text
stringlengths
78
104k
score
float64
0
0.18
def qps(self, callback=None, errback=None): """ Return the current QPS for this record :rtype: dict :return: QPS information """ if not self.data: raise RecordException('record not loaded') stats = Stats(self.parentZone.config) return stats.qps(zone=self.parentZone.zone, domain=self.domain, type=self.type, callback=callback, errback=errback)
0.003846
def calls(ctx, obj, limit): """ List call/short positions of an account or an asset """ if obj.upper() == obj: # Asset from bitshares.asset import Asset asset = Asset(obj, full=True) calls = asset.get_call_orders(limit) t = [["acount", "debt", "collateral", "call price", "ratio"]] for call in calls: t.append( [ str(call["account"]["name"]), str(call["debt"]), str(call["collateral"]), str(call["call_price"]), "%.2f" % (call["ratio"]), ] ) print_table(t) else: # Account from bitshares.dex import Dex dex = Dex(bitshares_instance=ctx.bitshares) calls = dex.list_debt_positions(account=obj) t = [["debt", "collateral", "call price", "ratio"]] for symbol in calls: t.append( [ str(calls[symbol]["debt"]), str(calls[symbol]["collateral"]), str(calls[symbol]["call_price"]), "%.2f" % (calls[symbol]["ratio"]), ] ) print_table(t)
0.000801
def fill(self, postf_un_ops: str): """ Insert: * math styles * other styles * unary prefix operators without brackets * defaults """ for op, dic in self.ops.items(): if 'postf' not in dic: dic['postf'] = self.postf self.ops = OrderedDict( self.styles.spec(postf_un_ops) + self.other_styles.spec(postf_un_ops) + self.pref_un_greedy.spec() + list(self.ops.items()) ) for op, dic in self.ops.items(): dic['postf'] = re.compile(dic['postf']) self.regex = _search_regex(self.ops, self.regex_pat)
0.002933
def getThesaurus(self, word): """response = requests.get("http://words.bighugelabs.com/api/2/%s/%s/json" % (self.tkey, word)).json() return response""" response = requests.get( "http://api.wordnik.com:80/v4/word.json/%s/relatedWords?" "useCanonical=false&relationshipTypes=synonym&limitPer" "RelationshipType=15&api_key=%s" % (word, key)).json() try: return response[0] except IndexError: pass
0.005758
def delete(self, symbol): """ Deletes a Symbol. Parameters ---------- symbol : str or Symbol """ if isinstance(symbol, (str, unicode)): sym = self.get(symbol) elif isinstance(symbol, Symbol): sym = symbol else: raise Exception("Invalid symbol {}".format((repr(symbol)))) # Has to handle the case where the table would exist already # and where it wouldn't. try: sym.datatable = Table(sym.name, Base.metadata, autoload=True) sym.datatable.drop(self.eng, checkfirst=True) except NoSuchTableError: print "No worries, {} never existed to begin with.".format(sym.name) self.ses.delete(sym) self.ses.commit()
0.004825
def forward(self, X): """Forward function. :param X: The input (batch) of the model contains word sequences for lstm and features. :type X: For word sequences: a list of torch.Tensor pair (word sequence and word mask) of shape (batch_size, sequence_length). For features: torch.Tensor of shape (batch_size, feature_size). :return: The output of LSTM layer. :rtype: torch.Tensor of shape (batch_size, num_classes) """ s = X[:-1] f = X[-1] batch_size = len(f) outputs = self._cuda(torch.Tensor([])) # Calculate textual features from LSTMs for i in range(len(s)): state_word = self.lstms[0].init_hidden(batch_size) output = self.lstms[0].forward(s[i][0], s[i][1], state_word) outputs = torch.cat((outputs, output), 1) # Concatenate textual features with multi-modal features outputs = torch.cat((outputs, f), 1) return self.linear(outputs)
0.002899
def addfile(project, filename, user, postdata, inputsource=None,returntype='xml'): #pylint: disable=too-many-return-statements """Add a new input file, this invokes the actual uploader""" def errorresponse(msg, code=403): if returntype == 'json': return withheaders(flask.make_response("{success: false, error: '" + msg + "'}"),'application/json',{'allow_origin': settings.ALLOW_ORIGIN}) else: return withheaders(flask.make_response(msg,403),headers={'allow_origin': settings.ALLOW_ORIGIN}) #(it will have to be explicitly deleted by the client first) inputtemplate_id = flask.request.headers.get('Inputtemplate','') inputtemplate = None metadata = None printdebug('Handling addfile, postdata contains fields ' + ",".join(postdata.keys()) ) if 'inputtemplate' in postdata: inputtemplate_id = postdata['inputtemplate'] if inputtemplate_id: #An input template must always be provided for profile in settings.PROFILES: for t in profile.input: if t.id == inputtemplate_id: inputtemplate = t if not inputtemplate: #Inputtemplate not found, send 404 printlog("Specified inputtemplate (" + inputtemplate_id + ") not found!") return withheaders(flask.make_response("Specified inputtemplate (" + inputtemplate_id + ") not found!",404),headers={'allow_origin': settings.ALLOW_ORIGIN}) printdebug('Inputtemplate explicitly provided: ' + inputtemplate.id ) if not inputtemplate: #See if an inputtemplate is explicitly specified in the filename printdebug('Attempting to determine input template from filename ' + filename ) if '/' in filename.strip('/'): raw = filename.split('/') inputtemplate = None for profile in settings.PROFILES: for it in profile.input: if it.id == raw[0]: inputtemplate = it break if inputtemplate: filename = raw[1] if not inputtemplate: #Check if the specified filename can be uniquely associated with an inputtemplate for profile in settings.PROFILES: for t in profile.input: if t.filename == filename: if inputtemplate: #we found another one, not unique!! reset and break inputtemplate = None break else: #good, we found one, don't break cause we want to make sure there is only one inputtemplate = t if not inputtemplate: printlog("No inputtemplate specified and filename " + filename + " does not uniquely match with any inputtemplate!") return errorresponse("No inputtemplate specified nor auto-detected for filename " + filename + "!",404) #See if other previously uploaded input files use this inputtemplate if inputtemplate.unique: nextseq = 0 #unique else: nextseq = 1 #will hold the next sequence number for this inputtemplate (in multi-mode only) for seq, inputfile in Project.inputindexbytemplate(project, user, inputtemplate): #pylint: disable=unused-variable if inputtemplate.unique: return errorresponse("You have already submitted a file of this type, you can only submit one. Delete it first. (Inputtemplate=" + inputtemplate.id + ", unique=True)") else: if seq >= nextseq: nextseq = seq + 1 #next available sequence number if not filename: #Actually, I don't think this can occur at this stage, but we'll leave it in to be sure (yes it can, when the entry shortcut is used!) if inputtemplate.filename: filename = inputtemplate.filename elif inputtemplate.extension: filename = str(nextseq) +'-' + str("%034x" % random.getrandbits(128)) + '.' + inputtemplate.extension else: filename = str(nextseq) +'-' + str("%034x" % random.getrandbits(128)) #Make sure filename matches (only if not an archive) if inputtemplate.acceptarchive and (filename[-7:].lower() == '.tar.gz' or filename[-8:].lower() == '.tar.bz2' or filename[-4:].lower() == '.zip'): pass else: if inputtemplate.filename: if filename != inputtemplate.filename: filename = inputtemplate.filename #return flask.make_response("Specified filename must the filename dictated by the inputtemplate, which is " + inputtemplate.filename) #TODO LATER: add support for calling this with an actual number instead of # if inputtemplate.extension: if filename[-len(inputtemplate.extension) - 1:].lower() == '.' + inputtemplate.extension.lower(): #good, extension matches (case independent). Let's just make sure the case is as defined exactly by the inputtemplate filename = filename[:-len(inputtemplate.extension) - 1] + '.' + inputtemplate.extension else: filename = filename + '.' + inputtemplate.extension #return flask.make_response("Specified filename does not have the extension dictated by the inputtemplate ("+inputtemplate.extension+")") #403 if inputtemplate.onlyinputsource and (not 'inputsource' in postdata or not postdata['inputsource']): return errorresponse("Adding files for this inputtemplate must proceed through inputsource") if 'converter' in postdata and postdata['converter'] and not postdata['converter'] in [ x.id for x in inputtemplate.converters]: return errorresponse("Invalid converter specified: " + postdata['converter']) #Make sure the filename is secure validfilename = True DISALLOWED = ('/','&','|','<','>',';','"',"'","`","{","}","\n","\r","\b","\t") for c in filename: if c in DISALLOWED: validfilename = False break if not validfilename: return errorresponse("Filename contains invalid symbols! Do not use /,&,|,<,>,',`,\",{,} or ;") #Create the project (no effect if already exists) response = Project.create(project, user) if response is not None: return response printdebug("(Obtaining filename for uploaded file)") head = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n" head += "<clamupload>\n" if 'file' in flask.request.files: printlog("Adding client-side file " + flask.request.files['file'].filename + " to input files") sourcefile = flask.request.files['file'].filename elif 'url' in postdata and postdata['url']: #Download from URL printlog("Adding web-based URL " + postdata['url'] + " to input files") sourcefile = os.path.basename(postdata['url']) elif 'contents' in postdata and postdata['contents']: #In message printlog("Adding file " + filename + " with explicitly provided contents to input files") sourcefile = "editor" elif 'inputsource' in postdata and postdata['inputsource']: printlog("Adding file " + filename + " from preinstalled data to input files") if not inputsource: inputsource = None for s in inputtemplate.inputsources: if s.id.lower() == postdata['inputsource'].lower(): inputsource = s if not inputsource: return errorresponse("Specified inputsource '" + postdata['inputsource'] + "' does not exist for inputtemplate '"+inputtemplate.id+"'") sourcefile = os.path.basename(inputsource.path) elif 'accesstoken' in postdata and 'filename' in postdata: #XHR POST, data in body printlog("Adding client-side file " + filename + " to input files. Uploaded using XHR POST") sourcefile = postdata['filename'] else: return errorresponse("No file, url or contents specified!") #============================ Generate metadata ======================================== printdebug('(Generating and validating metadata)') if 'metafile' in flask.request.files: #and (not isinstance(postdata['metafile'], dict) or len(postdata['metafile']) > 0)): #an explicit metadata file was provided, upload it: printlog("Metadata explicitly provided in file, uploading...") #Upload file from client to server metafile = Project.path(project, user) + 'input/.' + filename + '.METADATA' flask.request.files['metafile'].save(metafile) try: with io.open(metafile,'r',encoding='utf-8') as f: metadata = clam.common.data.CLAMMetaData.fromxml(f.read()) errors, parameters = inputtemplate.validate(metadata, user) validmeta = True except Exception as e: #pylint: disable=broad-except printlog("Uploaded metadata is invalid! " + str(e)) metadata = None errors = True parameters = [] validmeta = False elif 'metadata' in postdata and postdata['metadata']: printlog("Metadata explicitly provided in message, uploading...") try: metadata = clam.common.data.CLAMMetaData.fromxml(postdata['metadata']) errors, parameters = inputtemplate.validate(metadata, user) validmeta = True except: #pylint: disable=bare-except printlog("Uploaded metadata is invalid!") metadata = None errors = True parameters = [] validmeta = False elif 'inputsource' in postdata and postdata['inputsource']: printlog("Getting metadata from inputsource, uploading...") if inputsource.metadata: printlog("DEBUG: Validating metadata from inputsource") metadata = inputsource.metadata errors, parameters = inputtemplate.validate(metadata, user) validmeta = True else: printlog("DEBUG: No metadata provided with inputsource, looking for metadata files..") metafilename = os.path.dirname(inputsource.path) if metafilename: metafilename += '/' metafilename += '.' + os.path.basename(inputsource.path) + '.METADATA' if os.path.exists(metafilename): try: metadata = clam.common.data.CLAMMetaData.fromxml(open(metafilename,'r').readlines()) errors, parameters = inputtemplate.validate(metadata, user) validmeta = True except: #pylint: disable=bare-except printlog("Uploaded metadata is invalid!") metadata = None errors = True parameters = [] validmeta = False else: return withheaders(flask.make_response("No metadata found nor specified for inputsource " + inputsource.id ,500),headers={'allow_origin': settings.ALLOW_ORIGIN}) else: errors, parameters = inputtemplate.validate(postdata, user) validmeta = True #will be checked later # ----------- Check if archive are allowed ------------- archive = False addedfiles = [] if not errors and inputtemplate.acceptarchive: #pylint: disable=too-many-nested-blocks printdebug('(Archive test)') # -------- Are we an archive? If so, determine what kind archivetype = None if 'file' in flask.request.files: uploadname = sourcefile.lower() archivetype = None if uploadname[-4:] == '.zip': archivetype = 'zip' elif uploadname[-7:] == '.tar.gz': archivetype = 'tar.gz' elif uploadname[-4:] == '.tar': archivetype = 'tar' elif uploadname[-8:] == '.tar.bz2': archivetype = 'tar.bz2' xhrpost = False elif 'accesstoken' in postdata and 'filename' in postdata: xhrpost = True if postdata['filename'][-7:].lower() == '.tar.gz': uploadname = sourcefile.lower() archivetype = 'tar.gz' elif postdata['filename'][-8:].lower() == '.tar.bz2': uploadname = sourcefile.lower() archivetype = 'tar.bz2' elif postdata['filename'][-4:].lower() == '.tar': uploadname = sourcefile.lower() archivetype = 'tar' elif postdata['filename'][-4:].lower() == '.zip': uploadname = sourcefile.lower() archivetype = 'zip' if archivetype: # =============== upload archive ====================== #random name archive = "%032x" % random.getrandbits(128) + '.' + archivetype #Upload file from client to server printdebug('(Archive transfer starting)') if not xhrpost: flask.request.files['file'].save(Project.path(project,user) + archive) elif xhrpost: with open(Project.path(project,user) + archive,'wb') as f: while True: chunk = flask.request.stream.read(16384) if chunk: f.write(chunk) else: break printdebug('(Archive transfer completed)') # =============== Extract archive ====================== #Determine extraction command if archivetype == 'zip': cmd = 'unzip -u' elif archivetype == 'tar': cmd = 'tar -xvf' elif archivetype == 'tar.gz': cmd = 'tar -xvzf' elif archivetype == 'tar.bz2': cmd = 'tar -xvjf' else: raise Exception("Invalid archive format: " + archivetype) #invalid archive, shouldn't happen #invoke extractor printlog("Extracting '" + archive + "'" ) try: process = subprocess.Popen(cmd + " " + archive, cwd=Project.path(project,user), stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) except: #pylint: disable=bare-except return withheaders(flask.make_response("Unable to extract archive",500),headers={'allow_origin': settings.ALLOW_ORIGIN}) out, _ = process.communicate() #waits for process to end if sys.version < '3': if isinstance(out, str): out = unicode(out,'utf-8') #pylint: disable=undefined-variable else: if isinstance(out, bytes): out = str(out,'utf-8') #Read filename results firstline = True for line in out.split("\n"): line = line.strip() if line: printdebug('(Extraction output: ' + line+')') subfile = None if archivetype[0:3] == 'tar': subfile = line elif archivetype == 'zip' and not firstline: #firstline contains archive name itself, skip it colon = line.find(":") if colon: subfile = line[colon + 1:].strip() if subfile and os.path.isfile(Project.path(project, user) + subfile): subfile_newname = clam.common.data.resolveinputfilename(os.path.basename(subfile), parameters, inputtemplate, nextseq+len(addedfiles), project) printdebug('(Extracted file ' + subfile + ', moving to input/' + subfile_newname+')') os.rename(Project.path(project, user) + subfile, Project.path(project, user) + 'input/' + subfile_newname) addedfiles.append(subfile_newname) firstline = False #all done, remove archive os.unlink(Project.path(project, user) + archive) if not archive: addedfiles = [clam.common.data.resolveinputfilename(filename, parameters, inputtemplate, nextseq, project)] fatalerror = None jsonoutput = {'success': False if errors else True, 'isarchive': archive} output = head for filename in addedfiles: #pylint: disable=too-many-nested-blocks output += "<upload source=\""+sourcefile +"\" filename=\""+filename+"\" inputtemplate=\"" + inputtemplate.id + "\" templatelabel=\""+inputtemplate.label+"\" format=\""+inputtemplate.formatclass.__name__+"\">\n" if not errors: output += "<parameters errors=\"no\">" else: output += "<parameters errors=\"yes\">" jsonoutput['error'] = 'There were parameter errors, file not uploaded: ' for parameter in parameters: output += parameter.xml() if parameter.error: jsonoutput['error'] += parameter.error + ". " output += "</parameters>" if not errors: if not archive: #============================ Transfer file ======================================== printdebug('(Start file transfer: ' + Project.path(project, user) + 'input/' + filename+' )') if 'file' in flask.request.files: printdebug('(Receiving data by uploading file)') #Upload file from client to server flask.request.files['file'].save(Project.path(project, user) + 'input/' + filename) elif 'url' in postdata and postdata['url']: printdebug('(Receiving data via url)') #Download file from 3rd party server to CLAM server try: r = requests.get(postdata['url']) except: raise flask.abort(404) if not (r.status_code >= 200 and r.status_code < 300): raise flask.abort(404) CHUNK = 16 * 1024 f = open(Project.path(project, user) + 'input/' + filename,'wb') for chunk in r.iter_content(chunk_size=CHUNK): if chunk: # filter out keep-alive new chunks f.write(chunk) f.flush() f.close() elif 'inputsource' in postdata and postdata['inputsource']: #Copy (symlink!) from preinstalled data printdebug('(Creating symlink to file ' + inputsource.path + ' <- ' + Project.path(project,user) + '/input/ ' + filename + ')') os.symlink(inputsource.path, Project.path(project, user) + 'input/' + filename) elif 'contents' in postdata and postdata['contents']: printdebug('(Receiving data via from contents variable)') #grab encoding encoding = 'utf-8' for p in parameters: if p.id == 'encoding': encoding = p.value #Contents passed in POST message itself try: f = io.open(Project.path(project, user) + 'input/' + filename,'w',encoding=encoding) f.write(postdata['contents']) f.close() except UnicodeError: return errorresponse("Input file " + str(filename) + " is not in the expected encoding!") elif 'accesstoken' in postdata and 'filename' in postdata: printdebug('(Receiving data directly from post body)') with open(Project.path(project,user) + 'input/' + filename,'wb') as f: while True: chunk = flask.request.stream.read(16384) if chunk: f.write(chunk) else: break printdebug('(File transfer completed)') #Create a file object file = clam.common.data.CLAMInputFile(Project.path(project, user), filename, False) #get CLAMInputFile without metadata (chicken-egg problem, this does not read the actual file contents! #============== Generate metadata ============== metadataerror = None if not metadata and not errors: #check if it has not already been set in another stage printdebug('(Generating metadata)') #for newly generated metadata try: #Now we generate the actual metadata object (unsaved yet though). We pass our earlier validation results to prevent computing it again validmeta, metadata, parameters = inputtemplate.generate(file, (errors, parameters )) if validmeta: #And we tie it to the CLAMFile object file.metadata = metadata #Add inputtemplate ID to metadata metadata.inputtemplate = inputtemplate.id else: metadataerror = "Undefined error" except ValueError as msg: validmeta = False metadataerror = msg except KeyError as msg: validmeta = False metadataerror = msg elif validmeta: #for explicitly uploaded metadata metadata.file = file file.metadata = metadata metadata.inputtemplate = inputtemplate.id if metadataerror: printdebug('(Metadata could not be generated, ' + str(metadataerror) + ', this usually indicated an error in service configuration)') #output += "<metadataerror />" #This usually indicates an error in service configuration! fatalerror = "<error type=\"metadataerror\">Metadata could not be generated for " + filename + ": " + str(metadataerror) + " (this usually indicates an error in service configuration!)</error>" jsonoutput['error'] = "Metadata could not be generated! " + str(metadataerror) + " (this usually indicates an error in service configuration!)" elif validmeta: #=========== Convert the uploaded file (if requested) ============== conversionerror = False if 'converter' in postdata and postdata['converter']: for c in inputtemplate.converters: if c.id == postdata['converter']: converter = c break if converter: #(should always be found, error already provided earlier if not) printdebug('(Invoking converter)') try: success = converter.convertforinput(Project.path(project, user) + 'input/' + filename, metadata) except: #pylint: disable=bare-except success = False if not success: conversionerror = True fatalerror = "<error type=\"conversion\">The file " + xmlescape(filename) + " could not be converted</error>" jsonoutput['error'] = "The file could not be converted" jsonoutput['success'] = False #====================== Validate the file itself ==================== if not conversionerror: valid = file.validate() if valid: printdebug('(Validation ok)') output += "<valid>yes</valid>" #Great! Everything ok, save metadata metadata.save(Project.path(project, user) + 'input/' + file.metafilename()) #And create symbolic link for inputtemplates linkfilename = os.path.dirname(filename) if linkfilename: linkfilename += '/' linkfilename += '.' + os.path.basename(filename) + '.INPUTTEMPLATE' + '.' + inputtemplate.id + '.' + str(nextseq) os.symlink(Project.path(project, user) + 'input/' + filename, Project.path(project, user) + 'input/' + linkfilename) else: printdebug('(Validation error)') #Too bad, everything worked out but the file itself doesn't validate. #output += "<valid>no</valid>" fatalerror = "<error type=\"validation\">The file " + xmlescape(filename) + " did not validate, it is not in the proper expected format.</error>" jsonoutput['error'] = "The file " + filename.replace("'","") + " did not validate, it is not in the proper expected format." jsonoutput['success'] = False #remove upload os.unlink(Project.path(project, user) + 'input/' + filename) output += "</upload>\n" output += "</clamupload>" if returntype == 'boolean': return jsonoutput['success'] elif fatalerror: #fatal error return error message with 403 code printlog('Fatal Error during upload: ' + fatalerror) return errorresponse(head + fatalerror,403) elif errors: #parameter errors, return XML output with 403 code printdebug('There were parameter errors during upload!') if returntype == 'json': jsonoutput['xml'] = output #embed XML in JSON for complete client-side processing return withheaders(flask.make_response(json.dumps(jsonoutput)), 'application/json', {'allow_origin': settings.ALLOW_ORIGIN}) else: return withheaders(flask.make_response(output,403),headers={'allow_origin': settings.ALLOW_ORIGIN}) elif returntype == 'xml': #success printdebug('Returning xml') return withheaders(flask.make_response(output), 'text/xml', {'allow_origin': settings.ALLOW_ORIGIN}) elif returntype == 'json': #success printdebug('Returning json') #everything ok, return JSON output (caller decides) jsonoutput['xml'] = output #embed XML in JSON for complete client-side processing return withheaders(flask.make_response(json.dumps(jsonoutput)), 'application/json', {'allow_origin': settings.ALLOW_ORIGIN}) elif returntype == 'true_on_success': return True else: printdebug('Invalid return type') raise Exception("invalid return type")
0.01043
def draw_shapes_svg_layer(df_shapes, shape_i_columns, layer_name, layer_number=1, use_svg_path=True): ''' Draw shapes as a layer in a SVG file. Args: df_shapes (pandas.DataFrame): Table of shape vertices (one row per vertex). shape_i_columns (str or list) : Either a single column name as a string or a list of column names in ``df_shapes``. Rows in ``df_shapes`` with the same value in the ``shape_i_columns`` column(s) are grouped together as a shape. layer_name (str) : Name of Inkscape layer. layer_number (int, optional) : Z-order index of Inkscape layer. use_svg_path (bool, optional) : If ``True``, electrodes are drawn as ``svg:path`` elements. Otherwise, electrodes are drawn as ``svg:polygon`` elements. Returns ------- StringIO.StringIO A file-like object containing SVG XML source. The XML contains a layer named according to :data:`layer_name`, which in turn contains ``svg:polygon`` or ``svg:path`` elements corresponding to the shapes in the input :data:`df_shapes` table. ''' # Note that `svgwrite.Drawing` requires a filepath to be specified during # construction, *but* nothing is actually written to the path unless one of # the `save*` methods is called. # # In this function, we do *not* call any of the `save*` methods. Instead, # we use the `write` method to write to an in-memory file-like object. minx, miny = df_shapes[['x', 'y']].min().values maxx, maxy = df_shapes[['x', 'y']].max().values width = maxx - minx height = maxy - miny dwg = svgwrite.Drawing('should_not_exist.svg', size=(width, height), debug=False) nsmap = INKSCAPE_NSMAP dwg.attribs['xmlns:inkscape'] = nsmap['inkscape'] svg_root = dwg.g(id='layer%d' % layer_number, **{'inkscape:label': layer_name, 'inkscape:groupmode': 'layer'}) minx, miny = df_shapes[['x', 'y']].min().values for shape_i, df_shape_i in df_shapes.groupby(shape_i_columns): attr_columns = [c for c in df_shape_i.columns if c not in ('vertex_i', 'x', 'y')] attrs = df_shape_i.iloc[0][attr_columns].to_dict() vertices = df_shape_i[['x', 'y']].values.tolist() if not use_svg_path: # Draw electrode shape as an `svg:polygon` element. p = Polygon(vertices, debug=False, **attrs) else: # Draw electrode shape as an `svg:path` element. commands = ['M %s,%s' % tuple(vertices[0])] commands += ['L %s,%s' % tuple(v) for v in vertices[1:]] while vertices[0] == vertices[-1]: # Start is equal to end of path, but we will use the `'Z'` # command to close the path, so delete the last point in the # path. del vertices[-1] commands += ['Z'] p = Path_(d=' '.join(commands), debug=False, **attrs) svg_root.add(p) dwg.add(svg_root) # Write result to `StringIO`. output = StringIO.StringIO() dwg.write(output) output.seek(0) return output
0.000304
def vatm(model, x, logits, eps, num_iterations=1, xi=1e-6, clip_min=None, clip_max=None, scope=None): """ Tensorflow implementation of the perturbation method used for virtual adversarial training: https://arxiv.org/abs/1507.00677 :param model: the model which returns the network unnormalized logits :param x: the input placeholder :param logits: the model's unnormalized output tensor (the input to the softmax layer) :param eps: the epsilon (input variation parameter) :param num_iterations: the number of iterations :param xi: the finite difference parameter :param clip_min: optional parameter that can be used to set a minimum value for components of the example returned :param clip_max: optional parameter that can be used to set a maximum value for components of the example returned :param seed: the seed for random generator :return: a tensor for the adversarial example """ with tf.name_scope(scope, "virtual_adversarial_perturbation"): d = tf.random_normal(tf.shape(x), dtype=tf_dtype) for _ in range(num_iterations): d = xi * utils_tf.l2_batch_normalize(d) logits_d = model.get_logits(x + d) kl = utils_tf.kl_with_logits(logits, logits_d) Hd = tf.gradients(kl, d)[0] d = tf.stop_gradient(Hd) d = eps * utils_tf.l2_batch_normalize(d) adv_x = x + d if (clip_min is not None) and (clip_max is not None): adv_x = tf.clip_by_value(adv_x, clip_min, clip_max) return adv_x
0.005646
def polygon(surf, points, color): """Draw an antialiased filled polygon on a surface""" gfxdraw.aapolygon(surf, points, color) gfxdraw.filled_polygon(surf, points, color) x = min([x for (x, y) in points]) y = min([y for (x, y) in points]) xm = max([x for (x, y) in points]) ym = max([y for (x, y) in points]) return pygame.Rect(x, y, xm - x, ym - y)
0.002604
def validate_protocol(protocol): '''Validate a protocol, a string, and return it.''' if not re.match(PROTOCOL_REGEX, protocol): raise ValueError(f'invalid protocol: {protocol}') return protocol.lower()
0.004525
def to_polygon(self): """ Return a 4-cornered polygon equivalent to this rectangle """ x,y = self.corners.T vertices = PixCoord(x=x, y=y) return PolygonPixelRegion(vertices=vertices, meta=self.meta, visual=self.visual)
0.01
async def start_polling(self, timeout=20, relax=0.1, limit=None, reset_webhook=None, fast: typing.Optional[bool] = True, error_sleep: int = 5): """ Start long-polling :param timeout: :param relax: :param limit: :param reset_webhook: :param fast: :return: """ if self._polling: raise RuntimeError('Polling already started') log.info('Start polling.') # context.set_value(MODE, LONG_POLLING) Dispatcher.set_current(self) Bot.set_current(self.bot) if reset_webhook is None: await self.reset_webhook(check=False) if reset_webhook: await self.reset_webhook(check=True) self._polling = True offset = None try: current_request_timeout = self.bot.timeout if current_request_timeout is not sentinel and timeout is not None: request_timeout = aiohttp.ClientTimeout(total=current_request_timeout.total + timeout or 1) else: request_timeout = None while self._polling: try: with self.bot.request_timeout(request_timeout): updates = await self.bot.get_updates(limit=limit, offset=offset, timeout=timeout) except: log.exception('Cause exception while getting updates.') await asyncio.sleep(error_sleep) continue if updates: log.debug(f"Received {len(updates)} updates.") offset = updates[-1].update_id + 1 self.loop.create_task(self._process_polling_updates(updates, fast)) if relax: await asyncio.sleep(relax) finally: self._close_waiter._set_result(None) log.warning('Polling is stopped.')
0.005706
def complex_request(self, request, wait_for_first_response=True): """Send a compound command request to the interface over the normal data channel. request - A dict storing the request to send to the VI. It will be serialized to the currently selected output format. wait_for_first_response - If true, this function will block waiting for a response from the VI and return it to the caller. Otherwise, it will send the command and return immediately and any response will be lost. """ receiver = self._prepare_response_receiver(request, receiver_class=CommandResponseReceiver) self._send_complex_request(request) responses = [] if wait_for_first_response: responses = receiver.wait_for_responses() return responses
0.004587
def _warning(code): """ Return a warning message of code 'code'. If code = (cd, str) it returns the warning message of code 'cd' and appends str at the end """ if isinstance(code, str): return code message = '' if isinstance(code, tuple): if isinstance(code[0], str): message = code[1] code = code[0] return CFG_BIBRECORD_WARNING_MSGS.get(code, '') + message
0.002294
def asRemoteException(ErrorType): '''return the remote exception version of the error above you can catch errors as usally: >>> try: raise asRemoteException(ValueError) except ValueError: pass or you can catch the remote Exception >>> try: raise asRemoteException(ReferenceError)(ReferenceError(),'') except asRemoteException(ReferenceError): pass ''' RemoteException = _remoteExceptionCache.get(ErrorType) if RemoteException is None: RemoteException = _newRemoteException(ErrorType) _remoteExceptionCache.setdefault(ErrorType, RemoteException) _remoteExceptionCache.setdefault(RemoteException, RemoteException) return _remoteExceptionCache.get(ErrorType) return RemoteException
0.001377
def getExtentAddress(self, zoom, extent=None, contained=False): """ Return the bounding addresses ([minRow, minCol, maxRow, maxCol] based on the instance's extent or a user defined extent. Generic method that works with regular and irregular pyramids. Parameters: zoom -- the zoom for which we want the bounding addresses extent (optional) -- the extent ([minX, minY, maxX, maxY]) defaults to the instance extent contained (optional) -- get only tile addresses that contain a coordinate of the extent. For instance if the extent only intersects a tile border, if this option is set to True, this tile will be ignored. defaults to False """ if extent: bbox = extent else: bbox = self.extent minX = bbox[0] maxX = bbox[2] if self.originCorner == 'bottom-left': minY = bbox[3] maxY = bbox[1] elif self.originCorner == 'top-left': minY = bbox[1] maxY = bbox[3] [minCol, minRow] = self.tileAddress(zoom, [minX, maxY]) [maxCol, maxRow] = self.tileAddress(zoom, [maxX, minY]) if contained and minCol != maxCol or minRow != maxRow: parentBoundsMin = self.tileBounds(zoom, minCol, minRow) if self.originCorner == 'bottom-left': if parentBoundsMin[2] == maxX: maxCol -= 1 if parentBoundsMin[3] == minY: maxRow -= 1 elif self.originCorner == 'top-left': if parentBoundsMin[2] == maxX: maxCol -= 1 if parentBoundsMin[1] == minY: maxRow -= 1 return [minRow, minCol, maxRow, maxCol]
0.001019
def run(self, kpop, nreps, ipyclient=None, seed=12345, force=False, quiet=False, ): """ submits a job to run on the cluster and returns an asynchronous result object. K is the number of populations, randomseed if not set will be randomly drawn, ipyclient if not entered will raise an error. If nreps is set then multiple jobs will be started from new seeds, each labeled by its replicate number. If force=True then replicates will be overwritten, otherwise, new replicates will be created starting with the last file N found in the workdir. Parameters: ----------- kpop: (int) The MAXPOPS parameter in structure, i.e., the number of populations assumed by the model (K). nreps: (int): Number of independent runs starting from distinct seeds. ipyclient: (ipyparallel.Client Object) An ipyparallel client connected to an ipcluster instance. This is used to manage parallel jobs. If not present a single job will run and block until finished (i.e., code is not parallel). seed: (int): Random number seed used for subsampling unlinked SNPs if a mapfile is linked to the Structure Object. force: (bool): If force is true then old replicates are removed and new reps start from rep-0. Otherwise, new reps start at end of existing rep numbers. quiet: (bool) Whether to print number of jobs submitted to stderr Example: --------- import ipyparallel as ipp import ipyrad.analysis as ipa ## get parallel client ipyclient = ipp.Client() ## get structure object s = ipa.structure( name="test", data="mydata.str", mapfile="mydata.snps.map", workdir="structure-results", ) ## modify some basic params s.mainparams.numreps = 100000 s.mainparams.burnin = 10000 ## submit many jobs for kpop in [3, 4, 5]: s.run( kpop=kpop, nreps=10, ipyclient=ipyclient, ) ## block until all jobs finish ipyclient.wait() """ ## initiate starting seed np.random.seed(seed) ## check for stuructre here proc = subprocess.Popen(["which", "structure"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT).communicate() if not proc: raise Exception(\ "structure is not installed: run `conda install structure -c ipyrad`") ## start load balancer if ipyclient: lbview = ipyclient.load_balanced_view() ## remove old jobs with this same name handle = OPJ(self.workdir, self.name+"-K-{}-*".format(kpop)) oldjobs = glob.glob(handle) if force or (not oldjobs): for job in oldjobs: os.remove(job) repstart = 0 repend = nreps else: repstart = max([int(i.split("-")[-1][:-2]) for i in oldjobs]) repend = repstart + nreps ## check that there is a ipcluster instance running for rep in xrange(repstart, repend): ## sample random seed for this rep self.extraparams.seed = np.random.randint(0, 1e9, 1)[0] ## prepare files (randomly subsamples snps if mapfile) mname, ename, sname = self.write_structure_files(kpop, rep) args = [ mname, ename, sname, self.name, self.workdir, self.extraparams.seed, self.ntaxa, self.nsites, kpop, rep] if ipyclient: ## call structure async = lbview.apply(_call_structure, *(args)) self.asyncs.append(async) else: if not quiet: sys.stderr.write("submitted 1 structure job [{}-K-{}]\n"\ .format(self.name, kpop)) comm = _call_structure(*args) return comm if ipyclient: if not quiet: sys.stderr.write("submitted {} structure jobs [{}-K-{}]\n"\ .format(nreps, self.name, kpop))
0.009385
def target_types_by_alias(self): """Returns a mapping from target alias to the target types produced for that alias. Normally there is 1 target type per alias, but macros can expand a single alias to several target types. :API: public :rtype: dict """ target_types_by_alias = defaultdict(set) for alias, target_type in self.target_types.items(): target_types_by_alias[alias].add(target_type) for alias, target_macro_factory in self.target_macro_factories.items(): target_types_by_alias[alias].update(target_macro_factory.target_types) return dict(target_types_by_alias)
0.008013
def grant(args): """ Given an IAM role or instance name, attach an IAM policy granting appropriate permissions to subscribe to deployments. Given a GitHub repo URL, create and record deployment keys for the repo and any of its private submodules, making the keys accessible to the IAM role. """ try: role = resources.iam.Role(args.iam_role_or_instance) role.load() except ClientError: role = get_iam_role_for_instance(args.iam_role_or_instance) role.attach_policy(PolicyArn=ensure_deploy_iam_policy().arn) for private_repo in [args.repo] + list(private_submodules(args.repo)): gh_owner_name, gh_repo_name = parse_repo_name(private_repo) secret = secrets.put(argparse.Namespace(secret_name="deploy.{}.{}".format(gh_owner_name, gh_repo_name), iam_role=role.name, instance_profile=None, iam_group=None, iam_user=None, generate_ssh_key=True)) get_repo(private_repo).create_key(__name__ + "." + role.name, secret["ssh_public_key"]) logger.info("Created deploy key %s for IAM role %s to access GitHub repo %s", secret["ssh_key_fingerprint"], role.name, private_repo)
0.002817
def delete_topics(self, topics, **kwargs): """ Delete topics. The future result() value is None. :param list(str) topics: Topics to mark for deletion. :param float operation_timeout: Set broker's operation timeout in seconds, controlling how long the DeleteTopics request will block on the broker waiting for the topic deletion to propagate in the cluster. A value of 0 returns immediately. Default: 0 :param float request_timeout: Set the overall request timeout in seconds, including broker lookup, request transmission, operation time on broker, and response. Default: `socket.timeout.ms*1000.0` :returns: a dict of futures for each topic, keyed by the topic name. :rtype: dict(<topic_name, future>) :raises KafkaException: Operation failed locally or on broker. :raises TypeException: Invalid input. :raises ValueException: Invalid input. """ f, futmap = AdminClient._make_futures(topics, None, AdminClient._make_topics_result) super(AdminClient, self).delete_topics(topics, f, **kwargs) return futmap
0.003155
def driver(self, sim): """Push data to interface""" r = sim.read if self.actualData is NOP and self.data: self.actualData = self.data.popleft() do = self.actualData is not NOP if do: self.doWrite(sim, self.actualData) else: self.doWrite(sim, None) en = self.notReset(sim) and self._enabled if not (en and do): return yield sim.waitOnCombUpdate() rd = self.isRd(r) if en: assert rd.vldMask, ( ("%r: ready signal for interface %r is in invalid state," " this would cause desynchronization") % (sim.now, self.intf)) if rd.val: if self._debugOutput is not None: self._debugOutput.write("%s, wrote, %d: %r\n" % ( self.intf._getFullName(), sim.now, self.actualData)) if self.data: self.actualData = self.data.popleft() else: self.actualData = NOP
0.001786
def run_simulations(self, parameter_list, data_folder): """ This function runs multiple simulations in parallel. """ # Open up a session s = drmaa.Session() s.initialize() # Create a job template for each parameter combination jobs = {} for parameter in parameter_list: # Initialize result current_result = { 'params': {}, 'meta': {} } current_result['params'].update(parameter) command = " ".join([self.script_executable] + ['--%s=%s' % (param, value) for param, value in parameter.items()]) # Run from dedicated temporary folder current_result['meta']['id'] = str(uuid.uuid4()) temp_dir = os.path.join(data_folder, current_result['meta']['id']) if not os.path.exists(temp_dir): os.makedirs(temp_dir) jt = s.createJobTemplate() jt.remoteCommand = os.path.dirname( os.path.abspath(__file__)) + '/run_program.sh' jt.args = [command] jt.jobEnvironment = self.environment jt.workingDirectory = temp_dir jt.nativeSpecification = SIMULATION_GRID_PARAMS output_filename = os.path.join(temp_dir, 'stdout') error_filename = os.path.join(temp_dir, 'stderr') jt.outputPath = ':' + output_filename jt.errorPath = ':' + error_filename jobid = s.runJob(jt) # Save the template in our dictionary jobs[jobid] = { 'template': jt, 'result': current_result, 'output': output_filename, 'error': error_filename, } # Check for job completion, yield results when they are ready try: while len(jobs): found_done = False for curjob in jobs.keys(): try: status = s.jobStatus(curjob) except drmaa.errors.DrmCommunicationException: pass if status is drmaa.JobState.DONE: current_result = jobs[curjob]['result'] # TODO Actually compute time elapsed in the running # state current_result['meta']['elapsed_time'] = 0 try: s.deleteJobTemplate(jobs[curjob]['template']) except drmaa.errors.DrmCommunicationException: pass del jobs[curjob] found_done = True yield current_result break if not found_done: # Sleep if we can't find a completed task time.sleep(6) finally: try: for v in jobs.values(): s.deleteJobTemplate(v['template']) s.control(drmaa.JOB_IDS_SESSION_ALL, drmaa.JobControlAction.TERMINATE) s.synchronize([drmaa.JOB_IDS_SESSION_ALL], dispose=True) s.exit() except(drmaa.errors.NoActiveSessionException): pass
0.000566
def differential(poly, diffvar): """ Polynomial differential operator. Args: poly (Poly) : Polynomial to be differentiated. diffvar (Poly) : Polynomial to differentiate by. Must be decomposed. If polynomial array, the output is the Jacobian matrix. Examples: >>> q0, q1 = chaospy.variable(2) >>> poly = chaospy.Poly([1, q0, q0*q1**2+1]) >>> print(poly) [1, q0, q0q1^2+1] >>> print(differential(poly, q0)) [0, 1, q1^2] >>> print(differential(poly, q1)) [0, 0, 2q0q1] """ poly = Poly(poly) diffvar = Poly(diffvar) if not chaospy.poly.caller.is_decomposed(diffvar): sum(differential(poly, chaospy.poly.caller.decompose(diffvar))) if diffvar.shape: return Poly([differential(poly, pol) for pol in diffvar]) if diffvar.dim > poly.dim: poly = chaospy.poly.dimension.setdim(poly, diffvar.dim) else: diffvar = chaospy.poly.dimension.setdim(diffvar, poly.dim) qkey = diffvar.keys[0] core = {} for key in poly.keys: newkey = np.array(key) - np.array(qkey) if np.any(newkey < 0): continue newkey = tuple(newkey) core[newkey] = poly.A[key] * np.prod( [fac(key[idx], exact=True) / fac(newkey[idx], exact=True) for idx in range(poly.dim)]) return Poly(core, poly.dim, poly.shape, poly.dtype)
0.000693
def run(self): """The thread's main activity. Call start() instead.""" self.socket = self.context.socket(zmq.DEALER) self.socket.setsockopt(zmq.IDENTITY, self.session.bsession) self.socket.connect('tcp://%s:%i' % self.address) self.stream = zmqstream.ZMQStream(self.socket, self.ioloop) self.stream.on_recv(self._handle_recv) self._run_loop() try: self.socket.close() except: pass
0.006289
def run_application( application, patch_stdout=False, return_asyncio_coroutine=False, true_color=False, refresh_interval=0, eventloop=None): """ Run a prompt toolkit application. :param patch_stdout: Replace ``sys.stdout`` by a proxy that ensures that print statements from other threads won't destroy the prompt. (They will be printed above the prompt instead.) :param return_asyncio_coroutine: When True, return a asyncio coroutine. (Python >3.3) :param true_color: When True, use 24bit colors instead of 256 colors. :param refresh_interval: (number; in seconds) When given, refresh the UI every so many seconds. """ assert isinstance(application, Application) if return_asyncio_coroutine: eventloop = create_asyncio_eventloop() else: eventloop = eventloop or create_eventloop() # Create CommandLineInterface. cli = CommandLineInterface( application=application, eventloop=eventloop, output=create_output(true_color=true_color)) # Set up refresh interval. if refresh_interval: done = [False] def start_refresh_loop(cli): def run(): while not done[0]: time.sleep(refresh_interval) cli.request_redraw() t = threading.Thread(target=run) t.daemon = True t.start() def stop_refresh_loop(cli): done[0] = True cli.on_start += start_refresh_loop cli.on_stop += stop_refresh_loop # Replace stdout. patch_context = cli.patch_stdout_context(raw=True) if patch_stdout else DummyContext() # Read input and return it. if return_asyncio_coroutine: # Create an asyncio coroutine and call it. exec_context = {'patch_context': patch_context, 'cli': cli, 'Document': Document} exec_(textwrap.dedent(''' def prompt_coro(): # Inline import, because it slows down startup when asyncio is not # needed. import asyncio @asyncio.coroutine def run(): with patch_context: result = yield from cli.run_async() if isinstance(result, Document): # Backwards-compatibility. return result.text return result return run() '''), exec_context) return exec_context['prompt_coro']() else: try: with patch_context: result = cli.run() if isinstance(result, Document): # Backwards-compatibility. return result.text return result finally: eventloop.close()
0.00144
def _compute_handshake(self): """Compute the authentication handshake value. :return: the computed hash value. :returntype: `str`""" return hashlib.sha1(to_utf8(self.stream_id)+to_utf8(self.secret)).hexdigest()
0.012346
def _desc_has_data(desc): """Returns true if there is any data set for a particular PhoneNumberDesc.""" if desc is None: return False # Checking most properties since we don't know what's present, since a custom build may have # stripped just one of them (e.g. liteBuild strips exampleNumber). We don't bother checking the # possibleLengthsLocalOnly, since if this is the only thing that's present we don't really # support the type at all: no type-specific methods will work with only this data. return ((desc.example_number is not None) or _desc_has_possible_number_data(desc) or (desc.national_number_pattern is not None))
0.008759
def update(self, other, join='left', overwrite=True, filter_func=None, errors='ignore'): """ Modify in place using non-NA values from another DataFrame. Aligns on indices. There is no return value. Parameters ---------- other : DataFrame, or object coercible into a DataFrame Should have at least one matching index/column label with the original DataFrame. If a Series is passed, its name attribute must be set, and that will be used as the column name to align with the original DataFrame. join : {'left'}, default 'left' Only left join is implemented, keeping the index and columns of the original object. overwrite : bool, default True How to handle non-NA values for overlapping keys: * True: overwrite original DataFrame's values with values from `other`. * False: only update values that are NA in the original DataFrame. filter_func : callable(1d-array) -> bool 1d-array, optional Can choose to replace values other than NA. Return True for values that should be updated. errors : {'raise', 'ignore'}, default 'ignore' If 'raise', will raise a ValueError if the DataFrame and `other` both contain non-NA data in the same place. .. versionchanged :: 0.24.0 Changed from `raise_conflict=False|True` to `errors='ignore'|'raise'`. Returns ------- None : method directly changes calling object Raises ------ ValueError * When `errors='raise'` and there's overlapping non-NA data. * When `errors` is not either `'ignore'` or `'raise'` NotImplementedError * If `join != 'left'` See Also -------- dict.update : Similar method for dictionaries. DataFrame.merge : For column(s)-on-columns(s) operations. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, 5, 6], ... 'C': [7, 8, 9]}) >>> df.update(new_df) >>> df A B 0 1 4 1 2 5 2 3 6 The DataFrame's length does not increase as a result of the update, only values at matching index/column labels are updated. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']}) >>> df.update(new_df) >>> df A B 0 a d 1 b e 2 c f For Series, it's name attribute must be set. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2]) >>> df.update(new_column) >>> df A B 0 a d 1 b y 2 c e >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2]) >>> df.update(new_df) >>> df A B 0 a x 1 b d 2 c e If `other` contains NaNs the corresponding values are not updated in the original dataframe. >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, np.nan, 6]}) >>> df.update(new_df) >>> df A B 0 1 4.0 1 2 500.0 2 3 6.0 """ import pandas.core.computation.expressions as expressions # TODO: Support other joins if join != 'left': # pragma: no cover raise NotImplementedError("Only left join is supported") if errors not in ['ignore', 'raise']: raise ValueError("The parameter errors must be either " "'ignore' or 'raise'") if not isinstance(other, DataFrame): other = DataFrame(other) other = other.reindex_like(self) for col in self.columns: this = self[col]._values that = other[col]._values if filter_func is not None: with np.errstate(all='ignore'): mask = ~filter_func(this) | isna(that) else: if errors == 'raise': mask_this = notna(that) mask_that = notna(this) if any(mask_this & mask_that): raise ValueError("Data overlaps.") if overwrite: mask = isna(that) else: mask = notna(this) # don't overwrite columns unecessarily if mask.all(): continue self[col] = expressions.where(mask, this, that)
0.000579
def add_router_interface(self, context, router_id, interface_info): """Add a subnet of a network to an existing router.""" new_router = super(AristaL3ServicePlugin, self).add_router_interface( context, router_id, interface_info) core = directory.get_plugin() # Get network info for the subnet that is being added to the router. # Check if the interface information is by port-id or subnet-id add_by_port, add_by_sub = self._validate_interface_info(interface_info) if add_by_sub: subnet = core.get_subnet(context, interface_info['subnet_id']) elif add_by_port: port = core.get_port(context, interface_info['port_id']) subnet_id = port['fixed_ips'][0]['subnet_id'] subnet = core.get_subnet(context, subnet_id) network_id = subnet['network_id'] # To create SVI's in Arista HW, the segmentation Id is required # for this network. ml2_db = NetworkContext(self, context, {'id': network_id}) seg_id = ml2_db.network_segments[0]['segmentation_id'] # Package all the info needed for Hw programming router = self.get_router(context, router_id) router_info = copy.deepcopy(new_router) router_info['seg_id'] = seg_id router_info['name'] = router['name'] router_info['cidr'] = subnet['cidr'] router_info['gip'] = subnet['gateway_ip'] router_info['ip_version'] = subnet['ip_version'] try: self.driver.add_router_interface(context, router_info) return new_router except Exception: with excutils.save_and_reraise_exception(): LOG.error(_LE("Error Adding subnet %(subnet)s to " "router %(router_id)s on Arista HW"), {'subnet': subnet, 'router_id': router_id}) super(AristaL3ServicePlugin, self).remove_router_interface( context, router_id, interface_info)
0.000965
def partition_read( self, session, table, key_set, transaction=None, index=None, columns=None, partition_options=None, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None, ): """ Creates a set of partition tokens that can be used to execute a read operation in parallel. Each of the returned partition tokens can be used by ``StreamingRead`` to specify a subset of the read result to read. The same session and read-only transaction must be used by the PartitionReadRequest used to create the partition tokens and the ReadRequests that use the partition tokens. There are no ordering guarantees on rows returned among the returned partition tokens, or even within each individual StreamingRead call issued with a partition\_token. Partition tokens become invalid when the session used to create them is deleted, is idle for too long, begins a new transaction, or becomes too old. When any of these happen, it is not possible to resume the read, and the whole operation must be restarted from the beginning. Example: >>> from google.cloud import spanner_v1 >>> >>> client = spanner_v1.SpannerClient() >>> >>> session = client.session_path('[PROJECT]', '[INSTANCE]', '[DATABASE]', '[SESSION]') >>> >>> # TODO: Initialize `table`: >>> table = '' >>> >>> # TODO: Initialize `key_set`: >>> key_set = {} >>> >>> response = client.partition_read(session, table, key_set) Args: session (str): Required. The session used to create the partitions. table (str): Required. The name of the table in the database to be read. key_set (Union[dict, ~google.cloud.spanner_v1.types.KeySet]): Required. ``key_set`` identifies the rows to be yielded. ``key_set`` names the primary keys of the rows in ``table`` to be yielded, unless ``index`` is present. If ``index`` is present, then ``key_set`` instead names index keys in ``index``. It is not an error for the ``key_set`` to name rows that do not exist in the database. Read yields nothing for nonexistent rows. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.spanner_v1.types.KeySet` transaction (Union[dict, ~google.cloud.spanner_v1.types.TransactionSelector]): Read only snapshot transactions are supported, read/write and single use transactions are not. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.spanner_v1.types.TransactionSelector` index (str): If non-empty, the name of an index on ``table``. This index is used instead of the table primary key when interpreting ``key_set`` and sorting result rows. See ``key_set`` for further information. columns (list[str]): The columns of ``table`` to be returned for each row matching this request. partition_options (Union[dict, ~google.cloud.spanner_v1.types.PartitionOptions]): Additional options that affect how many partitions are created. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.spanner_v1.types.PartitionOptions` retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.cloud.spanner_v1.types.PartitionResponse` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if "partition_read" not in self._inner_api_calls: self._inner_api_calls[ "partition_read" ] = google.api_core.gapic_v1.method.wrap_method( self.transport.partition_read, default_retry=self._method_configs["PartitionRead"].retry, default_timeout=self._method_configs["PartitionRead"].timeout, client_info=self._client_info, ) request = spanner_pb2.PartitionReadRequest( session=session, table=table, key_set=key_set, transaction=transaction, index=index, columns=columns, partition_options=partition_options, ) if metadata is None: metadata = [] metadata = list(metadata) try: routing_header = [("session", session)] except AttributeError: pass else: routing_metadata = google.api_core.gapic_v1.routing_header.to_grpc_metadata( routing_header ) metadata.append(routing_metadata) return self._inner_api_calls["partition_read"]( request, retry=retry, timeout=timeout, metadata=metadata )
0.004136
def api_backoff(func): """ Decorator, Handles HTTP 429 "Too Many Requests" messages from the Discord API If blocking=True is specified, this function will block and retry the function up to max_retries=n times, or 3 if retries is not specified. If the API call still recieves a backoff timer this function will raise a <DiscordApiTooBusy> exception. If the caller chooses blocking=False, the decorator will raise a DiscordApiBackoff exception and the caller can choose to retry after the given timespan available in the retry_after property in seconds. """ class PerformBackoff(Exception): def __init__(self, retry_after, retry_datetime, global_ratelimit): super(Exception, self).__init__() self.retry_after = int(retry_after) self.retry_datetime = retry_datetime self.global_ratelimit = global_ratelimit @wraps(func) def decorated(*args, **kwargs): blocking = kwargs.get('blocking', False) retries = kwargs.get('max_retries', 3) # Strip our parameters if 'max_retries' in kwargs: del kwargs['max_retries'] if 'blocking' in kwargs: del kwargs['blocking'] cache_key = 'DISCORD_BACKOFF_' + func.__name__ cache_global_key = 'DISCORD_BACKOFF_GLOBAL' while retries > 0: try: try: # Check global backoff first, then route backoff existing_global_backoff = cache.get(cache_global_key) existing_backoff = existing_global_backoff or cache.get(cache_key) if existing_backoff: backoff_timer = datetime.datetime.strptime(existing_backoff, cache_time_format) if backoff_timer > datetime.datetime.utcnow(): backoff_seconds = (backoff_timer - datetime.datetime.utcnow()).total_seconds() logger.debug("Still under backoff for %s seconds, backing off" % backoff_seconds) # Still under backoff raise PerformBackoff( retry_after=backoff_seconds, retry_datetime=backoff_timer, global_ratelimit=bool(existing_global_backoff) ) logger.debug("Calling API calling function") return func(*args, **kwargs) except requests.HTTPError as e: if e.response.status_code == 429: try: retry_after = int(e.response.headers['Retry-After']) except (TypeError, KeyError): # Pick some random time retry_after = 5000 logger.info("Received backoff from API of %s seconds, handling" % retry_after) # Store value in redis backoff_until = (datetime.datetime.utcnow() + datetime.timedelta(milliseconds=retry_after)) global_backoff = bool(e.response.headers.get('X-RateLimit-Global', False)) if global_backoff: logger.info("Global backoff!!") cache.set(cache_global_key, backoff_until.strftime(cache_time_format), retry_after) else: cache.set(cache_key, backoff_until.strftime(cache_time_format), retry_after) raise PerformBackoff(retry_after=retry_after, retry_datetime=backoff_until, global_ratelimit=global_backoff) else: # Not 429, re-raise raise e except PerformBackoff as bo: # Sleep if we're blocking if blocking: logger.info("Blocking Back off from API calls for %s seconds" % bo.retry_after) time.sleep((10 if bo.retry_after > 10 else bo.retry_after) / 1000) else: # Otherwise raise exception and let caller handle the backoff raise DiscordApiBackoff(retry_after=bo.retry_after, global_ratelimit=bo.global_ratelimit) finally: retries -= 1 if retries == 0: raise DiscordApiTooBusy() return decorated
0.004166
def set_level(self, level): """ Set the log level of the g8os Note: this level is for messages that ends up on screen or on log file :param level: the level to be set can be one of ("CRITICAL", "ERROR", "WARNING", "NOTICE", "INFO", "DEBUG") """ args = { 'level': level, } self._level_chk.check(args) return self._client.json('logger.set_level', args)
0.006881
def read_rows( self, table_name, app_profile_id=None, rows=None, filter_=None, rows_limit=None, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None, ): """ Streams back the contents of all requested rows in key order, optionally applying the same Reader filter to each. Depending on their size, rows and cells may be broken up across multiple responses, but atomicity of each row will still be preserved. See the ReadRowsResponse documentation for details. Example: >>> from google.cloud import bigtable_v2 >>> >>> client = bigtable_v2.BigtableClient() >>> >>> table_name = client.table_path('[PROJECT]', '[INSTANCE]', '[TABLE]') >>> >>> for element in client.read_rows(table_name): ... # process element ... pass Args: table_name (str): The unique name of the table from which to read. Values are of the form ``projects/<project>/instances/<instance>/tables/<table>``. app_profile_id (str): This value specifies routing for replication. If not specified, the "default" application profile will be used. rows (Union[dict, ~google.cloud.bigtable_v2.types.RowSet]): The row keys and/or ranges to read. If not specified, reads from all rows. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.bigtable_v2.types.RowSet` filter_ (Union[dict, ~google.cloud.bigtable_v2.types.RowFilter]): The filter to apply to the contents of the specified row(s). If unset, reads the entirety of each row. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.bigtable_v2.types.RowFilter` rows_limit (long): The read will terminate after committing to N rows' worth of results. The default (zero) is to return all results. retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: Iterable[~google.cloud.bigtable_v2.types.ReadRowsResponse]. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if "read_rows" not in self._inner_api_calls: self._inner_api_calls[ "read_rows" ] = google.api_core.gapic_v1.method.wrap_method( self.transport.read_rows, default_retry=self._method_configs["ReadRows"].retry, default_timeout=self._method_configs["ReadRows"].timeout, client_info=self._client_info, ) request = bigtable_pb2.ReadRowsRequest( table_name=table_name, app_profile_id=app_profile_id, rows=rows, filter=filter_, rows_limit=rows_limit, ) if metadata is None: metadata = [] metadata = list(metadata) try: routing_header = [("table_name", table_name)] except AttributeError: pass else: routing_metadata = google.api_core.gapic_v1.routing_header.to_grpc_metadata( routing_header ) metadata.append(routing_metadata) return self._inner_api_calls["read_rows"]( request, retry=retry, timeout=timeout, metadata=metadata )
0.002941
def get_config(self, key="Entrypoint", delim=None): '''get_config returns a particular key (default is Entrypoint) from a VERSION 1 manifest obtained with get_manifest. Parameters ========== key: the key to return from the manifest config delim: Given a list, the delim to use to join the entries. Default is newline ''' if not hasattr(self,'manifests'): bot.error('Please retrieve manifests for an image first.') sys.exit(1) cmd = None # If we didn't find the config value in version 2 for version in ['config', 'v1']: if cmd is None and 'config' in self.manifests: # First try, version 2.0 manifest config has upper level config manifest = self.manifests['config'] if "config" in manifest: if key in manifest['config']: cmd = manifest['config'][key] # Second try, config manifest (not from verison 2.0 schema blob) if cmd is None and "history" in manifest: for entry in manifest['history']: if 'v1Compatibility' in entry: entry = json.loads(entry['v1Compatibility']) if "config" in entry: if key in entry["config"]: cmd = entry["config"][key] # Standard is to include commands like ['/bin/sh'] if isinstance(cmd, list): if delim is not None: cmd = delim.join(cmd) bot.verbose("Found Docker config (%s) %s" % (key, cmd)) return cmd
0.001847
def to_dict(self, ignore_none: bool=True, force_value: bool=True, ignore_empty: bool=False) -> dict: """From instance to dict :param ignore_none: Properties which is None are excluded if True :param force_value: Transform to value using to_value (default: str()) of ValueTransformer which inherited if True :param ignore_empty: Properties which is empty are excluded if True :return: Dict Usage: >>> from owlmixin.samples import Human, Food >>> human_dict = { ... "id": 1, ... "name": "Tom", ... "favorites": [ ... {"name": "Apple", "names_by_lang": {"en": "Apple"}} ... ] ... } >>> Human.from_dict(human_dict).to_dict() == human_dict True You can include None properties by specifying False for ignore_none >>> f = Food.from_dict({"name": "Apple"}).to_dict(ignore_none=False) >>> f["name"] 'Apple' >>> "names_by_lang" in f True >>> f["names_by_lang"] As default >>> f = Food.from_dict({"name": "Apple"}).to_dict() >>> f["name"] 'Apple' >>> "names_by_lang" in f False You can exclude Empty properties by specifying True for ignore_empty >>> f = Human.from_dict({"id": 1, "name": "Ichiro", "favorites": []}).to_dict() >>> f["favorites"] [] >>> f = Human.from_dict({"id": 1, "name": "Ichiro", "favorites": []}).to_dict(ignore_empty=True) >>> "favorites" in f False """ return traverse_dict(self._dict, ignore_none, force_value, ignore_empty)
0.007848
def parse_with_retrieved(self, retrieved): """ Parse output data folder, store results in database. :param retrieved: a dictionary of retrieved nodes, where the key is the link name :returns: a tuple with two values ``(bool, node_list)``, where: * ``bool``: variable to tell if the parsing succeeded * ``node_list``: list of new nodes to be stored in the db (as a list of tuples ``(link_name, node)``) """ success = False node_list = [] # Check that the retrieved folder is there try: out_folder = retrieved['retrieved'] except KeyError: self.logger.error("No retrieved folder found") return success, node_list # Check the folder content is as expected list_of_files = out_folder.get_folder_list() output_files = [self._calc._OUTPUT_FILE_NAME] # Note: set(A) <= set(B) checks whether A is a subset if set(output_files) <= set(list_of_files): pass else: self.logger.error( "Not all expected output files {} were found".format( output_files)) return success, node_list # Do not return distance matrix, as it is too large #from aiida.orm.data.singlefile import SinglefileData #node = SinglefileData( # file=out_folder.get_abs_path(self._calc._OUTPUT_FILE_NAME)) #node_list.append(('distance_matrix', node)) success = True return success, node_list
0.003755
def containerIsRunning(container_name): """ Checks whether the container is running or not. :param container_name: Name of the container being checked. :returns: True if status is 'running', False if status is anything else, and None if the container does not exist. """ client = docker.from_env(version='auto') try: this_container = client.containers.get(container_name) if this_container.status == 'running': return True else: # this_container.status == 'exited', 'restarting', or 'paused' return False except NotFound: return None except requests.exceptions.HTTPError as e: logger.debug("Server error attempting to call container: ", container_name) raise create_api_error_from_http_exception(e)
0.00237
def bvlpdu_contents(self, use_dict=None, as_class=dict): """Return the contents of an object as a dict.""" foreign_device_table = [] for fdte in self.bvlciFDT: foreign_device_table.append(fdte.dict_contents(as_class=as_class)) return key_value_contents(use_dict=use_dict, as_class=as_class, key_values=( ('function', 'ReadForeignDeviceTableAck'), ('foreign_device_table', foreign_device_table), ))
0.006024
def clear(self): """Helper for clearing all the keys in a database. Use with caution!""" for key in self.conn.keys(): self.conn.delete(key)
0.011429
def launch_app(self, timeout=10): """ Launch Spotify application. Will raise a LaunchError exception if there is no response from the Spotify app within timeout seconds. """ def callback(): """Callback function""" self.send_message({"type": TYPE_STATUS, "credentials": self.access_token, "expiresIn": self.expires}) self.launch(callback_function=callback) # Need to wait for Spotify to be launched on Chromecast completely while not self.is_launched and timeout: time.sleep(1) timeout -= 1 if not self.is_launched: raise LaunchError( "Timeout when waiting for status response from Spotify app")
0.002448
def transform_subject(self, X): """Transform a new subject using the existing model Parameters ---------- X : 2D array, shape=[voxels, timepoints] The fMRI data of the new subject. Returns ------- w : 2D array, shape=[voxels, features] Orthogonal mapping `W_{new}` for new subject s : 2D array, shape=[voxels, timepoints] Individual term `S_{new}` for new subject """ # Check if the model exist if hasattr(self, 'w_') is False: raise NotFittedError("The model fit has not been run yet.") # Check the number of TRs in the subject if X.shape[1] != self.r_.shape[1]: raise ValueError("The number of timepoints(TRs) does not match the" "one in the model.") s = np.zeros_like(X) for i in range(self.n_iter): w = self._update_transform_subject(X, s, self.r_) s = self._shrink(X - w.dot(self.r_), self.lam) return w, s
0.001887
def is_dimension(self): """Return true if the colum is a dimension""" from ambry.valuetype.core import ROLE return self.role == ROLE.DIMENSION
0.012048
def make_input_from_dict(sentence_id: SentenceId, input_dict: Dict, translator: 'Translator') -> TranslatorInput: """ Returns a TranslatorInput object from a JSON object, serialized as a string. :param sentence_id: Sentence id. :param input_dict: A dict that must contain a key "text", mapping to the input text, and optionally a key "factors" that maps to a list of strings, each of which representing a factor sequence for the input text. Constraints and an avoid list can also be added through the "constraints" and "avoid" keys. :param translator: A translator object. :return: A TranslatorInput. """ try: tokens = input_dict[C.JSON_TEXT_KEY] tokens = list(data_io.get_tokens(tokens)) factors = input_dict.get(C.JSON_FACTORS_KEY) if isinstance(factors, list): factors = [list(data_io.get_tokens(factor)) for factor in factors] lengths = [len(f) for f in factors] if not all(length == len(tokens) for length in lengths): logger.error("Factors have different length than input text: %d vs. %s", len(tokens), str(lengths)) return _bad_input(sentence_id, reason=str(input_dict)) # Lexicon for vocabulary selection/restriction: # This is only populated when using multiple lexicons, in which case the # restrict_lexicon key must exist and the value (name) must map to one # of the translator's known lexicons. restrict_lexicon = None restrict_lexicon_name = input_dict.get(C.JSON_RESTRICT_LEXICON_KEY) if isinstance(translator.restrict_lexicon, dict): if restrict_lexicon_name is None: logger.error("Must specify restrict_lexicon when using multiple lexicons. Choices: %s" % ' '.join(sorted(translator.restrict_lexicon))) return _bad_input(sentence_id, reason=str(input_dict)) restrict_lexicon = translator.restrict_lexicon.get(restrict_lexicon_name, None) if restrict_lexicon is None: logger.error("Unknown restrict_lexicon '%s'. Choices: %s" % (restrict_lexicon_name, ' '.join(sorted(translator.restrict_lexicon)))) return _bad_input(sentence_id, reason=str(input_dict)) # List of phrases to prevent from occuring in the output avoid_list = input_dict.get(C.JSON_AVOID_KEY) # List of phrases that must appear in the output constraints = input_dict.get(C.JSON_CONSTRAINTS_KEY) # If there is overlap between positive and negative constraints, assume the user wanted # the words, and so remove them from the avoid_list (negative constraints) if constraints is not None and avoid_list is not None: avoid_set = set(avoid_list) overlap = set(constraints).intersection(avoid_set) if len(overlap) > 0: logger.warning("Overlap between constraints and avoid set, dropping the overlapping avoids") avoid_list = list(avoid_set.difference(overlap)) # Convert to a list of tokens if isinstance(avoid_list, list): avoid_list = [list(data_io.get_tokens(phrase)) for phrase in avoid_list] if isinstance(constraints, list): constraints = [list(data_io.get_tokens(constraint)) for constraint in constraints] return TranslatorInput(sentence_id=sentence_id, tokens=tokens, factors=factors, restrict_lexicon=restrict_lexicon, constraints=constraints, avoid_list=avoid_list, pass_through_dict=input_dict) except Exception as e: logger.exception(e, exc_info=True) if not is_python34() else logger.error(e) # type: ignore return _bad_input(sentence_id, reason=str(input_dict))
0.004821
def camel_to_under(name): """ Converts camel-case string to lowercase string separated by underscores. Written by epost (http://stackoverflow.com/questions/1175208). :param name: String to be converted :return: new String with camel-case converted to lowercase, underscored """ s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", name) return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower()
0.002404
def frommatrix(cls, apart, dpart, det_radius, init_matrix, **kwargs): """Create a `ParallelHoleCollimatorGeometry` using a matrix. This alternative constructor uses a matrix to rotate and translate the default configuration. It is most useful when the transformation to be applied is already given as a matrix. Parameters ---------- apart : 1-dim. `RectPartition` Partition of the parameter interval. dpart : 2-dim. `RectPartition` Partition of the detector parameter set. det_radius : positive float Radius of the circular detector orbit. init_matrix : `array_like`, shape ``(3, 3)`` or ``(3, 4)``, optional Transformation matrix whose left ``(3, 3)`` block is multiplied with the default ``det_pos_init`` and ``det_axes_init`` to determine the new vectors. If present, the fourth column acts as a translation after the initial transformation. The resulting ``det_axes_init`` will be normalized. kwargs : Further keyword arguments passed to the class constructor. Returns ------- geometry : `ParallelHoleCollimatorGeometry` The resulting geometry. """ # Get transformation and translation parts from `init_matrix` init_matrix = np.asarray(init_matrix, dtype=float) if init_matrix.shape not in ((3, 3), (3, 4)): raise ValueError('`matrix` must have shape (3, 3) or (3, 4), ' 'got array with shape {}' ''.format(init_matrix.shape)) trafo_matrix = init_matrix[:, :3] translation = init_matrix[:, 3:].squeeze() # Transform the default vectors default_axis = cls._default_config['axis'] # Normalized version, just in case default_orig_to_det_init = ( np.array(cls._default_config['det_pos_init'], dtype=float) / np.linalg.norm(cls._default_config['det_pos_init'])) default_det_axes_init = cls._default_config['det_axes_init'] vecs_to_transform = ((default_orig_to_det_init,) + default_det_axes_init) transformed_vecs = transform_system( default_axis, None, vecs_to_transform, matrix=trafo_matrix) # Use the standard constructor with these vectors axis, orig_to_det, det_axis_0, det_axis_1 = transformed_vecs if translation.size != 0: kwargs['translation'] = translation return cls(apart, dpart, det_radius, axis, orig_to_det_init=orig_to_det, det_axes_init=[det_axis_0, det_axis_1], **kwargs)
0.000723
def dump(d, fmt='json', stream=None): """Serialize structured data into a stream in JSON, YAML, or LHA format. If stream is None, return the produced string instead. Parameters: - fmt: should be 'json' (default), 'yaml', or 'lha' - stream: if None, return string """ if fmt == 'json': return _dump_json(d, stream=stream) elif fmt == 'yaml': return yaml.dump(d, stream) elif fmt == 'lha': s = _dump_lha(d) if stream is None: return s else: return stream.write(s)
0.001779
def get(cls, group, admin): """Get specific GroupAdmin object.""" try: ga = cls.query.filter_by( group=group, admin_id=admin.get_id(), admin_type=resolve_admin_type(admin)).one() return ga except Exception: return None
0.006452
def commit(self): ''' Writes the current provenance stack to storage if it wasn't already there and returns it Returns (Tuple[bool, str, List[]]): Whether the stack was not cached, the iden of the prov stack, and the provstack ''' providen, provstack = get() wasnew = (providen is None) if wasnew: providen = self.getProvIden(provstack) setiden(providen) return wasnew, s_common.ehex(providen), provstack
0.007921
def logx(supress_args=[], supress_all_args=False, supress_result=False, receiver=None): """ logs parameters and result takes arguments supress_args - list of parameter names to supress supress_all_args - boolean to supress all arguments supress_result - boolean to supress result receiver - custom logging function which takes a string as input; defaults to logging on stdout """ def decorator(fn): def func(*args, **kwargs): if not supress_all_args: arg_string = "" for i in range(0, len(args)): var_name = fn.__code__.co_varnames[i] if var_name != "self" and var_name not in supress_args: arg_string += var_name + ":" + str(args[i]) + "," arg_string = arg_string[0:len(arg_string) - 1] string = (RED + BOLD + '>> ' + END + 'Calling {0}({1})'.format(fn.__code__.co_name, arg_string)) if len(kwargs): string = ( RED + BOLD + '>> ' + END + 'Calling {0} with args {1} and kwargs {2}'.format( fn.__code__.co_name, arg_string, kwargs)) if receiver: receiver(string) else: print(string) result = fn(*args, **kwargs) if not supress_result: string = BLUE + BOLD + '<< ' + END + 'Return {0} with result :{1}'.format(fn.__code__.co_name, result) if receiver: receiver(string) else: print(string) return result return func return decorator
0.003415
def get_splits(self, n_splits=1): """Return splits of this dataset ready for Cross Validation. If n_splits is 1, a tuple containing the X for train and test and the y for train and test is returned. Otherwise, if n_splits is bigger than 1, a list of such tuples is returned, one for each split. Args: n_splits (int): Number of times that the data needs to be splitted. Returns: tuple or list: if n_splits is 1, a tuple containing the X for train and test and the y for train and test is returned. Otherwise, if n_splits is bigger than 1, a list of such tuples is returned, one for each split. """ if n_splits == 1: stratify = self.target if self._stratify else None return train_test_split( self.data, self.target, shuffle=self._shuffle, stratify=stratify ) else: cv_class = StratifiedKFold if self._stratify else KFold cv = cv_class(n_splits=n_splits, shuffle=self._shuffle) splits = list() for train, test in cv.split(self.data, self.target): X_train = self._get_split(self.data, train) y_train = self._get_split(self.target, train) X_test = self._get_split(self.data, test) y_test = self._get_split(self.target, test) splits.append((X_train, X_test, y_train, y_test)) return splits
0.001251
def get_access_key(self): """ Gets the application secret key. The value can be stored in parameters "access_key", "client_key" or "secret_key". :return: the application secret key. """ access_key = self.get_as_nullable_string("access_key") access_key = access_key if access_key != None else self.get_as_nullable_string("access_key") return access_key
0.012019
def make_map(): """Create, configure and return the routes Mapper""" map = Mapper(directory=config['pylons.paths']['controllers'], always_scan=config['debug'], explicit=True) map.minimization = False # The ErrorController route (handles 404/500 error pages); it should # likely stay at the top, ensuring it can always be resolved map.connect('/error/{action}', controller='error') map.connect('/error/{action}/{id}', controller='error') # CUSTOM ROUTES HERE # mapfiles routes map.connect('/mapfiles/default', controller='mapfiles', action='get_default_mapfile') map.resource('MapFiles','mapfiles') map.connect('/mapfiles/{id}/symbols', controller='mapfiles', action='get_symbols') map.connect('/mapfiles/{id}/fonts', controller='mapfiles', action='get_fonts') map.connect('/mapfiles/{id}/download', controller='mapfiles', action='download_mapfile') map.connect('/mapfiles/{id}/wms', controller='mapfiles', action='wms_proxy') # datastores routes map.resource('DataStores', 'datastores') # datasources routes map.connect('/datastores/{datastore_id}/datasources', controller='datasources', conditions={'method': ['POST']}, action='create') map.connect('/datastores/{datastore_id}/datasources', controller='datasources', action='index') map.connect('/datastores/{datastore_id}/datasources/{datasource_id}', controller='datasources', action='show') map.connect('/datastores/{datastore_id}/datasources/{datasource_id}/columns', controller='datasources', action='showcolumns') map.connect('/datastores/{datastore_id}/datasources/{datasource_id}/mapfile', controller='datasources', action='showmapfile') # layertemplates routes map.resource('LayerTemplates', 'layertemplates') # auth routes map.connect('/signin', controller='main', action='signin') map.connect('/signout', controller='main', action='signout') # default route for root ;) map.connect('/', controller='main', action='index') map.connect('/layout.js', controller='main', action='layout') map.connect('/{controller}/{action}') map.connect('/{controller}/{action}/{id}') return map
0.00699
def __get_securities(self, currency: str, agent: str, symbol: str, namespace: str) -> List[dal.Security]: """ Fetches the securities that match the given filters """ repo = self.get_security_repository() query = repo.query if currency is not None: query = query.filter(dal.Security.currency == currency) if agent is not None: query = query.filter(dal.Security.updater == agent) if symbol is not None: query = query.filter(dal.Security.symbol == symbol) if namespace is not None: query = query.filter(dal.Security.namespace == namespace) # Sorting query = query.order_by(dal.Security.namespace, dal.Security.symbol) securities = query.all() return securities
0.003641
def jdnDate(jdn): """ Converts Julian Day Number to Gregorian date. """ a = jdn + 32044 b = (4*a + 3) // 146097 c = a - (146097*b) // 4 d = (4*c + 3) // 1461 e = c - (1461*d) // 4 m = (5*e + 2) // 153 day = e + 1 - (153*m + 2) // 5 month = m + 3 - 12*(m//10) year = 100*b + d - 4800 + m//10 return [year, month, day]
0.002778
def risearch(self): "Instance of :class:`eulfedora.api.ResourceIndex`, with the same root url and credentials" if self._risearch is None: self._risearch = ResourceIndex(self.api.base_url, self.api.username, self.api.password) return self._risearch
0.014134
def purge_run(self, event): """Run purge for the object with ``location_id`` specified in ``event`` argument.""" location_id = event['location_id'] verbosity = event['verbosity'] try: logger.info(__("Running purge for location id {}.", location_id)) location_purge(location_id=location_id, delete=True, verbosity=verbosity) except Exception: # pylint: disable=broad-except logger.exception("Error while purging location.", extra={'location_id': location_id})
0.009328
def _infer_interval_breaks(coord, axis=0, check_monotonic=False): """ >>> _infer_interval_breaks(np.arange(5)) array([-0.5, 0.5, 1.5, 2.5, 3.5, 4.5]) >>> _infer_interval_breaks([[0, 1], [3, 4]], axis=1) array([[-0.5, 0.5, 1.5], [ 2.5, 3.5, 4.5]]) """ coord = np.asarray(coord) if check_monotonic and not _is_monotonic(coord, axis=axis): raise ValueError("The input coordinate is not sorted in increasing " "order along axis %d. This can lead to unexpected " "results. Consider calling the `sortby` method on " "the input DataArray. To plot data with categorical " "axes, consider using the `heatmap` function from " "the `seaborn` statistical plotting library." % axis) deltas = 0.5 * np.diff(coord, axis=axis) if deltas.size == 0: deltas = np.array(0.0) first = np.take(coord, [0], axis=axis) - np.take(deltas, [0], axis=axis) last = np.take(coord, [-1], axis=axis) + np.take(deltas, [-1], axis=axis) trim_last = tuple(slice(None, -1) if n == axis else slice(None) for n in range(coord.ndim)) return np.concatenate([first, coord[trim_last] + deltas, last], axis=axis)
0.000764
def get_package_id(self, name): """ Retrieve the smart package id given is English name @param (str) name: the Aruba Smart package size name, ie: "small", "medium", "large", "extra large". @return: The package id that depends on the Data center and the size choosen. """ json_scheme = self.gen_def_json_scheme('GetPreConfiguredPackages', dict(HypervisorType=4)) json_obj = self.call_method_post(method='GetPreConfiguredPackages ', json_scheme=json_scheme) for package in json_obj['Value']: packageId = package['PackageID'] for description in package['Descriptions']: languageID = description['LanguageID'] packageName = description['Text'] if languageID == 2 and packageName.lower() == name.lower(): return packageId
0.008018
def search(self, **kwargs): """ Method to search ipv4's based on extends search. :param search: Dict containing QuerySets to find ipv4's. :param include: Array containing fields to include on response. :param exclude: Array containing fields to exclude on response. :param fields: Array containing fields to override default fields. :param kind: Determine if result will be detailed ('detail') or basic ('basic'). :return: Dict containing ipv4's """ return super(ApiNetworkIPv4, self).get(self.prepare_url('api/v3/networkv4/', kwargs))
0.005865
def addLocation(self, locationUri, weight): """ add relevant location to the topic page @param locationUri: uri of the location to add @param weight: importance of the provided location (typically in range 1 - 50) """ assert isinstance(weight, (float, int)), "weight value has to be a positive or negative integer" self.topicPage["locations"].append({"uri": locationUri, "wgt": weight})
0.00905
def theta2_purities_chart (self): """ Make the plot showing alignment rates """ # Specify the order of the different possible categories keys = OrderedDict() keys['proportion_germline'] = { 'name': 'Germline' } keys['proportion_tumour_1'] = { 'name': 'Tumour Subclone 1' } keys['proportion_tumour_2'] = { 'name': 'Tumour Subclone 2' } keys['proportion_tumour_3'] = { 'name': 'Tumour Subclone 3' } keys['proportion_tumour_4'] = { 'name': 'Tumour Subclone 4' } keys['proportion_tumour_5'] = { 'name': 'Tumour Subclone 5' } keys['proportion_tumour_gt5'] = { 'name': 'Tumour Subclones > 5' } # Config for the plot pconfig = { 'id': 'theta2_purity_plot', 'title': 'THetA2: Tumour Subclone Purities', 'cpswitch': False, 'ymin': 0, 'ymax': 100, 'ylab': '% Purity', 'tt_suffix': '%' } return bargraph.plot(self.theta2_data, keys, pconfig)
0.022094
def _raw_write(self, data, debug_str = None): """ Write data to YubiKey. """ if self.debug: if not debug_str: debug_str = '' hexdump = yubico_util.hexdump(data, colorize=True)[:-1] # strip LF self._debug("WRITE : %s %s\n" % (hexdump, debug_str)) request_type = _USB_TYPE_CLASS | _USB_RECIP_INTERFACE | _USB_ENDPOINT_OUT value = _REPORT_TYPE_FEATURE << 8 # apparently required for YubiKey 1.3.2, but not 2.2.x sent = self._usb_handle.controlMsg(request_type, _HID_SET_REPORT, data, value = value, timeout = _USB_TIMEOUT_MS) if sent != _FEATURE_RPT_SIZE: self.debug("Failed writing %i bytes (wrote %i) to USB HID YubiKey.\n" % (_FEATURE_RPT_SIZE, sent)) raise YubiKeyUSBHIDError('Failed talking to USB HID YubiKey') return sent
0.014995
def list( self, bucket: str, prefix: str=None, delimiter: str=None, ) -> typing.Iterator[str]: """ Returns an iterator of all blob entries in a bucket that match a given prefix. Do not return any keys that contain the delimiter past the prefix. """ raise NotImplementedError()
0.02168
def format_configchoicefield_nodes(field_name, field, field_id, state, lineno): """Create a section node that documents a ConfigChoiceField config field. Parameters ---------- field_name : `str` Name of the configuration field (the attribute name of on the config class). field : ``lsst.pex.config.ConfigChoiceField`` A configuration field. field_id : `str` Unique identifier for this field. This is used as the id and name of the section node. with a -section suffix state : ``docutils.statemachine.State`` Usually the directive's ``state`` attribute. lineno (`int`) Usually the directive's ``lineno`` attribute. Returns ------- ``docutils.nodes.section`` Section containing documentation nodes for the ConfigChoiceField. """ # Create a definition list for the choices choice_dl = nodes.definition_list() for choice_value, choice_class in field.typemap.items(): item = nodes.definition_list_item() item_term = nodes.term() item_term += nodes.literal(text=repr(choice_value)) item += item_term item_definition = nodes.definition() def_para = nodes.paragraph() name = '.'.join((choice_class.__module__, choice_class.__name__)) def_para += pending_config_xref(rawsource=name) item_definition += def_para item += item_definition choice_dl.append(item) choices_node = nodes.definition_list_item() choices_node.append(nodes.term(text='Choices')) choices_definition = nodes.definition() choices_definition.append(choice_dl) choices_node.append(choices_definition) # Field type field_type_item = nodes.definition_list_item() field_type_item.append(nodes.term(text="Field type")) field_type_item_content = nodes.definition() field_type_item_content_p = nodes.paragraph() if field.multi: multi_text = "Multi-selection " else: multi_text = "Single-selection " field_type_item_content_p += nodes.Text(multi_text, multi_text) field_type_item_content_p += make_python_xref_nodes_for_type( type(field), state, hide_namespace=True)[0].children[0] if field.optional: field_type_item_content_p += nodes.Text(' (optional)', ' (optional)') field_type_item_content += field_type_item_content_p field_type_item += field_type_item_content dl = nodes.definition_list() dl += create_default_item_node(field, state) dl += field_type_item dl += choices_node # Doc for this field, parsed as rst desc_node = create_description_node(field, state) # Title for configuration field title = create_title_node(field_name, field, field_id, state, lineno) return [title, dl, desc_node]
0.000354
def _get_component_from_result(self, result, lookup): """ Helper function to get a particular address component from a Google result. Since the address components in results are an array of objects containing a types array, we have to search for a particular component rather than being able to look it up directly. Returns the first match, so this should be used for unique component types (e.g. 'locality'), not for categories (e.g. 'political') that can describe multiple components. :arg dict result: A results dict with an 'address_components' key, as returned by the Google geocoder. :arg dict lookup: The type (e.g. 'street_number') and key ('short_name' or 'long_name') of the desired address component value. :returns: address component or empty string """ for component in result['address_components']: if lookup['type'] in component['types']: return component.get(lookup['key'], '') return ''
0.008318
def _negotiateHandler(self, request): """ Negotiate a handler based on the content types acceptable to the client. :rtype: 2-`tuple` of `twisted.web.iweb.IResource` and `bytes` :return: Pair of a resource and the content type. """ accept = _parseAccept(request.requestHeaders.getRawHeaders('Accept')) for contentType in accept.keys(): handler = self._acceptHandlers.get(contentType.lower()) if handler is not None: return handler, handler.contentType if self._fallback: handler = self._handlers[0] return handler, handler.contentType return NotAcceptable(), None
0.002825
def _listen(self, protocols, From, description): """ Implementation of L{Listen}. """ # The peer is coming from a client-side representation of the user # described by 'From', and talking *to* a server-side representation of # the user described by 'From'. self.verifyCertificateAllowed(From, From) theirCert = Certificate.peerFromTransport(self.transport) for protocolName in protocols: if protocolName.startswith('.'): raise VerifyError( "Internal protocols are for server-server use _only_: %r" % protocolName) key = (From, protocolName) value = (self, theirCert, description) log.msg("%r listening for %r" % key) self.listeningClient.append((key, value)) self.service.listeningClients.setdefault(key, []).append(value) return {}
0.002125
def inverse_transform(self, X_in): """ Perform the inverse transformation to encoded data. Will attempt best case reconstruction, which means it will return nan for handle_missing and handle_unknown settings that break the bijection. We issue warnings when some of those cases occur. Parameters ---------- X_in : array-like, shape = [n_samples, n_features] Returns ------- p: array, the same size of X_in """ X = X_in.copy(deep=True) # first check the type X = util.convert_input(X) if self._dim is None: raise ValueError( 'Must train encoder before it can be used to inverse_transform data') # then make sure that it is the right size if X.shape[1] != self._dim: if self.drop_invariant: raise ValueError("Unexpected input dimension %d, the attribute drop_invariant should " "set as False when transform data" % (X.shape[1],)) else: raise ValueError('Unexpected input dimension %d, expected %d' % (X.shape[1], self._dim,)) if not self.cols: return X if self.return_df else X.values if self.handle_unknown == 'value': for col in self.cols: if any(X[col] == -1): warnings.warn("inverse_transform is not supported because transform impute " "the unknown category -1 when encode %s" % (col,)) if self.handle_unknown == 'return_nan' and self.handle_missing == 'return_nan': for col in self.cols: if X[col].isnull().any(): warnings.warn("inverse_transform is not supported because transform impute " "the unknown category nan when encode %s" % (col,)) for switch in self.mapping: column_mapping = switch.get('mapping') inverse = pd.Series(data=column_mapping.index, index=column_mapping.get_values()) X[switch.get('col')] = X[switch.get('col')].map(inverse).astype(switch.get('data_type')) return X if self.return_df else X.values
0.006696
def _registered_kl(type_a, type_b): """Get the KL function registered for classes a and b.""" hierarchy_a = tf_inspect.getmro(type_a) hierarchy_b = tf_inspect.getmro(type_b) dist_to_children = None kl_fn = None for mro_to_a, parent_a in enumerate(hierarchy_a): for mro_to_b, parent_b in enumerate(hierarchy_b): candidate_dist = mro_to_a + mro_to_b candidate_kl_fn = _DIVERGENCES.get((parent_a, parent_b), None) if not kl_fn or (candidate_kl_fn and candidate_dist < dist_to_children): dist_to_children = candidate_dist kl_fn = candidate_kl_fn return kl_fn
0.018152
def get_next_line(self): """ Gets next line of random_file and starts over when reaching end of file""" try: line = next(self.random_file).strip() #keep track of which document we are currently looking at to later avoid having the same doc as t1 if line == "": self.current_random_doc = self.current_random_doc + 1 line = next(self.random_file).strip() except StopIteration: self.random_file.close() self.random_file = open(self.corpus_path, "r", encoding=self.encoding) line = next(self.random_file).strip() return line
0.009146
async def peers(client: Client, leaves: bool = False, leaf: str = "") -> dict: """ GET peering entries of every node inside the currency network :param client: Client to connect to the api :param leaves: True if leaves should be requested :param leaf: True if leaf should be requested :return: """ if leaves is True: return await client.get(MODULE + '/peering/peers', {"leaves": "true"}, schema=PEERS_SCHEMA) else: return await client.get(MODULE + '/peering/peers', {"leaf": leaf}, schema=PEERS_SCHEMA)
0.005405
def free_symbolic(self): """Free symbolic data""" if self._symbolic is not None: self.funs.free_symbolic(self._symbolic) self._symbolic = None self.mtx = None
0.009524
def set_options_from_file(self, filename, file_format='yaml'): """Load options from file. This is a wrapper over :func:`.set_options_from_JSON` and :func:`.set_options_from_YAML`. :param str filename: File from which to load the options. :param str file_format: File format (``yaml`` or ``json``). :raises: :ValueError: If an unknown ``format`` is requested. """ if file_format.lower() == 'yaml': return self.set_options_from_YAML(filename) elif file_format.lower() == 'json': return self.set_options_from_JSON(filename) else: raise ValueError('Unknown format {}'.format(file_format))
0.002797
def charges(self, num, charge_id=None, **kwargs): """Search for charges against a company by company number. Args: num (str): Company number to search on. transaction (Optional[str]): Filing record number. kwargs (dict): additional keywords passed into requests.session.get params keyword. """ baseuri = self._BASE_URI + "company/{}/charges".format(num) if charge_id is not None: baseuri += "/{}".format(charge_id) res = self.session.get(baseuri, params=kwargs) else: res = self.session.get(baseuri, params=kwargs) self.handle_http_error(res) return res
0.002882
def post_event_unpublish(self, id, **data): """ POST /events/:id/unpublish/ Unpublishes an event. In order for a free event to be unpublished, it must not have any pending or completed orders, even if the event is in the past. In order for a paid event to be unpublished, it must not have any pending or completed orders, unless the event has been completed and paid out. Returns a boolean indicating success or failure of the unpublish. """ return self.post("/events/{0}/unpublish/".format(id), data=data)
0.010363
def _as_reference_point(self) -> np.ndarray: """ Return classification information as reference point """ ref_val = [] for fn, f in self._classification.items(): if f[0] == "<": ref_val.append(self._method.problem.ideal[fn]) elif f[0] == "<>": ref_val.append(self._method.problem.nadir[fn]) else: ref_val.append(f[1]) return np.array(ref_val)
0.004283
def makevAndvPfuncs(self,policyFunc): ''' Constructs the marginal value function for this period. Parameters ---------- policyFunc : function Consumption and medical care function for this period, defined over market resources, permanent income level, and the medical need shock. Returns ------- vFunc : function Value function for this period, defined over market resources and permanent income. vPfunc : function Marginal value (of market resources) function for this period, defined over market resources and permanent income. ''' # Get state dimension sizes mCount = self.aXtraGrid.size pCount = self.pLvlGrid.size MedCount = self.MedShkVals.size # Make temporary grids to evaluate the consumption function temp_grid = np.tile(np.reshape(self.aXtraGrid,(mCount,1,1)),(1,pCount,MedCount)) aMinGrid = np.tile(np.reshape(self.mLvlMinNow(self.pLvlGrid),(1,pCount,1)), (mCount,1,MedCount)) pGrid = np.tile(np.reshape(self.pLvlGrid,(1,pCount,1)),(mCount,1,MedCount)) mGrid = temp_grid*pGrid + aMinGrid if self.pLvlGrid[0] == 0: mGrid[:,0,:] = np.tile(np.reshape(self.aXtraGrid,(mCount,1)),(1,MedCount)) MedShkGrid = np.tile(np.reshape(self.MedShkVals,(1,1,MedCount)),(mCount,pCount,1)) probsGrid = np.tile(np.reshape(self.MedShkPrbs,(1,1,MedCount)),(mCount,pCount,1)) # Get optimal consumption (and medical care) for each state cGrid,MedGrid = policyFunc(mGrid,pGrid,MedShkGrid) # Calculate expected value by "integrating" across medical shocks if self.vFuncBool: MedGrid = np.maximum(MedGrid,1e-100) # interpolation error sometimes makes Med < 0 (barely) aGrid = np.maximum(mGrid - cGrid - self.MedPrice*MedGrid, aMinGrid) # interpolation error sometimes makes tiny violations vGrid = self.u(cGrid) + MedShkGrid*self.uMed(MedGrid) + self.EndOfPrdvFunc(aGrid,pGrid) vNow = np.sum(vGrid*probsGrid,axis=2) # Calculate expected marginal value by "integrating" across medical shocks vPgrid = self.uP(cGrid) vPnow = np.sum(vPgrid*probsGrid,axis=2) # Add vPnvrs=0 at m=mLvlMin to close it off at the bottom (and vNvrs=0) mGrid_small = np.concatenate((np.reshape(self.mLvlMinNow(self.pLvlGrid),(1,pCount)),mGrid[:,:,0])) vPnvrsNow = np.concatenate((np.zeros((1,pCount)),self.uPinv(vPnow))) if self.vFuncBool: vNvrsNow = np.concatenate((np.zeros((1,pCount)),self.uinv(vNow)),axis=0) vNvrsPnow = vPnow*self.uinvP(vNow) vNvrsPnow = np.concatenate((np.zeros((1,pCount)),vNvrsPnow),axis=0) # Construct the pseudo-inverse value and marginal value functions over mLvl,pLvl vPnvrsFunc_by_pLvl = [] vNvrsFunc_by_pLvl = [] for j in range(pCount): # Make a pseudo inverse marginal value function for each pLvl pLvl = self.pLvlGrid[j] m_temp = mGrid_small[:,j] - self.mLvlMinNow(pLvl) vPnvrs_temp = vPnvrsNow[:,j] vPnvrsFunc_by_pLvl.append(LinearInterp(m_temp,vPnvrs_temp)) if self.vFuncBool: vNvrs_temp = vNvrsNow[:,j] vNvrsP_temp = vNvrsPnow[:,j] vNvrsFunc_by_pLvl.append(CubicInterp(m_temp,vNvrs_temp,vNvrsP_temp)) vPnvrsFuncBase = LinearInterpOnInterp1D(vPnvrsFunc_by_pLvl,self.pLvlGrid) vPnvrsFunc = VariableLowerBoundFunc2D(vPnvrsFuncBase,self.mLvlMinNow) # adjust for the lower bound of mLvl if self.vFuncBool: vNvrsFuncBase = LinearInterpOnInterp1D(vNvrsFunc_by_pLvl,self.pLvlGrid) vNvrsFunc = VariableLowerBoundFunc2D(vNvrsFuncBase,self.mLvlMinNow) # adjust for the lower bound of mLvl # "Re-curve" the (marginal) value function vPfunc = MargValueFunc2D(vPnvrsFunc,self.CRRA) if self.vFuncBool: vFunc = ValueFunc2D(vNvrsFunc,self.CRRA) else: vFunc = NullFunc() return vFunc, vPfunc
0.026085
def _to_dict(self): """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'matching_results') and self.matching_results is not None: _dict['matching_results'] = self.matching_results if hasattr(self, 'hits') and self.hits is not None: _dict['hits'] = [x._to_dict() for x in self.hits] return _dict
0.004878
def handle_registered(self, server): """\ When the connection to the server is registered, send all pending data. """ if not self._registered: self.logger.info('Registered') self._registered = True for data in self._out_buffer: self.send(data) self._out_buffer = []
0.00542
def _join_strings(x): """Joins adjacent Str elements found in the element list 'x'.""" for i in range(len(x)-1): # Process successive pairs of elements if x[i]['t'] == 'Str' and x[i+1]['t'] == 'Str': x[i]['c'] += x[i+1]['c'] del x[i+1] # In-place deletion of element from list return None # Forces processing to repeat return True
0.002571
def return_file_objects(connection, container, prefix='database'): """Given connecton and container find database dumps """ options = [] meta_data = objectstore.get_full_container_list( connection, container, prefix='database') env = ENV.upper() for o_info in meta_data: expected_file = f'database.{ENV}' if o_info['name'].startswith(expected_file): dt = dateparser.parse(o_info['last_modified']) now = datetime.datetime.now() delta = now - dt LOG.debug('AGE: %d %s', delta.days, expected_file) options.append((dt, o_info)) options.sort() return options
0.001466
def is_visible(self, pos: Union[Point2, Point3, Unit]) -> bool: """ Returns True if you have vision on a grid point. """ # more info: https://github.com/Blizzard/s2client-proto/blob/9906df71d6909511907d8419b33acc1a3bd51ec0/s2clientprotocol/spatial.proto#L19 assert isinstance(pos, (Point2, Point3, Unit)) pos = pos.position.to2.rounded return self.state.visibility[pos] == 2
0.007246
def validate_word_size(word_size, BLAST_SETS): """Validate word size in blast/tblastn form. """ blast_min_int_word_size = BLAST_SETS.min_word_size blast_max_int_word_size = BLAST_SETS.max_word_size blast_word_size_error = BLAST_SETS.get_word_size_error() try: if len(word_size) <= 0: raise forms.ValidationError(blast_word_size_error) int_word_size = int(word_size) if int_word_size < blast_min_int_word_size: raise forms.ValidationError(blast_word_size_error) if int_word_size >= blast_max_int_word_size: raise forms.ValidationError(blast_word_size_error) except: raise forms.ValidationError(blast_word_size_error) return int_word_size
0.002674
def share(self, email, message=None): """Share the project with another Todoist user. :param email: The other user's email address. :type email: str :param message: Optional message to send with the invitation. :type message: str >>> from pytodoist import todoist >>> user = todoist.login('john.doe@gmail.com', 'password') >>> project = user.get_project('PyTodoist') >>> project.share('jane.doe@gmail.com') """ args = { 'project_id': self.id, 'email': email, 'message': message } _perform_command(self.owner, 'share_project', args)
0.002972
def find_field(browser, field_type, value): """ Locate an input field. :param browser: ``world.browser`` :param string field_type: a field type (i.e. `button`) :param string value: an id, name or label This first looks for `value` as the id of the element, else the name of the element, else as a label for the element. Returns: an :class:`ElementSelector` """ return find_field_by_id(browser, field_type, value) + \ find_field_by_name(browser, field_type, value) + \ find_field_by_label(browser, field_type, value)
0.001742
def format_request_email_templ(increq, template, **ctx): """Format the email message element for inclusion request notification. Formats the message according to the provided template file, using some default fields from 'increq' object as default context. Arbitrary context can be provided as keywords ('ctx'), and those will not be overwritten by the fields from 'increq' object. :param increq: Inclusion request object for which the request is made. :type increq: `invenio_communities.models.InclusionRequest` :param template: relative path to jinja template. :type template: str :param ctx: Optional extra context parameters passed to formatter. :type ctx: dict. :returns: Formatted message. :rtype: str """ # Add minimal information to the contex (without overwriting). curate_link = '{site_url}/communities/{id}/curate/'.format( site_url=current_app.config['THEME_SITEURL'], id=increq.community.id) min_ctx = dict( record=Record.get_record(increq.record.id), requester=increq.user, community=increq.community, curate_link=curate_link, ) for k, v in min_ctx.items(): if k not in ctx: ctx[k] = v msg_element = render_template_to_string(template, **ctx) return msg_element
0.000751
def normalizeX(value): """ Normalizes x coordinate. * **value** must be an :ref:`type-int-float`. * Returned value is the same type as the input value. """ if not isinstance(value, (int, float)): raise TypeError("X coordinates must be instances of " ":ref:`type-int-float`, not %s." % type(value).__name__) return value
0.002475
def _write(self, destination: TextIO) -> None: """ Writes the converted output to a destination. """ for line in self.dest_lines: destination.write(line + NL)
0.009901
def id_match_check(self, data_df, meta_df, dim): """ Verifies that id values match between: - row case: index of data_df & index of row metadata - col case: columns of data_df & index of column metadata """ if dim == "row": if len(data_df.index) == len(meta_df.index) and set(data_df.index) == set(meta_df.index): return True else: msg = ("The rids are inconsistent between data_df and row_metadata_df.\n" + "data_df.index.values:\n{}\nrow_metadata_df.index.values:\n{}").format(data_df.index.values, meta_df.index.values) self.logger.error(msg) raise Exception("GCToo GCToo.id_match_check " + msg) elif dim == "col": if len(data_df.columns) == len(meta_df.index) and set(data_df.columns) == set(meta_df.index): return True else: msg = ("The cids are inconsistent between data_df and col_metadata_df.\n" + "data_df.columns.values:\n{}\ncol_metadata_df.index.values:\n{}").format(data_df.columns.values, meta_df.index.values) self.logger.error(msg) raise Exception("GCToo GCToo.id_match_check " + msg)
0.007849
def relabel(self, xlabel=None, ylabel=None, y2label=None, title=None, delay_draw=False): " re draw labels (title, x, y labels)" n = self.labelfont.get_size() self.titlefont.set_size(n+1) # print(" plot relabel ", delay_draw) rcParams['xtick.labelsize'] = rcParams['ytick.labelsize'] = n rcParams['xtick.color'] = rcParams['ytick.color'] = self.textcolor if xlabel is not None: self.xlabel = xlabel if ylabel is not None: self.ylabel = ylabel if y2label is not None: self.y2label = y2label if title is not None: self.title = title axes = self.canvas.figure.get_axes() kws = dict(fontproperties=self.titlefont, color=self.textcolor) axes[0].set_title(self.title, **kws) kws['fontproperties'] = self.labelfont if len(self.xlabel) > 0 and self.xlabel not in ('', None, 'None'): axes[0].set_xlabel(self.xlabel, **kws) if len(self.ylabel) > 0 and self.ylabel not in ('', None, 'None'): axes[0].set_ylabel(self.ylabel, **kws) if (len(axes) > 1 and len(self.y2label) > 0 and self.y2label not in ('', None, 'None')): axes[1].set_ylabel(self.y2label, **kws) for ax in axes[0].xaxis, axes[0].yaxis: for t in (ax.get_ticklabels() + ax.get_ticklines()): t.set_color(self.textcolor) if hasattr(t, 'set_fontsize'): t.set_fontsize(n) self.set_added_text_size() if self.mpl_legend is not None: for t in self.mpl_legend.get_texts(): t.set_color(self.textcolor) if not delay_draw: self.canvas.draw()
0.004507
def action_set(method_name): """ Creates a setter that will call the action method with the context's key as first parameter and the value as second parameter. @param method_name: the name of a method belonging to the action. @type method_name: str """ def action_set(value, context, **_params): method = getattr(context["action"], method_name) return _set(method, context["key"], value, (), {}) return action_set
0.00216
def _try_reduce(self) -> Tuple[bool, List[HdlStatement]]: """ Doc on parent class :meth:`HdlStatement._try_reduce` """ # flag if IO of statement has changed io_change = False self.ifTrue, rank_decrease, _io_change = self._try_reduce_list( self.ifTrue) self.rank -= rank_decrease io_change |= _io_change new_elifs = [] for cond, statements in self.elIfs: _statements, rank_decrease, _io_change = self._try_reduce_list( statements) self.rank -= rank_decrease io_change |= _io_change new_elifs.append((cond, _statements)) if self.ifFalse is not None: self.ifFalse, rank_decrease, _io_update_required = self._try_reduce_list( self.ifFalse) self.rank -= rank_decrease io_change |= _io_change reduce_self = not self.condHasEffect( self.ifTrue, self.ifFalse, self.elIfs) if reduce_self: res = self.ifTrue else: res = [self, ] self._on_reduce(reduce_self, io_change, res) # try merge nested ifs as elifs if self.ifFalse is not None and len(self.ifFalse) == 1: child = self.ifFalse[0] if isinstance(child, IfContainer): self._merge_nested_if_from_else(child) return res, io_change
0.002102
def write(self, data): 'Put, possibly replace, file contents with (new) data' if not hasattr(data, 'read'): data = six.BytesIO(data)#StringIO(data) self.jfs.up(self.path, data)
0.018868
def plot_element_profile(self, element, comp, show_label_index=None, xlim=5): """ Draw the element profile plot for a composition varying different chemical potential of an element. X value is the negative value of the chemical potential reference to elemental chemical potential. For example, if choose Element("Li"), X= -(µLi-µLi0), which corresponds to the voltage versus metal anode. Y values represent for the number of element uptake in this composition (unit: per atom). All reactions are printed to help choosing the profile steps you want to show label in the plot. Args: element (Element): An element of which the chemical potential is considered. It also must be in the phase diagram. comp (Composition): A composition. show_label_index (list of integers): The labels for reaction products you want to show in the plot. Default to None (not showing any annotation for reaction products). For the profile steps you want to show the labels, just add it to the show_label_index. The profile step counts from zero. For example, you can set show_label_index=[0, 2, 5] to label profile step 0,2,5. xlim (float): The max x value. x value is from 0 to xlim. Default to 5 eV. Returns: Plot of element profile evolution by varying the chemical potential of an element. """ plt = pretty_plot(12, 8) pd = self._pd evolution = pd.get_element_profile(element, comp) num_atoms = evolution[0]["reaction"].reactants[0].num_atoms element_energy = evolution[0]['chempot'] for i, d in enumerate(evolution): v = -(d["chempot"] - element_energy) print ("index= %s, -\u0394\u03BC=%.4f(eV)," % (i, v), d["reaction"]) if i != 0: plt.plot([x2, x2], [y1, d["evolution"] / num_atoms], 'k', linewidth=2.5) x1 = v y1 = d["evolution"] / num_atoms if i != len(evolution) - 1: x2 = - (evolution[i + 1]["chempot"] - element_energy) else: x2 = 5.0 if show_label_index is not None and i in show_label_index: products = [re.sub(r"(\d+)", r"$_{\1}$", p.reduced_formula) for p in d["reaction"].products if p.reduced_formula != element.symbol] plt.annotate(", ".join(products), xy=(v + 0.05, y1 + 0.05), fontsize=24, color='r') plt.plot([x1, x2], [y1, y1], 'r', linewidth=3) else: plt.plot([x1, x2], [y1, y1], 'k', linewidth=2.5) plt.xlim((0, xlim)) plt.xlabel("-$\\Delta{\\mu}$ (eV)") plt.ylabel("Uptake per atom") return plt
0.001677
def instance(self): """ Retrieve the single (expected) instance of this 'Part' (of `Category.MODEL`) as a 'Part'. See :func:`Part.instances()` method for documentation. :return: :class:`Part` with category `INSTANCE` :raises NotFoundError: if the instance does not exist :raises MultipleFoundError: if there are more than a single instance returned """ instances_list = list(self.instances()) if len(instances_list) == 1: return instances_list[0] elif len(instances_list) > 1: raise MultipleFoundError("Part {} has more than a single instance. " "Use the `Part.instances()` method".format(self.name)) else: raise NotFoundError("Part {} has no instance".format(self.name))
0.007194
def delete_saved_search(self, keys): """ Delete one or more saved searches by passing a list of one or more unique search keys """ headers = {"Zotero-Write-Token": token()} headers.update(self.default_headers()) req = requests.delete( url=self.endpoint + "/{t}/{u}/searches".format(t=self.library_type, u=self.library_id), headers=headers, params={"searchKey": ",".join(keys)}, ) self.request = req try: req.raise_for_status() except requests.exceptions.HTTPError: error_handler(req) return req.status_code
0.004505
def volumes(self): """ Returns a `list` of all the `Volume` known to the cluster. Updates every time - no caching. :return: a `list` of all the `Volume` known to the cluster. :rtype: list """ self.connection._check_login() response = self.connection._do_get("{}/{}".format(self.connection._api_url, "types/Volume/instances")).json() all_volumes = [] for volume in response: all_volumes.append( SIO_Volume.from_dict(volume) ) return all_volumes
0.007092
def query_dns(cls, domains, records): """ Query DNS records for host. :param domains: Iterable of domains to get DNS Records for :param records: Iterable of DNS records to get from domain. """ results = {k: set() for k in records} for record in records: for domain in domains: try: answers = cls.resolver.query(domain, record) for answer in answers: # Add value to record type results.get(record).add(answer) except (resolver.NoAnswer, resolver.NXDOMAIN, resolver.NoNameservers): # Type of record doesn't fit domain or no answer from ns continue return {k: v for k, v in results.items() if v}
0.003619
def get_order(self, order_id): '''Get an order''' resp = self.get('/orders/{}'.format(order_id)) return Order(resp)
0.014388