SCREAMING_SNAKE_CASE : List[str] = {
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
__SCREAMING_SNAKE_CASE : int = '▁'
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = VOCAB_FILES_NAMES
__lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None:
"""simple docstring"""
snake_case_ = (
AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
else mask_token
)
snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
snake_case_ = do_lower_case
snake_case_ = remove_space
snake_case_ = keep_accents
snake_case_ = vocab_file
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
return len(self.sp_model )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) ->List[str]:
"""simple docstring"""
snake_case_ = self.__dict__.copy()
snake_case_ = None
return state
def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
snake_case_ = {}
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str:
"""simple docstring"""
if self.remove_space:
snake_case_ = """ """.join(inputs.strip().split() )
else:
snake_case_ = inputs
snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ )
snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] )
if self.do_lower_case:
snake_case_ = outputs.lower()
return outputs
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
snake_case_ = self.preprocess_text(UpperCAmelCase_ )
snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
snake_case_ = []
for piece in pieces:
if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
snake_case_ = cur_pieces[1:]
else:
snake_case_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCAmelCase_ )
else:
new_pieces.append(UpperCAmelCase_ )
return new_pieces
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict:
"""simple docstring"""
return self.sp_model.PieceToId(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return self.sp_model.IdToPiece(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any:
"""simple docstring"""
snake_case_ = []
snake_case_ = """"""
snake_case_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase_ ) + token
snake_case_ = True
snake_case_ = []
else:
current_sub_tokens.append(UpperCAmelCase_ )
snake_case_ = False
out_string += self.sp_model.decode(UpperCAmelCase_ )
return out_string.strip()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , """wb""" ) as fi:
snake_case_ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
return (out_vocab_file,)
| 2 | 0 |
"""simple docstring"""
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
snake_case_ = UniSpeechSatForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE )
snake_case_ = downstream_dict["""projector.weight"""]
snake_case_ = downstream_dict["""projector.bias"""]
snake_case_ = downstream_dict["""model.post_net.linear.weight"""]
snake_case_ = downstream_dict["""model.post_net.linear.bias"""]
return model
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
snake_case_ = UniSpeechSatForAudioFrameClassification.from_pretrained(_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE )
snake_case_ = downstream_dict["""model.linear.weight"""]
snake_case_ = downstream_dict["""model.linear.bias"""]
return model
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
snake_case_ = UniSpeechSatForXVector.from_pretrained(_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE )
snake_case_ = downstream_dict["""connector.weight"""]
snake_case_ = downstream_dict["""connector.bias"""]
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
snake_case_ = downstream_dict[
f"""model.framelevel_feature_extractor.module.{i}.kernel.weight"""
]
snake_case_ = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""]
snake_case_ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""]
snake_case_ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""]
snake_case_ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""]
snake_case_ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""]
snake_case_ = downstream_dict["""objective.W"""]
return model
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
snake_case_ = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )
snake_case_ = checkpoint["""Downstream"""]
snake_case_ = UniSpeechSatConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = WavaVecaFeatureExtractor.from_pretrained(
_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , do_normalize=_SCREAMING_SNAKE_CASE )
snake_case_ = hf_config.architectures[0]
if arch.endswith("""ForSequenceClassification""" ):
snake_case_ = convert_classification(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif arch.endswith("""ForAudioFrameClassification""" ):
snake_case_ = convert_diarization(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif arch.endswith("""ForXVector""" ):
snake_case_ = convert_xvector(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" )
if hf_config.use_weighted_layer_sum:
snake_case_ = checkpoint["""Featurizer"""]["""weights"""]
hf_feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE )
hf_model.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
parser.add_argument(
'--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.'
)
parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.')
parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.')
__SCREAMING_SNAKE_CASE : Any = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 718 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("""The given input must be positive""" )
# get the generated string sequence
snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = int(sequence[i] , 2 )
return sequence
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
snake_case_ = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
snake_case_ = gray_code_sequence_string(bit_count - 1 )
snake_case_ = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
snake_case_ = """0""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
snake_case_ = """1""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/'
__SCREAMING_SNAKE_CASE : List[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
snake_case_ = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
snake_case_ = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = {}
import re
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# keep original key
else:
snake_case_ = original_key
snake_case_ = replace_key(_SCREAMING_SNAKE_CASE )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
snake_case_ = original_key
snake_case_ = original_key
snake_case_ = value
return new_dict
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ):
snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE )
open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content )
snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]]
snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE )
snake_case_ = []
snake_case_ = {}
for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""]
snake_case_ = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
snake_case_ = old_dic[k]
elif k.endswith(""".w""" ):
snake_case_ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
snake_case_ = old_dic[k]
else:
snake_case_ = old_dic[k]
snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}"""
snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
weight_dict.append(_SCREAMING_SNAKE_CASE )
snake_case_ = weight_dict.pop(0 )
model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
return weight_dict
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 719 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 0 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE = 4 ) -> list[list[int]]:
snake_case_ = abs(_SCREAMING_SNAKE_CASE ) or 4
return [[1 + x + y * row_size for x in range(_SCREAMING_SNAKE_CASE )] for y in range(_SCREAMING_SNAKE_CASE )]
def _a ( _SCREAMING_SNAKE_CASE ) -> list[list[int]]:
return reverse_row(transpose(_SCREAMING_SNAKE_CASE ) )
# OR.. transpose(reverse_column(matrix))
def _a ( _SCREAMING_SNAKE_CASE ) -> list[list[int]]:
return reverse_row(reverse_column(_SCREAMING_SNAKE_CASE ) )
# OR.. reverse_column(reverse_row(matrix))
def _a ( _SCREAMING_SNAKE_CASE ) -> list[list[int]]:
return reverse_column(transpose(_SCREAMING_SNAKE_CASE ) )
# OR.. transpose(reverse_row(matrix))
def _a ( _SCREAMING_SNAKE_CASE ) -> list[list[int]]:
snake_case_ = [list(_SCREAMING_SNAKE_CASE ) for x in zip(*_SCREAMING_SNAKE_CASE )]
return matrix
def _a ( _SCREAMING_SNAKE_CASE ) -> list[list[int]]:
snake_case_ = matrix[::-1]
return matrix
def _a ( _SCREAMING_SNAKE_CASE ) -> list[list[int]]:
snake_case_ = [x[::-1] for x in matrix]
return matrix
def _a ( _SCREAMING_SNAKE_CASE ) -> None:
for i in matrix:
print(*_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : int = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 90 counterclockwise:\n')
print_matrix(rotate_aa(matrix))
__SCREAMING_SNAKE_CASE : Tuple = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 180:\n')
print_matrix(rotate_aaa(matrix))
__SCREAMING_SNAKE_CASE : Optional[int] = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 270 counterclockwise:\n')
print_matrix(rotate_aaa(matrix))
| 720 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/'
__SCREAMING_SNAKE_CASE : List[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
snake_case_ = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
snake_case_ = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = {}
import re
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# keep original key
else:
snake_case_ = original_key
snake_case_ = replace_key(_SCREAMING_SNAKE_CASE )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
snake_case_ = original_key
snake_case_ = original_key
snake_case_ = value
return new_dict
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ):
snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE )
open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content )
snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]]
snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE )
snake_case_ = []
snake_case_ = {}
for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""]
snake_case_ = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
snake_case_ = old_dic[k]
elif k.endswith(""".w""" ):
snake_case_ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
snake_case_ = old_dic[k]
else:
snake_case_ = old_dic[k]
snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}"""
snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
weight_dict.append(_SCREAMING_SNAKE_CASE )
snake_case_ = weight_dict.pop(0 )
model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
return weight_dict
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 2 | 0 |
"""simple docstring"""
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing the experiment tracking capability,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__SCREAMING_SNAKE_CASE : Any = 16
__SCREAMING_SNAKE_CASE : List[str] = 32
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 16 ) -> Tuple:
snake_case_ = AutoTokenizer.from_pretrained("""bert-base-cased""" )
snake_case_ = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(_SCREAMING_SNAKE_CASE ):
# max_length=None => use the model max length (it's actually the default)
snake_case_ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
snake_case_ = datasets.map(
_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
snake_case_ = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(_SCREAMING_SNAKE_CASE ):
# On TPU it's best to pad everything to the same length or training will be very slow.
snake_case_ = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
snake_case_ = 16
elif accelerator.mixed_precision != "no":
snake_case_ = 8
else:
snake_case_ = None
return tokenizer.pad(
_SCREAMING_SNAKE_CASE , padding="""longest""" , max_length=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , )
# Instantiate dataloaders.
snake_case_ = DataLoader(
tokenized_datasets["""train"""] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE )
snake_case_ = DataLoader(
tokenized_datasets["""validation"""] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
__SCREAMING_SNAKE_CASE : Tuple = mocked_dataloaders # noqa: F811
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _SCREAMING_SNAKE_CASE ) == "1":
snake_case_ = 2
# Initialize Accelerator
# New Code #
# We pass in "all" to `log_with` to grab all available trackers in the environment
# Note: If using a custom `Tracker` class, should be passed in here such as:
# >>> log_with = ["all", MyCustomTrackerClassInstance()]
if args.with_tracking:
snake_case_ = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir )
else:
snake_case_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
snake_case_ = config["""lr"""]
snake_case_ = int(config["""num_epochs"""] )
snake_case_ = int(config["""seed"""] )
snake_case_ = int(config["""batch_size"""] )
set_seed(_SCREAMING_SNAKE_CASE )
snake_case_ , snake_case_ = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = evaluate.load("""glue""" , """mrpc""" )
# If the batch size is too big we use gradient accumulation
snake_case_ = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
snake_case_ = batch_size // MAX_GPU_BATCH_SIZE
snake_case_ = MAX_GPU_BATCH_SIZE
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
snake_case_ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_SCREAMING_SNAKE_CASE )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
snake_case_ = model.to(accelerator.device )
# Instantiate optimizer
snake_case_ = AdamW(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE )
# Instantiate scheduler
snake_case_ = get_linear_schedule_with_warmup(
optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = accelerator.prepare(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# New Code #
# We need to initialize the trackers we use. Overall configurations can also be stored
if args.with_tracking:
snake_case_ = os.path.split(_SCREAMING_SNAKE_CASE )[-1].split(""".""" )[0]
accelerator.init_trackers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Now we train the model
for epoch in range(_SCREAMING_SNAKE_CASE ):
model.train()
# New Code #
# For our tracking example, we will log the total loss of each epoch
if args.with_tracking:
snake_case_ = 0
for step, batch in enumerate(_SCREAMING_SNAKE_CASE ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
snake_case_ = model(**_SCREAMING_SNAKE_CASE )
snake_case_ = outputs.loss
# New Code #
if args.with_tracking:
total_loss += loss.detach().float()
snake_case_ = loss / gradient_accumulation_steps
accelerator.backward(_SCREAMING_SNAKE_CASE )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(_SCREAMING_SNAKE_CASE ):
# We could avoid this line since we set the accelerator with `device_placement=True` (the default).
batch.to(accelerator.device )
with torch.no_grad():
snake_case_ = model(**_SCREAMING_SNAKE_CASE )
snake_case_ = outputs.logits.argmax(dim=-1 )
snake_case_ , snake_case_ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , )
snake_case_ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""" , _SCREAMING_SNAKE_CASE )
# New Code #
# To actually log, we call `Accelerator.log`
# The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int`
if args.with_tracking:
accelerator.log(
{
"""accuracy""": eval_metric["""accuracy"""],
"""f1""": eval_metric["""f1"""],
"""train_loss""": total_loss.item() / len(_SCREAMING_SNAKE_CASE ),
"""epoch""": epoch,
} , step=_SCREAMING_SNAKE_CASE , )
# New Code #
# When a run is finished, you should call `accelerator.end_training()`
# to close all of the open trackers
if args.with_tracking:
accelerator.end_training()
def _a ( ) -> Any:
snake_case_ = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
parser.add_argument(
"""--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , )
parser.add_argument(
"""--project_dir""" , type=_SCREAMING_SNAKE_CASE , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , )
snake_case_ = parser.parse_args()
snake_case_ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 721 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__SCREAMING_SNAKE_CASE : Dict = 'zero2'
__SCREAMING_SNAKE_CASE : List[Any] = 'zero3'
__SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __A (snake_case__):
'''simple docstring'''
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = models[model]
snake_case_ = self.run_trainer(
stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
self.do_checks(UpperCAmelCase_ )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ )
snake_case_ = F"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(UpperCAmelCase_ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
snake_case_ = self.get_launcher(UpperCAmelCase_ )
snake_case_ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple:
"""simple docstring"""
snake_case_ = min(2 , get_gpu_count() ) if distributed else 1
return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 2 | 0 |
"""simple docstring"""
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __A :
'''simple docstring'''
@staticmethod
def lowerCAmelCase ( *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str] ) ->Any:
"""simple docstring"""
pass
@is_pipeline_test
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
@require_torch
def lowerCAmelCase ( self : Dict ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = pipeline(
model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , )
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
snake_case_ = image_classifier(UpperCAmelCase_ , candidate_labels=["""a""", """b""", """c"""] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(UpperCAmelCase_ ) , [
[{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}],
[{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}],
] , )
snake_case_ = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase_ ) , [
[
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
],
[
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
],
[
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
],
[
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
],
[
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
],
] , )
@require_tf
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = pipeline(
model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" )
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
snake_case_ = image_classifier(UpperCAmelCase_ , candidate_labels=["""a""", """b""", """c"""] )
self.assertEqual(
nested_simplify(UpperCAmelCase_ ) , [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}] , )
snake_case_ = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase_ ) , [
[
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
],
[
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
],
[
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
],
[
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
],
[
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
{"""score""": 0.333, """label""": ANY(UpperCAmelCase_ )},
],
] , )
@slow
@require_torch
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
snake_case_ = pipeline(
task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , )
# This is an image of 2 cats with remotes and no planes
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
snake_case_ = image_classifier(UpperCAmelCase_ , candidate_labels=["""cat""", """plane""", """remote"""] )
self.assertEqual(
nested_simplify(UpperCAmelCase_ ) , [
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
] , )
snake_case_ = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase_ ) , [
[
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
],
]
* 5 , )
@slow
@require_tf
def lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
snake_case_ = pipeline(
task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" )
# This is an image of 2 cats with remotes and no planes
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
snake_case_ = image_classifier(UpperCAmelCase_ , candidate_labels=["""cat""", """plane""", """remote"""] )
self.assertEqual(
nested_simplify(UpperCAmelCase_ ) , [
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
] , )
snake_case_ = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase_ ) , [
[
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
],
]
* 5 , )
| 700 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True})
__lowercase: ClassVar[Features] = Features({"""audio""": Audio()})
__lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")})
__lowercase: str = "audio"
__lowercase: str = "transcription"
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int:
"""simple docstring"""
if self.audio_column not in features:
raise ValueError(F"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , UpperCAmelCase_ ):
raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" )
snake_case_ = copy.deepcopy(self )
snake_case_ = self.input_schema.copy()
snake_case_ = features[self.audio_column]
snake_case_ = input_schema
return task_template
@property
def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]:
"""simple docstring"""
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 2 | 0 |
"""simple docstring"""
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class __A (unittest.TestCase):
'''simple docstring'''
__lowercase: Any = JukeboxTokenizer
__lowercase: Union[str, Any] = {
"""artist""": """Zac Brown Band""",
"""genres""": """Country""",
"""lyrics""": """I met a traveller from an antique land,
Who said \"Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
""",
}
@require_torch
def lowerCAmelCase ( self : List[Any] ) ->int:
"""simple docstring"""
import torch
snake_case_ = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" )
snake_case_ = tokenizer(**self.metas )["""input_ids"""]
# fmt: off
snake_case_ = [
torch.tensor([[
0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1_069, 11]] ),
torch.tensor([[0, 0, 0, 1_069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def lowerCAmelCase ( self : int ) ->Any:
"""simple docstring"""
import torch
snake_case_ = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" )
snake_case_ = tokenizer(**self.metas )["""input_ids"""]
# fmt: off
snake_case_ = [
torch.tensor([[
0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 701 |
"""simple docstring"""
from functools import reduce
__SCREAMING_SNAKE_CASE : Tuple = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def _a ( _SCREAMING_SNAKE_CASE = N ) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) )
for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 | 0 |
Subsets and Splits