text
stringlengths 78
104k
| score
float64 0
0.18
|
---|---|
def flush_evicted_objects_unsafe():
"""This removes some critical state from the Redis shards.
In a multitenant environment, this will flush metadata for all jobs, which
may be undesirable.
This removes all of the metadata for objects that have been evicted. This
can be used to try to address out-of-memory errors caused by the
accumulation of metadata in Redis. However, after running this command,
fault tolerance will most likely not work.
"""
ray.worker.global_worker.check_connected()
for shard_index in range(len(ray.global_state.redis_clients)):
_flush_evicted_objects_unsafe_shard(shard_index) | 0.001531 |
def _lenstr(ins):
''' Returns string length
'''
(tmp1, output) = _str_oper(ins.quad[2], no_exaf=True)
if tmp1:
output.append('push hl')
output.append('call __STRLEN')
output.extend(_free_sequence(tmp1))
output.append('push hl')
REQUIRES.add('strlen.asm')
return output | 0.003195 |
def do_action(self, action):
"""Execute action, add a new tile, update the score & return the reward."""
temp_state = np.rot90(self._state, action)
reward = self._do_action_left(temp_state)
self._state = np.rot90(temp_state, -action)
self._score += reward
self.add_random_tile()
return reward | 0.008547 |
def get_function_spec(name):
"""Return a dictionary with the specification of a function:
parameter names and defaults (value, bounds, scale, etc.).
Returns
-------
par_names : list
List of parameter names for this function.
norm_par : str
Name of normalization parameter.
default : dict
Parameter defaults dictionary.
"""
if not hasattr(get_function_spec, 'fndict'):
modelfile = os.path.join('$FERMIPY_ROOT',
'data', 'models.yaml')
modelfile = os.path.expandvars(modelfile)
get_function_spec.fndict = yaml.load(open(modelfile))
if not name in get_function_spec.fndict.keys():
raise Exception('Invalid Function Name: %s' % name)
return get_function_spec.fndict[name] | 0.002488 |
def _calc(self, x, y):
"""
List based implementation of binary tree algorithm for concordance
measure after :cite:`Christensen2005`.
"""
x = np.array(x)
y = np.array(y)
n = len(y)
perm = list(range(n))
perm.sort(key=lambda a: (x[a], y[a]))
vals = y[perm]
ExtraY = 0
ExtraX = 0
ACount = 0
BCount = 0
CCount = 0
DCount = 0
ECount = 0
DCount = 0
Concordant = 0
Discordant = 0
# ids for left child
li = [None] * (n - 1)
# ids for right child
ri = [None] * (n - 1)
# number of left descendants for a node
ld = np.zeros(n)
# number of values equal to value i
nequal = np.zeros(n)
for i in range(1, n):
NumBefore = 0
NumEqual = 1
root = 0
x0 = x[perm[i - 1]]
y0 = y[perm[i - 1]]
x1 = x[perm[i]]
y1 = y[perm[i]]
if x0 != x1:
DCount = 0
ECount = 1
else:
if y0 == y1:
ECount += 1
else:
DCount += ECount
ECount = 1
root = 0
inserting = True
while inserting:
current = y[perm[i]]
if current > y[perm[root]]:
# right branch
NumBefore += 1 + ld[root] + nequal[root]
if ri[root] is None:
# insert as right child to root
ri[root] = i
inserting = False
else:
root = ri[root]
elif current < y[perm[root]]:
# increment number of left descendants
ld[root] += 1
if li[root] is None:
# insert as left child to root
li[root] = i
inserting = False
else:
root = li[root]
elif current == y[perm[root]]:
NumBefore += ld[root]
NumEqual += nequal[root] + 1
nequal[root] += 1
inserting = False
ACount = NumBefore - DCount
BCount = NumEqual - ECount
CCount = i - (ACount + BCount + DCount + ECount - 1)
ExtraY += DCount
ExtraX += BCount
Concordant += ACount
Discordant += CCount
cd = Concordant + Discordant
num = Concordant - Discordant
tau = num / np.sqrt((cd + ExtraX) * (cd + ExtraY))
v = (4. * n + 10) / (9. * n * (n - 1))
z = tau / np.sqrt(v)
pval = erfc(np.abs(z) / 1.4142136) # follow scipy
return tau, pval, Concordant, Discordant, ExtraX, ExtraY | 0.000675 |
def def_cmd(name=None, short=None, fn=None, usage=None, help=None):
"""
Define a command.
"""
command = Command(name=name, short=short, fn=fn, usage=usage, help=help)
Command.register(command) | 0.004717 |
def restore_memory_snapshot(self, snapshot,
bSkipMappedFiles = True,
bSkipOnError = False):
"""
Attempts to restore the memory state as it was when the given snapshot
was taken.
@warning: Currently only the memory contents, state and protect bits
are restored. Under some circumstances this method may fail (for
example if memory was freed and then reused by a mapped file).
@type snapshot: list( L{win32.MemoryBasicInformation} )
@param snapshot: Memory snapshot returned by L{take_memory_snapshot}.
Snapshots returned by L{generate_memory_snapshot} don't work here.
@type bSkipMappedFiles: bool
@param bSkipMappedFiles: C{True} to avoid restoring the contents of
memory mapped files, C{False} otherwise. Use with care! Setting
this to C{False} can cause undesired side effects - changes to
memory mapped files may be written to disk by the OS. Also note
that most mapped files are typically executables and don't change,
so trying to restore their contents is usually a waste of time.
@type bSkipOnError: bool
@param bSkipOnError: C{True} to issue a warning when an error occurs
during the restoration of the snapshot, C{False} to stop and raise
an exception instead. Use with care! Setting this to C{True} will
cause the debugger to falsely believe the memory snapshot has been
correctly restored.
@raise WindowsError: An error occured while restoring the snapshot.
@raise RuntimeError: An error occured while restoring the snapshot.
@raise TypeError: A snapshot of the wrong type was passed.
"""
if not snapshot or not isinstance(snapshot, list) \
or not isinstance(snapshot[0], win32.MemoryBasicInformation):
raise TypeError( "Only snapshots returned by " \
"take_memory_snapshot() can be used here." )
# Get the process handle.
hProcess = self.get_handle( win32.PROCESS_VM_WRITE |
win32.PROCESS_VM_OPERATION |
win32.PROCESS_SUSPEND_RESUME |
win32.PROCESS_QUERY_INFORMATION )
# Freeze the process.
self.suspend()
try:
# For each memory region in the snapshot...
for old_mbi in snapshot:
# If the region matches, restore it directly.
new_mbi = self.mquery(old_mbi.BaseAddress)
if new_mbi.BaseAddress == old_mbi.BaseAddress and \
new_mbi.RegionSize == old_mbi.RegionSize:
self.__restore_mbi(hProcess, new_mbi, old_mbi,
bSkipMappedFiles)
# If the region doesn't match, restore it page by page.
else:
# We need a copy so we don't corrupt the snapshot.
old_mbi = win32.MemoryBasicInformation(old_mbi)
# Get the overlapping range of pages.
old_start = old_mbi.BaseAddress
old_end = old_start + old_mbi.RegionSize
new_start = new_mbi.BaseAddress
new_end = new_start + new_mbi.RegionSize
if old_start > new_start:
start = old_start
else:
start = new_start
if old_end < new_end:
end = old_end
else:
end = new_end
# Restore each page in the overlapping range.
step = MemoryAddresses.pageSize
old_mbi.RegionSize = step
new_mbi.RegionSize = step
address = start
while address < end:
old_mbi.BaseAddress = address
new_mbi.BaseAddress = address
self.__restore_mbi(hProcess, new_mbi, old_mbi,
bSkipMappedFiles, bSkipOnError)
address = address + step
# Resume execution.
finally:
self.resume() | 0.004265 |
def _check_curtailment_target(curtailment, curtailment_target,
curtailment_key):
"""
Raises an error if curtailment target was not met in any time step.
Parameters
-----------
curtailment : :pandas:`pandas:DataFrame<dataframe>`
Dataframe containing the curtailment in kW per generator and time step.
Index is a :pandas:`pandas.DatetimeIndex<datetimeindex>`, columns are
the generator representatives.
curtailment_target : :pandas:`pandas.Series<series>`
The curtailment in kW that was to be distributed amongst the
generators. Index of the series is a
:pandas:`pandas.DatetimeIndex<datetimeindex>`.
curtailment_key : :obj:`str` or :obj:`tuple` with :obj:`str`
The technology and weather cell ID if :obj:`tuple` or only
the technology if :obj:`str` the curtailment was specified for.
"""
if not (abs(curtailment.sum(axis=1) - curtailment_target) < 1e-1).all():
message = 'Curtailment target not met for {}.'.format(curtailment_key)
logging.error(message)
raise TypeError(message) | 0.000882 |
def show_all(key):
'''
Context:
- abbr
- metadata
- bill
- sources
- nav_active
Templates:
- billy/web/public/bill_all_{key}.html
- where key is passed in, like "actions", etc.
'''
def func(request, abbr, session, bill_id, key):
# get fixed version
fixed_bill_id = fix_bill_id(bill_id)
# redirect if URL's id isn't fixed id without spaces
if fixed_bill_id.replace(' ', '') != bill_id:
return redirect('bill', abbr=abbr, session=session,
bill_id=fixed_bill_id.replace(' ', ''))
bill = db.bills.find_one({settings.LEVEL_FIELD: abbr,
'session': session,
'bill_id': fixed_bill_id})
if bill is None:
raise Http404('no bill found {0} {1} {2}'.format(abbr, session,
bill_id))
return render(request, templatename('bill_all_%s' % key),
dict(abbr=abbr, metadata=Metadata.get_object(abbr),
bill=bill, sources=bill['sources'],
nav_active='bills'))
return func | 0.000803 |
def intersection(self, other):
"""
Return the intersection between this time interval
and the given time interval, or
``None`` if the two intervals do not overlap.
:rtype: :class:`~aeneas.exacttiming.TimeInterval` or ``NoneType``
"""
relative_position = self.relative_position_of(other)
if relative_position in [
self.RELATIVE_POSITION_PP_C,
self.RELATIVE_POSITION_PI_LC,
self.RELATIVE_POSITION_PI_LG,
self.RELATIVE_POSITION_PI_CG,
self.RELATIVE_POSITION_IP_B,
self.RELATIVE_POSITION_II_LB,
]:
return TimeInterval(begin=self.begin, end=self.begin)
if relative_position in [
self.RELATIVE_POSITION_IP_E,
self.RELATIVE_POSITION_II_EG,
]:
return TimeInterval(begin=self.end, end=self.end)
if relative_position in [
self.RELATIVE_POSITION_II_BI,
self.RELATIVE_POSITION_II_BE,
self.RELATIVE_POSITION_II_II,
self.RELATIVE_POSITION_II_IE,
]:
return TimeInterval(begin=other.begin, end=other.end)
if relative_position in [
self.RELATIVE_POSITION_IP_I,
self.RELATIVE_POSITION_II_LI,
self.RELATIVE_POSITION_II_LE,
self.RELATIVE_POSITION_II_LG,
self.RELATIVE_POSITION_II_BG,
self.RELATIVE_POSITION_II_IG,
]:
begin = max(self.begin, other.begin)
end = min(self.end, other.end)
return TimeInterval(begin=begin, end=end)
return None | 0.001223 |
def num_to_var_int(x):
"""
(bitcoin-specific): convert an integer into a variable-length integer
"""
x = int(x)
if x < 253:
return from_int_to_byte(x)
elif x < 65536:
return from_int_to_byte(253) + encode(x, 256, 2)[::-1]
elif x < 4294967296:
return from_int_to_byte(254) + encode(x, 256, 4)[::-1]
else:
return from_int_to_byte(255) + encode(x, 256, 8)[::-1] | 0.002353 |
def alignments(self):
"""
Get alignments from the SAM/BAM file, subject to filtering.
"""
referenceIds = self.referenceIds
dropUnmapped = self.dropUnmapped
dropSecondary = self.dropSecondary
dropSupplementary = self.dropSupplementary
dropDuplicates = self.dropDuplicates
keepQCFailures = self.keepQCFailures
storeQueryIds = self.storeQueryIds
filterRead = self.filterRead
minScore = self.minScore
maxScore = self.maxScore
scoreTag = self.scoreTag
if storeQueryIds:
self.queryIds = queryIds = set()
lastAlignment = None
count = 0
with samfile(self.filename) as samAlignment:
for count, alignment in enumerate(samAlignment.fetch(), start=1):
if storeQueryIds:
queryIds.add(alignment.query_name)
if minScore is not None or maxScore is not None:
try:
score = alignment.get_tag(scoreTag)
except KeyError:
continue
else:
if ((minScore is not None and score < minScore) or
(maxScore is not None and score > maxScore)):
continue
# Secondary and supplementary alignments may have a '*'
# (pysam returns this as None) SEQ field, indicating that
# the previous sequence should be used. This is best
# practice according to section 2.5.2 of
# https://samtools.github.io/hts-specs/SAMv1.pdf So we use
# the last alignment query and quality strings if we get
# None as a query sequence.
if alignment.query_sequence is None:
if lastAlignment is None:
raise InvalidSAM(
'pysam produced an alignment (number %d) with no '
'query sequence without previously giving an '
'alignment with a sequence.' % count)
# Use the previous query sequence and quality. I'm not
# making the call to _hardClip dependent on
# alignment.cigartuples (as in the else clause below)
# because I don't think it's possible for
# alignment.cigartuples to be None in this case. If we
# have a second match on a query, then it must be
# aligned to something (i.e., it cannot be unmapped
# with no CIGAR string). The assertion will tell us if
# this is ever not the case.
assert alignment.cigartuples
(alignment.query_sequence,
alignment.query_qualities, _) = _hardClip(
lastAlignment.query_sequence,
lastAlignment.query_qualities,
alignment.cigartuples)
else:
lastAlignment = alignment
if alignment.cigartuples:
(alignment.query_sequence,
alignment.query_qualities, _) = _hardClip(
alignment.query_sequence,
alignment.query_qualities,
alignment.cigartuples)
if ((filterRead is None or
filterRead(Read(alignment.query_name,
alignment.query_sequence,
alignment.qual))) and
not (
(referenceIds and
alignment.reference_name not in referenceIds) or
(alignment.is_unmapped and dropUnmapped) or
(alignment.is_secondary and dropSecondary) or
(alignment.is_supplementary and dropSupplementary) or
(alignment.is_duplicate and dropDuplicates) or
(alignment.is_qcfail and not keepQCFailures))):
yield alignment
self.alignmentCount = count | 0.000466 |
def format_volume(citation_elements):
"""format volume number (roman numbers to arabic)
When the volume number is expressed in roman numbers (CXXII),
they are converted to their equivalent in arabic numbers (42)
"""
re_roman = re.compile(re_roman_numbers + u'$', re.UNICODE)
for el in citation_elements:
if el['type'] == 'JOURNAL' and re_roman.match(el['volume']):
el['volume'] = str(roman2arabic(el['volume'].upper()))
return citation_elements | 0.002028 |
def ensure_indirect_subclass(class_, of):
"""Check whether given is an indirect subclass of another,
i.e. there exists at least intermediate base between ``of`` and ``class_``.
:param class_: Class to check
:param of: Superclass to check against
:return: ``class_``, if the check succeeds
:raise TypeError: When the check fails
.. versionadded:: 0.0.4
"""
if not is_indirect_subclass(class_, of):
raise TypeError(
"expected an indirect subclass of %r, got %s instead" % (
of, class_.__name__))
return class_ | 0.001706 |
def can_pp_seq_no_be_in_view(self, view_no, pp_seq_no):
"""
Checks if the `pp_seq_no` could have been in view `view_no`. It will
return False when the `pp_seq_no` belongs to a later view than
`view_no` else will return True
:return:
"""
if view_no > self.viewNo:
raise PlenumValueError(
'view_no', view_no,
"<= current view_no {}".format(self.viewNo),
prefix=self
)
return view_no == self.viewNo or (
view_no < self.viewNo and self.last_prepared_before_view_change and compare_3PC_keys(
(view_no, pp_seq_no), self.last_prepared_before_view_change) >= 0) | 0.005571 |
def _get_field_comment(field, separator=' - '):
"""
Create SQL comment from field's title and description
:param field: tableschema-py Field, with optional 'title' and 'description' values
:param separator:
:return:
>>> _get_field_comment(tableschema.Field({'title': 'my_title', 'description': 'my_desc'}))
'my_title - my_desc'
>>> _get_field_comment(tableschema.Field({'title': 'my_title', 'description': None}))
'my_title'
>>> _get_field_comment(tableschema.Field({'title': '', 'description': 'my_description'}))
'my_description'
>>> _get_field_comment(tableschema.Field({}))
''
"""
title = field.descriptor.get('title') or ''
description = field.descriptor.get('description') or ''
return _get_comment(description, title, separator) | 0.006211 |
def save_chkpt_vars(dic, path):
"""
Save variables in dic to path.
Args:
dic: {name: value}
path: save as npz if the name ends with '.npz', otherwise save as a checkpoint.
"""
logger.info("Variables to save to {}:".format(path))
keys = sorted(list(dic.keys()))
logger.info(pprint.pformat(keys))
assert not path.endswith('.npy')
if path.endswith('.npz'):
np.savez_compressed(path, **dic)
else:
with tf.Graph().as_default(), \
tf.Session() as sess:
for k, v in six.iteritems(dic):
k = get_op_tensor_name(k)[0]
_ = tf.Variable(name=k, initial_value=v) # noqa
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.save(sess, path, write_meta_graph=False) | 0.00237 |
def write_module_code(self, module_code):
"""write module-level template code, i.e. that which
is enclosed in <%! %> tags in the template."""
for n in module_code:
self.printer.start_source(n.lineno)
self.printer.write_indented_block(n.text) | 0.00692 |
def do_execute(self):
"""
The actual execution of the actor.
:return: None if successful, otherwise error message
:rtype: str
"""
if isinstance(self.input.payload, Instances):
inst = None
data = self.input.payload
elif isinstance(self.input.payload, Instance):
inst = self.input.payload
data = inst.dataset
index = str(self.resolve_option("index"))
unset = bool(self.resolve_option("unset"))
if unset:
data.no_class()
else:
if index == "first":
data.class_is_first()
elif index == "last":
data.class_is_last()
else:
data.class_index = int(index) - 1
if inst is None:
self._output.append(Token(data))
else:
self._output.append(Token(inst))
return None | 0.002141 |
def query(self, query=None, callback=None):
"""Performs a query against the index using the passed lunr.Query
object.
If performing programmatic queries against the index, this method is
preferred over `lunr.Index.search` so as to avoid the additional query
parsing overhead.
Args:
query (lunr.Query): A configured Query to perform the search
against, use `create_query` to get a preconfigured object
or use `callback` for convenience.
callback (callable): An optional function taking a single Query
object result of `create_query` for further configuration.
"""
if query is None:
query = self.create_query()
if callback is not None:
callback(query)
if len(query.clauses) == 0:
logger.warning(
"Attempting a query with no clauses. Please add clauses by "
"either using the `callback` argument or using `create_query` "
"to create a preconfigured Query, manually adding clauses and "
"passing it as the `query` argument."
)
return []
# for each query clause
# * process terms
# * expand terms from token set
# * find matching documents and metadata
# * get document vectors
# * score documents
matching_fields = {}
query_vectors = {field: Vector() for field in self.fields}
term_field_cache = {}
required_matches = {}
prohibited_matches = defaultdict(set)
for clause in query.clauses:
# Unless the pipeline has been disabled for this term, which is
# the case for terms with wildcards, we need to pass the clause
# term through the search pipeline. A pipeline returns an array
# of processed terms. Pipeline functions may expand the passed
# term, which means we may end up performing multiple index lookups
# for a single query term.
if clause.use_pipeline:
terms = self.pipeline.run_string(clause.term, {"fields": clause.fields})
else:
terms = [clause.term]
clause_matches = CompleteSet()
for term in terms:
# Each term returned from the pipeline needs to use the same
# query clause object, e.g. the same boost and or edit distance
# The simplest way to do this is to re-use the clause object
# but mutate its term property.
clause.term = term
# From the term in the clause we create a token set which will
# then be used to intersect the indexes token set to get a list
# of terms to lookup in the inverted index
term_token_set = TokenSet.from_clause(clause)
expanded_terms = self.token_set.intersect(term_token_set).to_list()
# If a term marked as required does not exist in the TokenSet
# it is impossible for the search to return any matches.
# We set all the field-scoped required matches set to empty
# and stop examining further clauses
if (
len(expanded_terms) == 0
and clause.presence == QueryPresence.REQUIRED
):
for field in clause.fields:
required_matches[field] = CompleteSet()
break
for expanded_term in expanded_terms:
posting = self.inverted_index[expanded_term]
term_index = posting["_index"]
for field in clause.fields:
# For each field that this query term is scoped by
# (by default all fields are in scope) we need to get
# all the document refs that have this term in that
# field.
#
# The posting is the entry in the invertedIndex for the
# matching term from above.
field_posting = posting[field]
matching_document_refs = field_posting.keys()
term_field = expanded_term + "/" + field
matching_documents_set = set(matching_document_refs)
# If the presence of this term is required, ensure that
# the matching documents are added to the set of
# required matches for this clause.
if clause.presence == QueryPresence.REQUIRED:
clause_matches = clause_matches.union(
matching_documents_set
)
if field not in required_matches:
required_matches[field] = CompleteSet()
# If the presence of this term is prohibited,
# ensure that the matching documents are added to the
# set of prohibited matches for this field, creating
# that set if it does not exist yet.
elif clause.presence == QueryPresence.PROHIBITED:
prohibited_matches[field] = prohibited_matches[field].union(
matching_documents_set
)
# prohibited matches should not be part of the
# query vector used for similarity scoring and no
# metadata should be extracted so we continue
# to the next field
continue
# The query field vector is populated using the
# term_index found for the term an a unit value with
# the appropriate boost
# Using upsert because there could already be an entry
# in the vector for the term we are working with.
# In that case we just add the scores together.
query_vectors[field].upsert(
term_index, clause.boost, lambda a, b: a + b
)
# If we've already seen this term, field combo then
# we've already collected the matching documents and
# metadata, no need to go through all that again
if term_field in term_field_cache:
continue
for matching_document_ref in matching_document_refs:
# All metadata for this term/field/document triple
# are then extracted and collected into an instance
# of lunr.MatchData ready to be returned in the
# query results
matching_field_ref = FieldRef(matching_document_ref, field)
metadata = field_posting[str(matching_document_ref)]
if str(matching_field_ref) not in matching_fields:
matching_fields[str(matching_field_ref)] = MatchData(
expanded_term, field, metadata
)
else:
matching_fields[str(matching_field_ref)].add(
expanded_term, field, metadata
)
term_field_cache[term_field] = True
# if the presence was required we need to update the required
# matches field sets, we do this after all fields for the term
# have collected their matches because the clause terms presence
# is required in _any_ of the fields, not _all_ of the fields
if clause.presence == QueryPresence.REQUIRED:
for field in clause.fields:
required_matches[field] = required_matches[field].intersection(
clause_matches
)
# We need to combine the field scoped required and prohibited
# matching documents inot a global set of required and prohibited
# matches
all_required_matches = CompleteSet()
all_prohibited_matches = set()
for field in self.fields:
if field in required_matches:
all_required_matches = all_required_matches.intersection(
required_matches[field]
)
if field in prohibited_matches:
all_prohibited_matches = all_prohibited_matches.union(
prohibited_matches[field]
)
matching_field_refs = matching_fields.keys()
results = []
matches = {}
# If the query is negated (only contains prohibited terms)
# we need to get _all_ field_refs currently existing in the index.
# This to avoid any costs of getting all field regs unnecessarily
# Additionally, blank match data must be created to correctly populate
# the results
if query.is_negated():
matching_field_refs = list(self.field_vectors.keys())
for matching_field_ref in matching_field_refs:
field_ref = FieldRef.from_string(matching_field_ref)
matching_fields[matching_field_ref] = MatchData()
for matching_field_ref in matching_field_refs:
# Currently we have document fields that match the query, but we
# need to return documents. The matchData and scores are combined
# from multiple fields belonging to the same document.
#
# Scores are calculated by field, using the query vectors created
# above, and combined into a final document score using addition.
field_ref = FieldRef.from_string(matching_field_ref)
doc_ref = field_ref.doc_ref
if doc_ref not in all_required_matches or doc_ref in all_prohibited_matches:
continue
field_vector = self.field_vectors[matching_field_ref]
score = query_vectors[field_ref.field_name].similarity(field_vector)
try:
doc_match = matches[doc_ref]
doc_match["score"] += score
doc_match["match_data"].combine(matching_fields[matching_field_ref])
except KeyError:
match = {
"ref": doc_ref,
"score": score,
"match_data": matching_fields[matching_field_ref],
}
matches[doc_ref] = match
results.append(match)
return sorted(results, key=lambda a: a["score"], reverse=True) | 0.001076 |
def token(self) -> str:
"""
Return token identifying role to indy-sdk.
:return: token: 'STEWARD', 'TRUSTEE', 'TRUST_ANCHOR', or None (for USER)
"""
return self.value[0] if self in (Role.USER, Role.ROLE_REMOVE) else self.name | 0.015038 |
def call(self, fn, *args, **kwargs):
"""
Like :meth:`call_async`, but block until the return value is available.
Equivalent to::
call_async(fn, *args, **kwargs).get().unpickle()
:returns:
The function's return value.
:raises mitogen.core.CallError:
An exception was raised in the remote context during execution.
"""
receiver = self.call_async(fn, *args, **kwargs)
return receiver.get().unpickle(throw_dead=False) | 0.003883 |
def poll(self, batch_id, retry_seconds=None, back_off=None, timeout=None, halt_on_error=True):
"""Poll Batch status to ThreatConnect API.
.. code-block:: javascript
{
"status": "Success",
"data": {
"batchStatus": {
"id":3505,
"status":"Completed",
"errorCount":0,
"successCount":0,
"unprocessCount":0
}
}
}
Args:
batch_id (str): The ID returned from the ThreatConnect API for the current batch job.
retry_seconds (int): The base number of seconds used for retries when job is not
completed.
back_off (float): A multiplier to use for backing off on each poll attempt when job has
not completed.
timeout (int, optional): The number of seconds before the poll should timeout.
halt_on_error (bool, default:True): If True any exception will raise an error.
Returns:
dict: The batch status returned from the ThreatConnect API.
"""
# check global setting for override
if self.halt_on_poll_error is not None:
halt_on_error = self.halt_on_poll_error
# initial poll interval
if self._poll_interval is None and self._batch_data_count is not None:
# calculate poll_interval base off the number of entries in the batch data
# with a minimum value of 5 seconds.
self._poll_interval = max(math.ceil(self._batch_data_count / 300), 5)
elif self._poll_interval is None:
# if not able to calculate poll_interval default to 15 seconds
self._poll_interval = 15
# poll retry back_off factor
if back_off is None:
poll_interval_back_off = 2.5
else:
poll_interval_back_off = float(back_off)
# poll retry seconds
if retry_seconds is None:
poll_retry_seconds = 5
else:
poll_retry_seconds = int(retry_seconds)
# poll timeout
if timeout is None:
timeout = self.poll_timeout
else:
timeout = int(timeout)
params = {'includeAdditional': 'true'}
poll_count = 0
poll_time_total = 0
data = {}
while True:
poll_count += 1
poll_time_total += self._poll_interval
time.sleep(self._poll_interval)
self.tcex.log.info('Batch poll time: {} seconds'.format(poll_time_total))
try:
# retrieve job status
r = self.tcex.session.get('/v2/batch/{}'.format(batch_id), params=params)
if not r.ok or 'application/json' not in r.headers.get('content-type', ''):
self.tcex.handle_error(545, [r.status_code, r.text], halt_on_error)
return data
data = r.json()
if data.get('status') != 'Success':
self.tcex.handle_error(545, [r.status_code, r.text], halt_on_error)
except Exception as e:
self.tcex.handle_error(540, [e], halt_on_error)
if data.get('data', {}).get('batchStatus', {}).get('status') == 'Completed':
# store last 5 poll times to use in calculating average poll time
modifier = poll_time_total * 0.7
self._poll_interval_times = self._poll_interval_times[-4:] + [modifier]
weights = [1]
poll_interval_time_weighted_sum = 0
for poll_interval_time in self._poll_interval_times:
poll_interval_time_weighted_sum += poll_interval_time * weights[-1]
# weights will be [1, 1.5, 2.25, 3.375, 5.0625] for all 5 poll times depending
# on how many poll times are available.
weights.append(weights[-1] * 1.5)
# pop off the last weight so its not added in to the sum
weights.pop()
# calculate the weighted average of the last 5 poll times
self._poll_interval = math.floor(poll_interval_time_weighted_sum / sum(weights))
if poll_count == 1:
# if completed on first poll, reduce poll interval.
self._poll_interval = self._poll_interval * 0.85
self.tcex.log.debug('Batch Status: {}'.format(data))
return data
# update poll_interval for retry with max poll time of 20 seconds
self._poll_interval = min(
poll_retry_seconds + int(poll_count * poll_interval_back_off), 20
)
# time out poll to prevent App running indefinitely
if poll_time_total >= timeout:
self.tcex.handle_error(550, [timeout], True) | 0.004387 |
def _report_container_count(self, containers_by_id):
"""Report container count per state"""
m_func = FUNC_MAP[GAUGE][self.use_histogram]
per_state_count = defaultdict(int)
filterlambda = lambda ctr: not self._is_container_excluded(ctr)
containers = list(filter(filterlambda, containers_by_id.values()))
for ctr in containers:
per_state_count[ctr.get('State', '')] += 1
for state in per_state_count:
if state:
m_func(self, 'docker.container.count', per_state_count[state], tags=['container_state:%s' % state.lower()]) | 0.006494 |
def Cross(width=3, color=0):
"""Draws a cross centered in the target area
:param width: width of the lines of the cross in pixels
:type width: int
:param color: color of the lines of the cross
:type color: pygame.Color
"""
return Overlay(Line("h", width, color), Line("v", width, color)) | 0.003165 |
def copy_contents_to(self, destination):
"""
Copies the contents of this directory to the given destination.
Returns a Folder object that represents the moved directory.
"""
logger.info("Copying contents of %s to %s" % (self, destination))
target = Folder(destination)
target.make()
self._create_target_tree(target)
dir_util.copy_tree(self.path, unicode(target))
return target | 0.004386 |
def get_xdg_home(self):
# type: () -> str
"""
Returns the value specified in the XDG_CONFIG_HOME environment variable
or the appropriate default.
"""
config_home = getenv('XDG_CONFIG_HOME', '')
if config_home:
self._log.debug('XDG_CONFIG_HOME is set to %r', config_home)
return expanduser(join(config_home, self.group_name, self.app_name))
return expanduser('~/.config/%s/%s' % (self.group_name, self.app_name)) | 0.008016 |
def load_bytecode(self, f):
"""Loads bytecode from a file or file like object."""
# make sure the magic header is correct
magic = f.read(len(bc_magic))
if magic != bc_magic:
self.reset()
return
# the source code of the file changed, we need to reload
checksum = pickle.load(f)
if self.checksum != checksum:
self.reset()
return
self.code = marshal_load(f) | 0.004292 |
def _feature_most_population(self, results):
"""
Find the placename with the largest population and return its country.
More population is a rough measure of importance.
Paramaters
----------
results: dict
output of `query_geonames`
Returns
-------
most_pop: str
ISO code of country of place with largest population,
or empty string if none
"""
try:
populations = [i['population'] for i in results['hits']['hits']]
most_pop = results['hits']['hits'][np.array(populations).astype("int").argmax()]
return most_pop['country_code3']
except Exception as e:
return "" | 0.004032 |
def _addToBuffers(self, logname, data):
"""
Add data to the buffer for logname
Start a timer to send the buffers if BUFFER_TIMEOUT elapses.
If adding data causes the buffer size to grow beyond BUFFER_SIZE, then
the buffers will be sent.
"""
n = len(data)
self.buflen += n
self.buffered.append((logname, data))
if self.buflen > self.BUFFER_SIZE:
self._sendBuffers()
elif not self.sendBuffersTimer:
self.sendBuffersTimer = self._reactor.callLater(
self.BUFFER_TIMEOUT, self._bufferTimeout) | 0.003247 |
def is_file(self, follow_symlinks=True):
"""
Return True if this entry is a file or a symbolic link pointing to a
file; return False if the entry is or points to a directory or other
non-file entry, or if it doesn’t exist anymore.
The result is cached on the os.DirEntry object.
Args:
follow_symlinks (bool): Follow symlinks.
Not supported on cloud storage objects.
Returns:
bool: True if directory exists.
"""
return self._system.isfile(
path=self._path, client_kwargs=self._client_kwargs) | 0.003241 |
def play_env_problem_randomly(env_problem,
num_steps):
"""Plays the env problem by randomly sampling actions for `num_steps`."""
# Reset all environments.
env_problem.reset()
# Play all environments, sampling random actions each time.
for _ in range(num_steps):
# Sample batch_size actions from the action space and stack them.
actions = np.stack([env_problem.action_space.sample() for _ in range(
env_problem.batch_size)])
# Execute actions, observations are stored in `env_problem`.
_, _, dones, _ = env_problem.step(actions)
# Get the indices where we are done and reset those.
env_problem.reset(indices=done_indices(dones)) | 0.008547 |
def save_all(self):
"""
Save all editors.
"""
initial_index = self.currentIndex()
for i in range(self.count()):
try:
self.setCurrentIndex(i)
self.save_current()
except AttributeError:
pass
self.setCurrentIndex(initial_index) | 0.005814 |
def context_loader(self, callback):
"""
Decorate a method that receives a key id and returns an object or dict
that will be available in the request context as g.cavage_context
"""
if not callback or not callable(callback):
raise Exception("Please pass in a callable that loads your context.")
self.context_loader_callback = callback
return callback | 0.007194 |
def update(self, a, b, c, d):
"""
Update contingency table with new values without creating a new object.
"""
self.table.ravel()[:] = [a, b, c, d]
self.N = self.table.sum() | 0.009434 |
def get_target_state():
"""SDP target State.
Returns the target state; allowed target states and time updated
"""
sdp_state = SDPState()
errval, errdict = _check_status(sdp_state)
if errval == "error":
LOG.debug(errdict['reason'])
return dict(
current_target_state="unknown",
last_updated="unknown",
reason=errdict['reason']
)
LOG.debug('Getting target state')
target_state = sdp_state.target_state
LOG.debug('Target state = %s', target_state)
return dict(
current_target_state=target_state,
allowed_target_states=sdp_state.allowed_target_states[
sdp_state.current_state],
last_updated=sdp_state.target_timestamp.isoformat()) | 0.001312 |
def _loop_wrapper_func(func, args, shared_mem_run, shared_mem_pause, interval, sigint, sigterm, name,
logging_level, conn_send, func_running, log_queue):
"""
to be executed as a separate process (that's why this functions is declared static)
"""
prefix = get_identifier(name) + ' '
global log
log = logging.getLogger(__name__+".log_{}".format(get_identifier(name, bold=False)))
log.setLevel(logging_level)
log.addHandler(QueueHandler(log_queue))
sys.stdout = StdoutPipe(conn_send)
log.debug("enter wrapper_func")
SIG_handler_Loop(sigint, sigterm, log, prefix)
func_running.value = True
error = False
while shared_mem_run.value:
try:
# in pause mode, simply sleep
if shared_mem_pause.value:
quit_loop = False
else:
# if not pause mode -> call func and see what happens
try:
quit_loop = func(*args)
except LoopInterruptError:
raise
except Exception as e:
log.error("error %s occurred in loop calling 'func(*args)'", type(e))
log.info("show traceback.print_exc()\n%s", traceback.format_exc())
error = True
break
if quit_loop is True:
log.debug("loop stooped because func returned True")
break
time.sleep(interval)
except LoopInterruptError:
log.debug("quit wrapper_func due to InterruptedError")
break
func_running.value = False
if error:
sys.exit(-1)
else:
log.debug("wrapper_func terminates gracefully")
# gets rid of the following warnings
# Exception ignored in: <_io.FileIO name='/dev/null' mode='rb'>
# ResourceWarning: unclosed file <_io.TextIOWrapper name='/dev/null' mode='r' encoding='UTF-8'>
try:
if mp.get_start_method() == "spawn":
sys.stdin.close()
except AttributeError:
pass | 0.005671 |
def _smooth_hpx_map(hpx_map, sigma):
""" Smooth a healpix map using a Gaussian
"""
if hpx_map.hpx.ordering == "NESTED":
ring_map = hpx_map.swap_scheme()
else:
ring_map = hpx_map
ring_data = ring_map.data.copy()
nebins = len(hpx_map.data)
smoothed_data = np.zeros((hpx_map.data.shape))
for i in range(nebins):
smoothed_data[i] = healpy.sphtfunc.smoothing(
ring_data[i], sigma=np.radians(sigma), verbose=False)
smoothed_data.clip(0., 1e99)
smoothed_ring_map = HpxMap(smoothed_data, ring_map.hpx)
if hpx_map.hpx.ordering == "NESTED":
return smoothed_ring_map.swap_scheme()
return smoothed_ring_map | 0.002649 |
def add_config(self, cfg_or_file=None, **kw_conf):
"""
Add a configuration entry to this ingredient/experiment.
Can be called with a filename, a dictionary xor with keyword arguments.
Supported formats for the config-file so far are: ``json``, ``pickle``
and ``yaml``.
The resulting dictionary will be converted into a
:class:`~sacred.config_scope.ConfigDict`.
:param cfg_or_file: Configuration dictionary of filename of config file
to add to this ingredient/experiment.
:type cfg_or_file: dict or str
:param kw_conf: Configuration entries to be added to this
ingredient/experiment.
"""
self.configurations.append(self._create_config_dict(cfg_or_file,
kw_conf)) | 0.002291 |
def generic_export(request, model_name=None):
"""
Generic view configured through settings.TABLIB_MODELS
Usage:
1. Add the view to ``urlpatterns`` in ``urls.py``::
url(r'export/(?P<model_name>[^/]+)/$',
"django_tablib.views.generic_export"),
2. Create the ``settings.TABLIB_MODELS`` dictionary using model names
as keys the allowed lookup operators as values, if any::
TABLIB_MODELS = {
'myapp.simple': None,
'myapp.related': {'simple__title': ('exact', 'iexact')},
}
3. Open ``/export/myapp.simple`` or
``/export/myapp.related/?simple__title__iexact=test``
"""
if model_name not in settings.TABLIB_MODELS:
raise Http404()
model = get_model(*model_name.split(".", 2))
if not model:
raise ImproperlyConfigured(
"Model {0} is in settings.TABLIB_MODELS but"
" could not be loaded".format(model_name))
qs = model._default_manager.all()
# Filtering may be allowed based on TABLIB_MODELS:
filter_settings = settings.TABLIB_MODELS[model_name]
filters = {}
for k, v in request.GET.items():
try:
# Allow joins (they'll be checked below) but chop off the trailing
# lookup operator:
rel, lookup_type = k.rsplit("__", 1)
except ValueError:
rel = k
lookup_type = "exact"
allowed_lookups = filter_settings.get(rel, None)
if allowed_lookups is None:
return HttpResponseBadRequest(
"Filtering on {0} is not allowed".format(rel)
)
elif lookup_type not in allowed_lookups:
return HttpResponseBadRequest(
"{0} may only be filtered using {1}".format(
k, " ".join(allowed_lookups)))
else:
filters[str(k)] = v
if filters:
qs = qs.filter(**filters)
return export(request, model=model, queryset=qs) | 0.000494 |
def findConfigFile(cls, filename):
""" Search the configuration path (specified via the NTA_CONF_PATH
environment variable) for the given filename. If found, return the complete
path to the file.
:param filename: (string) name of file to locate
"""
paths = cls.getConfigPaths()
for p in paths:
testPath = os.path.join(p, filename)
if os.path.isfile(testPath):
return os.path.join(p, filename) | 0.006787 |
def save(self, filename="temp.pkl"):
"""
Save TM in the filename specified above
"""
output = open(filename, 'wb')
cPickle.dump(self.tm, output, protocol=cPickle.HIGHEST_PROTOCOL) | 0.005025 |
def is_acquired(self):
"""Check if the lock is acquired"""
values = self.client.get(self.key)
return six.b(self._uuid) in values | 0.013158 |
def is_analysis_attachment_allowed(self, analysis):
"""Checks if the analysis
"""
if analysis.getAttachmentOption() not in ["p", "r"]:
return False
if api.get_workflow_status_of(analysis) in ["retracted"]:
return False
return True | 0.006803 |
def run(self, steps=10):
"""Executes up to `steps` instructions."""
try:
super(GeneticMachine, self).run(steps)
self._error = False
except StopIteration:
self._error = False
except Exception:
self._error = True | 0.006897 |
def register_controller(self, module, required=True, min_number=1):
"""Loads a controller module and returns its loaded devices.
This is to be used in a mobly test class.
Args:
module: A module that follows the controller module interface.
required: A bool. If True, failing to register the specified
controller module raises exceptions. If False, the objects
failed to instantiate will be skipped.
min_number: An integer that is the minimum number of controller
objects to be created. Default is one, since you should not
register a controller module without expecting at least one
object.
Returns:
A list of controller objects instantiated from controller_module, or
None if no config existed for this controller and it was not a
required controller.
Raises:
ControllerError:
* The controller module has already been registered.
* The actual number of objects instantiated is less than the
* `min_number`.
* `required` is True and no corresponding config can be found.
* Any other error occurred in the registration process.
"""
verify_controller_module(module)
# Use the module's name as the ref name
module_ref_name = module.__name__.split('.')[-1]
if module_ref_name in self._controller_objects:
raise signals.ControllerError(
'Controller module %s has already been registered. It cannot '
'be registered again.' % module_ref_name)
# Create controller objects.
module_config_name = module.MOBLY_CONTROLLER_CONFIG_NAME
if module_config_name not in self.controller_configs:
if required:
raise signals.ControllerError(
'No corresponding config found for %s' %
module_config_name)
logging.warning(
'No corresponding config found for optional controller %s',
module_config_name)
return None
try:
# Make a deep copy of the config to pass to the controller module,
# in case the controller module modifies the config internally.
original_config = self.controller_configs[module_config_name]
controller_config = copy.deepcopy(original_config)
objects = module.create(controller_config)
except:
logging.exception(
'Failed to initialize objects for controller %s, abort!',
module_config_name)
raise
if not isinstance(objects, list):
raise signals.ControllerError(
'Controller module %s did not return a list of objects, abort.'
% module_ref_name)
# Check we got enough controller objects to continue.
actual_number = len(objects)
if actual_number < min_number:
module.destroy(objects)
raise signals.ControllerError(
'Expected to get at least %d controller objects, got %d.' %
(min_number, actual_number))
# Save a shallow copy of the list for internal usage, so tests can't
# affect internal registry by manipulating the object list.
self._controller_objects[module_ref_name] = copy.copy(objects)
logging.debug('Found %d objects for controller %s', len(objects),
module_config_name)
self._controller_modules[module_ref_name] = module
return objects | 0.001082 |
def __send_buffer(self):
"""
Sends the contents of self.__out_buffer to serial device
:return: Number of bytes written
"""
bytes_written = self.serial.write(self.__out_buffer.raw)
if self.DEBUG_MODE:
print("Wrote: '{}'".format(binascii.hexlify(self.__out_buffer.raw)))
if bytes_written != len(self.__out_buffer):
raise IOError("{} bytes written for output buffer of size {}".format(bytes_written,
len(self.__out_buffer)))
return bytes_written | 0.008183 |
def session_path(cls, project, session):
"""Return a fully-qualified session string."""
return google.api_core.path_template.expand(
'projects/{project}/agent/sessions/{session}',
project=project,
session=session,
) | 0.007273 |
def get_backend_router_id_from_hostname(self, hostname):
"""Finds the backend router Id that matches the hostname given
No way to use an objectFilter to find a backendRouter, so we have to search the hard way.
"""
results = self.client.call('SoftLayer_Network_Pod', 'getAllObjects')
return [result['backendRouterId'] for result in results if result['backendRouterName'] == hostname.lower()] | 0.009281 |
def obj_for_name(obj_name):
"""
Instantiate class or function
:param obj_name: class or function name
:return: instance of class or function
"""
parts = obj_name.split('.')
module = ".".join(parts[:-1])
m = __import__( module )
for comp in parts[1:]:
m = getattr(m, comp)
return m | 0.009146 |
def md(
self,
url,
width="original"):
"""*generate a multimarkdown image link viewable anywhere (no sign-in needed for private photos)*
**Key Arguments:**
- ``url`` -- the share URL for the flickr image (or just the unique photoid)
- ``width`` -- the pixel width of the fully resolved image. Default *original*. [75, 100, 150, 240, 320, 500, 640, 800, 1024, 1600, 2048]
**Return:**
- ``md`` -- the image reference link in multi-markdown syntax
**Usage:**
To return the markdown markup for an image at a given Flickr share URL:
.. code-block:: python
from picaxe import picaxe
Flickr = picaxe(
log=log,
settings=settings
)
mdLink = Flickr.md(
url="https://www.flickr.com/photos/92344916@N06/30455211086"
width=1024
)
"""
self.log.info('starting the ``md_image`` method')
images, title, desc, photoId = self.get_photo_metadata(url)
if len(title) == 0:
tag = photoId
else:
tag = "%(title)s %(photoId)s" % locals()
image = images[str(width)]
if width == "original":
pxWidth = 1024
else:
pxWidth = width
md = """![%(title)s][%(tag)s]
[%(tag)s]: %(image)s title="%(title)s" width=600px
""" % locals()
self.log.info('completed the ``md_image`` method')
return md | 0.003766 |
def pick_keys(self, keys, use="", alg=""):
"""
The assumption is that upper layer has made certain you only get
keys you can use.
:param alg: The crypto algorithm
:param use: What the key should be used for
:param keys: A list of JWK instances
:return: A list of JWK instances that fulfill the requirements
"""
if not alg:
alg = self["alg"]
if alg == "none":
return []
_k = self.alg2keytype(alg)
if _k is None:
logger.error("Unknown algorithm '%s'" % alg)
raise ValueError('Unknown cryptography algorithm')
logger.debug("Picking key by key type={0}".format(_k))
_kty = [_k.lower(), _k.upper(), _k.lower().encode("utf-8"),
_k.upper().encode("utf-8")]
_keys = [k for k in keys if k.kty in _kty]
try:
_kid = self["kid"]
except KeyError:
try:
_kid = self.jwt.headers["kid"]
except (AttributeError, KeyError):
_kid = None
logger.debug("Picking key based on alg={0}, kid={1} and use={2}".format(
alg, _kid, use))
pkey = []
for _key in _keys:
logger.debug(
"Picked: kid:{}, use:{}, kty:{}".format(
_key.kid, _key.use, _key.kty))
if _kid:
if _kid != _key.kid:
continue
if use and _key.use and _key.use != use:
continue
if alg and _key.alg and _key.alg != alg:
continue
pkey.append(_key)
return pkey | 0.00179 |
def non_neighbors(graph, node, t=None):
"""Returns the non-neighbors of the node in the graph at time t.
Parameters
----------
graph : DyNetx graph
Graph to find neighbors.
node : node
The node whose neighbors will be returned.
t : snapshot id (default=None)
If None the non-neighbors are identified on the flattened graph.
Returns
-------
non_neighbors : iterator
Iterator of nodes in the graph that are not neighbors of the node.
"""
if graph.is_directed():
values = chain(graph.predecessors(node, t=t), graph.successors(node, t=t))
else:
values = graph.neighbors(node, t=t)
nbors = set(values) | {node}
return (nnode for nnode in graph if nnode not in nbors) | 0.00243 |
def value_to_db(self, value):
""" Returns field's single value prepared for saving into a database. """
assert isinstance(value, datetime.date)
assert not isinstance(value, datetime.datetime)
try:
value = value - datetime.date(year=1970, month=1, day=1)
except OverflowError:
raise tldap.exceptions.ValidationError("is too big a date")
return str(value.days).encode("utf_8") | 0.006696 |
def group_alleles_by_start_end_Xbp(arr, bp=28):
"""Group alleles by matching ends
Args:
arr (numpy.array): 2D int matrix of alleles
bp (int): length of ends to group by
Returns:
dict of lists: key of start + end strings to list of indices of alleles with matching ends
"""
starts = arr[:,0:bp]
ends = arr[:,-bp:]
starts_ends_idxs = defaultdict(list)
l, seq_len = arr.shape
for i in range(l):
start_i = starts[i]
end_i = ends[i]
start_i_str = ''.join([str(x) for x in start_i])
end_i_str = ''.join([str(x) for x in end_i])
starts_ends_idxs[start_i_str + end_i_str].append(i)
return starts_ends_idxs | 0.00569 |
def get_romfile_path(game, inttype=Integrations.DEFAULT):
"""
Return the path to a given game's romfile
"""
for extension in EMU_EXTENSIONS.keys():
possible_path = get_file_path(game, "rom" + extension, inttype)
if possible_path:
return possible_path
raise FileNotFoundError("No romfiles found for game: %s" % game) | 0.002747 |
def load_publickey(type, buffer):
"""
Load a public key from a buffer.
:param type: The file type (one of :data:`FILETYPE_PEM`,
:data:`FILETYPE_ASN1`).
:param buffer: The buffer the key is stored in.
:type buffer: A Python string object, either unicode or bytestring.
:return: The PKey object.
:rtype: :class:`PKey`
"""
if isinstance(buffer, _text_type):
buffer = buffer.encode("ascii")
bio = _new_mem_buf(buffer)
if type == FILETYPE_PEM:
evp_pkey = _lib.PEM_read_bio_PUBKEY(
bio, _ffi.NULL, _ffi.NULL, _ffi.NULL)
elif type == FILETYPE_ASN1:
evp_pkey = _lib.d2i_PUBKEY_bio(bio, _ffi.NULL)
else:
raise ValueError("type argument must be FILETYPE_PEM or FILETYPE_ASN1")
if evp_pkey == _ffi.NULL:
_raise_current_error()
pkey = PKey.__new__(PKey)
pkey._pkey = _ffi.gc(evp_pkey, _lib.EVP_PKEY_free)
pkey._only_public = True
return pkey | 0.001035 |
def max_runs_reached(self):
"""
:return: whether all file paths have been processed max_runs times
"""
if self._max_runs == -1: # Unlimited runs.
return False
for file_path in self._file_paths:
if self._run_count[file_path] < self._max_runs:
return False
if self._run_count[self._heart_beat_key] < self._max_runs:
return False
return True | 0.004474 |
def lock(instance_id, profile=None, **kwargs):
'''
Lock an instance
instance_id
ID of the instance to be locked
CLI Example:
.. code-block:: bash
salt '*' nova.lock 1138
'''
conn = _auth(profile, **kwargs)
return conn.lock(instance_id) | 0.003472 |
def split_markers_from_line(line):
# type: (AnyStr) -> Tuple[AnyStr, Optional[AnyStr]]
"""Split markers from a dependency"""
if not any(line.startswith(uri_prefix) for uri_prefix in SCHEME_LIST):
marker_sep = ";"
else:
marker_sep = "; "
markers = None
if marker_sep in line:
line, markers = line.split(marker_sep, 1)
markers = markers.strip() if markers else None
return line, markers | 0.002252 |
def _determine_doubled_obj(self):
"""Return the target object.
Returns the object that should be treated as the target object. For partial doubles, this
will be the same as ``self.obj``, but for pure doubles, it's pulled from the special
``_doubles_target`` attribute.
:return: The object to be doubled.
:rtype: object
"""
if isinstance(self.obj, ObjectDouble):
return self.obj._doubles_target
else:
return self.obj | 0.007782 |
def build_job_configs(self, args):
"""Hook to build job configurations
"""
job_configs = {}
ttype = args['ttype']
(targets_yaml, sim) = NAME_FACTORY.resolve_targetfile(args)
if targets_yaml is None:
return job_configs
config_yaml = 'config.yaml'
config_override = args.get('config')
if is_not_null(config_override):
config_yaml = config_override
targets = load_yaml(targets_yaml)
nsims_job = args['nsims_job']
first_seed = args['seed']
nsims = args['nsims']
last_seed = first_seed + nsims
base_config = dict(sim_profile=args['sim_profile'],
roi_baseline=args['roi_baseline'],
non_null_src=args['non_null_src'],
sim=sim)
for target_name, target_list in targets.items():
name_keys = dict(target_type=ttype,
target_name=target_name,
sim_name=sim,
fullpath=True)
simdir = NAME_FACTORY.sim_targetdir(**name_keys)
config_path = os.path.join(simdir, config_yaml)
job_config = base_config.copy()
job_config.update(dict(config=config_path,
profiles=target_list))
current_seed = first_seed
while current_seed < last_seed:
fullkey = "%s_%06i" % (target_name, current_seed)
logfile = make_nfs_path(os.path.join(simdir, "%s_%s_%06i.log" % (self.linkname,
target_name, current_seed)))
if nsims_job <= 0 or current_seed + nsims_job >= last_seed:
nsims_current = last_seed - current_seed
else:
nsims_current = nsims_job
job_config.update(dict(seed=current_seed,
nsims=nsims_current,
logfile=logfile))
job_configs[fullkey] = job_config.copy()
current_seed += nsims_current
return job_configs | 0.002231 |
def list_element_combinations_variadic(
elements_specification
):
"""
This function accepts a specification of lists of elements for each place in
lists in the form of a list, the elements of which are lists of possible
elements and returns a list of lists corresponding to the combinations of
elements of the specification with varying numbers of elements.
For example, the list elements specification [[10, 20], [30, 40], [50, 60]]
yields the following lists:
[10]
[20]
[10, 30]
[10, 40]
[20, 30]
[20, 40]
[10, 30, 50]
[10, 30, 60]
[10, 40, 50]
[10, 40, 60]
[20, 30, 50]
[20, 30, 60]
[20, 40, 50]
[20, 40, 60]
"""
lists = [list(list_generated) for index, element_specification in enumerate(elements_specification) for list_generated in itertools.product(*elements_specification[:index + 1])]
return lists | 0.004376 |
def schemaValidateOneElement(self, elem):
"""Validate a branch of a tree, starting with the given @elem. """
if elem is None: elem__o = None
else: elem__o = elem._o
ret = libxml2mod.xmlSchemaValidateOneElement(self._o, elem__o)
return ret | 0.014388 |
def wins(self, year):
"""Returns the # of regular season wins a team in a year.
:year: The year for the season in question.
:returns: The number of regular season wins.
"""
schedule = self.schedule(year)
if schedule.empty:
return np.nan
return schedule.query('week_num <= 17').is_win.sum() | 0.005587 |
def register(name, validator):
"""Register a validator instance under the given ``name``."""
if not isinstance(validator, Validator):
raise TypeError("Validator instance expected, %s given" % validator.__class__)
_NAMED_VALIDATORS[name] = validator | 0.007463 |
def farthest(self, dt1, dt2, *dts):
from functools import reduce
"""
Get the farthest date from the instance.
:type dt1: datetime.datetime
:type dt2: datetime.datetime
:type dts: list[datetime.datetime,]
:rtype: DateTime
"""
dt1 = pendulum.instance(dt1)
dt2 = pendulum.instance(dt2)
dts = [dt1, dt2] + [pendulum.instance(x) for x in dts]
dts = [(abs(self - dt), dt) for dt in dts]
return max(dts)[1] | 0.003937 |
def save_model(self, steps):
"""
Saves the model
:param steps: The number of steps the model was trained for
:return:
"""
with self.graph.as_default():
last_checkpoint = self.model_path + '/model-' + str(steps) + '.cptk'
self.saver.save(self.sess, last_checkpoint)
tf.train.write_graph(self.graph, self.model_path,
'raw_graph_def.pb', as_text=False) | 0.006438 |
def gradient(self):
"""
Derivative of the covariance matrix over the parameters of L.
Returns
-------
Lu : ndarray
Derivative of K over the lower triangular part of L.
"""
L = self.L
self._grad_Lu[:] = 0
for i in range(len(self._tril1[0])):
row = self._tril1[0][i]
col = self._tril1[1][i]
self._grad_Lu[row, :, i] = L[:, col]
self._grad_Lu[:, row, i] += L[:, col]
m = len(self._tril1[0])
for i in range(len(self._diag[0])):
row = self._diag[0][i]
col = self._diag[1][i]
self._grad_Lu[row, :, m + i] = L[row, col] * L[:, col]
self._grad_Lu[:, row, m + i] += L[row, col] * L[:, col]
return {"Lu": self._grad_Lu} | 0.002448 |
def download(self, filename, representation, overwrite=False):
"""Download the resolved structure as a file.
:param string filename: File path to save to
:param string representation: Desired output representation
:param bool overwrite: (Optional) Whether to allow overwriting of an existing file
"""
download(self.input, filename, representation, overwrite, self.resolvers, self.get3d, **self.kwargs) | 0.008889 |
def get_response(self, request, *args, **kwargs):
'''Returns the redirect response for this exception.'''
# normal process
response = HttpResponseRedirect(self.redirect_to)
response[REDIRECT_HEADER_KEY] = self.redirect_to
return response | 0.00722 |
def register_builtin_message_types():
"""Registers the built-in message types."""
from .plain import PlainTextMessage
from .email import EmailTextMessage, EmailHtmlMessage
register_message_types(PlainTextMessage, EmailTextMessage, EmailHtmlMessage) | 0.007576 |
def _event_for(self, elts):
"""Creates an Event that is set when the bundle with elts is sent."""
event = Event()
event.canceller = self._canceller_for(elts, event)
return event | 0.009569 |
def _readNamelist(currentlyIncluding, cache, namFilename, unique_glyphs):
""" Detect infinite recursion and prevent it.
This is an implementation detail of readNamelist.
Raises NamelistRecursionError if namFilename is in the process of being included
"""
# normalize
filename = os.path.abspath(os.path.normcase(namFilename))
if filename in currentlyIncluding:
raise NamelistRecursionError(filename)
currentlyIncluding.add(filename)
try:
result = __readNamelist(cache, filename, unique_glyphs)
finally:
currentlyIncluding.remove(filename)
return result | 0.017036 |
def send_keyevents(self, keyevent: int) -> None:
'''Simulates typing keyevents.'''
self._execute('-s', self.device_sn, 'shell',
'input', 'keyevent', str(keyevent)) | 0.00995 |
def get_user(self, user_id=None, username=None, email=None):
"""
Returns the user specified by either ID, username or email.
Since more than user can have the same email address, searching by that
term will return a list of 1 or more User objects. Searching by
username or ID will return a single User.
If a user_id that doesn't belong to the current account is searched
for, a Forbidden exception is raised. When searching by username or
email, a NotFound exception is raised if there is no matching user.
"""
if user_id:
uri = "/users/%s" % user_id
elif username:
uri = "/users?name=%s" % username
elif email:
uri = "/users?email=%s" % email
else:
raise ValueError("You must include one of 'user_id', "
"'username', or 'email' when calling get_user().")
resp, resp_body = self.method_get(uri)
if resp.status_code == 404:
raise exc.NotFound("No such user exists.")
users = resp_body.get("users", [])
if users:
return [User(self, user) for user in users]
else:
user = resp_body.get("user", {})
if user:
return User(self, user)
else:
raise exc.NotFound("No such user exists.") | 0.002172 |
def update_default(cls) -> 'TrustStoresRepository':
"""Update the default trust stores used by SSLyze.
The latest stores will be downloaded from https://github.com/nabla-c0d3/trust_stores_observatory.
"""
temp_path = mkdtemp()
try:
# Download the latest trust stores
archive_path = join(temp_path, 'trust_stores_as_pem.tar.gz')
urlretrieve(cls._UPDATE_URL, archive_path)
# Extract the archive
extract_path = join(temp_path, 'extracted')
tarfile.open(archive_path).extractall(extract_path)
# Copy the files to SSLyze and overwrite the existing stores
shutil.rmtree(cls._DEFAULT_TRUST_STORES_PATH)
shutil.copytree(extract_path, cls._DEFAULT_TRUST_STORES_PATH)
finally:
shutil.rmtree(temp_path)
# Re-generate the default repo - not thread-safe
cls._DEFAULT_REPOSITORY = cls(cls._DEFAULT_TRUST_STORES_PATH)
return cls._DEFAULT_REPOSITORY | 0.002915 |
def which_roles_can(self, name):
"""Which role can SendMail? """
targetPermissionRecords = AuthPermission.objects(creator=self.client, name=name).first()
return [{'role': group.role} for group in targetPermissionRecords.groups] | 0.015936 |
def prj_view_seq(self, *args, **kwargs):
"""View the, in the prj_seq_tablev selected, sequence.
:returns: None
:rtype: None
:raises: None
"""
if not self.cur_prj:
return
i = self.prj_seq_tablev.currentIndex()
item = i.internalPointer()
if item:
seq = item.internal_data()
self.view_seq(seq) | 0.005013 |
def fit(self, X, y, num_training_samples=None):
"""Use correlation data to train a model.
First compute the correlation of the input data,
and then normalize within subject
if more than one sample in one subject,
and then fit to a model defined by self.clf.
Parameters
----------
X: list of tuple (data1, data2)
data1 and data2 are numpy array in shape [num_TRs, num_voxels]
to be computed for correlation.
They contain the activity data filtered by ROIs
and prepared for correlation computation.
Within list, all data1s must have the same num_voxels value,
all data2s must have the same num_voxels value.
y: 1D numpy array
labels, len(X) equals len(y)
num_training_samples: Optional[int]
The number of samples used in the training.
Set it to construct the kernel matrix
portion by portion so the similarity vectors of the
test data have to be computed here.
Only set num_training_samples when sklearn.svm.SVC with
precomputed kernel is used.
If it is set, only those samples will be used to fit the model.
Returns
-------
Classifier:
self.
"""
time1 = time.time()
assert len(X) == len(y), \
'the number of samples must be equal to the number of labels'
for x in X:
assert len(x) == 2, \
'there must be two parts for each correlation computation'
X1, X2 = zip(*X)
if not (isinstance(self.clf, sklearn.svm.SVC)
and self.clf.kernel == 'precomputed'):
if num_training_samples is not None:
num_training_samples = None
logger.warn(
'num_training_samples should not be set for classifiers '
'other than SVM with precomputed kernels'
)
num_samples = len(X1)
num_voxels1 = X1[0].shape[1]
num_voxels2 = X2[0].shape[1]
# make sure X1 always has more voxels
if num_voxels1 < num_voxels2:
X1, X2 = X2, X1
num_voxels1, num_voxels2 = num_voxels2, num_voxels1
self.num_voxels_ = num_voxels1
self.num_features_ = num_voxels1 * num_voxels2
self.num_samples_ = num_samples
data = self._generate_training_data(X1, X2, num_training_samples)
if num_training_samples is not None:
self.test_raw_data_ = None
self.test_data_ = data[num_training_samples:,
0:num_training_samples]
# limit training to the data specified by num_training_samples
data = data[0:num_training_samples, 0:num_training_samples]
# training
self.clf = self.clf.fit(data, y[0:num_training_samples])
# set the test data
if num_training_samples is None:
self.test_raw_data_ = None
self.test_data_ = None
time2 = time.time()
logger.info(
'training done, takes %.2f s' %
(time2 - time1)
)
return self | 0.000618 |
def _build_line(colwidths, colaligns, linefmt):
"Return a string which represents a horizontal line."
if not linefmt:
return None
if hasattr(linefmt, "__call__"):
return linefmt(colwidths, colaligns)
else:
begin, fill, sep, end = linefmt
cells = [fill*w for w in colwidths]
return _build_simple_row(cells, (begin, sep, end)) | 0.002625 |
def groups_roles(self, room_id=None, room_name=None, **kwargs):
"""Lists all user’s roles in the private group."""
if room_id:
return self.__call_api_get('groups.roles', roomId=room_id, kwargs=kwargs)
elif room_name:
return self.__call_api_get('groups.roles', roomName=room_name, kwargs=kwargs)
else:
raise RocketMissingParamException('roomId or room_name required') | 0.009217 |
def verify(
self, headers, serialized_request_env, deserialized_request_env):
# type: (Dict[str, Any], str, RequestEnvelope) -> None
"""Verify if the input request signature and the body matches.
The verify method retrieves the Signature Certificate Chain URL,
validates the URL, retrieves the chain from the URL, validates
the signing certificate, extract the public key, base64 decode
the Signature and verifies if the hash value of the request body
matches with the decrypted signature.
:param headers: headers of the input POST request
:type headers: Dict[str, Any]
:param serialized_request_env: raw request envelope in the
input POST request
:type serialized_request_env: str
:param deserialized_request_env: deserialized request envelope
instance of the input POST request
:type deserialized_request_env:
:py:class:`ask_sdk_model.request_envelope.RequestEnvelope`
:raises: :py:class:`VerificationException` if headers doesn't
exist or verification fails
"""
cert_url = headers.get(self._signature_cert_chain_url_key)
signature = headers.get(self._signature_key)
if cert_url is None or signature is None:
raise VerificationException(
"Missing Signature/Certificate for the skill request")
cert_chain = self._retrieve_and_validate_certificate_chain(cert_url)
self._valid_request_body(
cert_chain, signature, serialized_request_env) | 0.001874 |
def repo(name: str, owner: str) -> snug.Query[dict]:
"""a repository lookup by owner and name"""
return json.loads((yield f'/repos/{owner}/{name}').content) | 0.006098 |
def fix_groups(groups):
"""Takes care of strange group numbers."""
_groups = []
for g in groups:
try:
if not float(g) > 0:
_groups.append(1000)
else:
_groups.append(int(g))
except TypeError as e:
logging.info("Error in reading group number (check your db)")
logging.debug(g)
logging.debug(e)
_groups.append(1000)
return _groups | 0.00216 |
def set_video_stream_param(self, streamtype, resolution, bitrate,
framerate, gop, isvbr, callback=None):
'''
Set the video stream param of stream N
streamtype(0~3): Stream N.
resolution(0~4): 0 720P,
1 VGA(640*480),
2 VGA(640*360),
3 QVGA(320*240),
4 QVGA(320*180).
bitrate: Bit rate of stream type N(20480~2097152).
framerate: Frame rate of stream type N.
GOP: P frames between 1 frame of stream type N.
The suggest value is: X * framerate.
isvbr: 0(Not in use currently), 1(In use).
'''
params = {'streamType': streamtype,
'resolution': resolution,
'bitRate' : bitrate,
'frameRate' : framerate,
'GOP' : gop,
'isVBR' : isvbr
}
return self.execute_command('setVideoStreamParam',
params, callback=callback) | 0.007456 |
def coerce(self, values):
"""Convert an iterable of literals to an iterable of options.
Args:
values (iterable or string): An iterable of raw values to convert
into options. If the value is a string is is assumed to be a
comma separated list and will be split before processing.
Returns:
iterable: An iterable of option values initialized with the raw
values from `values`.
Raises:
TypeError: If `values` is not iterable or string.
TypeError: If the underlying option raises a TypeError.
ValueError: If the underlying option raises a ValueError.
"""
if isinstance(values, compat.basestring):
values = tuple(value.strip() for value in values.split(','))
# Create a list of options to store each value.
opt_iter = tuple(copy.deepcopy(self._option) for value in values)
for opt_obj, val in compat.zip(opt_iter, values):
opt_obj.__set__(None, val)
return opt_iter | 0.001823 |
def invoke_hook_bolt_fail(self, heron_tuple, fail_latency_ns):
"""invoke task hooks for every time bolt fails a tuple
:type heron_tuple: HeronTuple
:param heron_tuple: tuple that is failed
:type fail_latency_ns: float
:param fail_latency_ns: fail latency in nano seconds
"""
if len(self.task_hooks) > 0:
bolt_fail_info = BoltFailInfo(heron_tuple=heron_tuple,
failing_task_id=self.get_task_id(),
fail_latency_ms=fail_latency_ns * system_constants.NS_TO_MS)
for task_hook in self.task_hooks:
task_hook.bolt_fail(bolt_fail_info) | 0.006192 |
def _update(self, conf_dict, base_name=None):
""" Updates the current configuration with the values in `conf_dict`.
:param dict conf_dict: Dictionary of key value settings.
:param str base_name: Base namespace for setting keys.
"""
for name in conf_dict:
# Skip private names
if name.startswith('_'):
continue
value = conf_dict[name]
# Skip Namespace if it's imported
if value is Namespace:
continue
# Use a base namespace
if base_name:
name = base_name + '.' + name
if isinstance(value, Namespace):
for name, value in value.iteritems(name):
self.set(name, value)
# Automatically call any functions in the settings module, and if
# they return a value other than None, that value becomes a setting
elif callable(value):
value = value()
if value is not None:
self.set(name, value)
else:
self.set(name, value) | 0.001735 |
def enterEvent( self, event ):
"""
Toggles the display for the tracker item.
"""
item = self.trackerItem()
if ( item ):
item.setVisible(True) | 0.030151 |
def draw_canvas():
"""Render the tkinter canvas based on the state of ``world``"""
for x in range(len(world)):
for y in range(len(world[x])):
if world[x][y].value:
color = world[x][y].color_alive.get_as_hex()
else:
color = world[x][y].color_dead.get_as_hex()
canvas.itemconfig(canvas_grid[x][y], fill=color) | 0.002558 |
def emit(self, record):
"""
Override emit() method in handler parent for sending log to RESTful API
"""
# avoid infinite recursion
if record.name.startswith('requests'):
return
data, header = self._prepPayload(record)
try:
self.session.post(self._getEndpoint(),
data=data,
headers={'content-type': header})
except Exception:
self.handleError(record) | 0.003914 |
def rpc_get_consensus_hashes( self, block_id_list, **con_info ):
"""
Return the consensus hashes at multiple block numbers
Return a dict mapping each block ID to its consensus hash.
Returns {'status': True, 'consensus_hashes': dict} on success
Returns {'error': ...} on success
"""
if type(block_id_list) != list:
return {'error': 'Invalid block heights', 'http_status': 400}
if len(block_id_list) > 32:
return {'error': 'Too many block heights', 'http_status': 400}
for bid in block_id_list:
if not check_block(bid):
return {'error': 'Invalid block height', 'http_status': 400}
db = get_db_state(self.working_dir)
ret = {}
for block_id in block_id_list:
ret[block_id] = db.get_consensus_at(block_id)
db.close()
return self.success_response( {'consensus_hashes': ret} ) | 0.006309 |
def endswith(self, suffix, start=0, end=None):
"""Return True if ends with the specified suffix, False otherwise.
With optional start, test beginning at that position. With optional end, stop comparing at that position.
suffix can also be a tuple of strings to try.
:param str suffix: Suffix to search.
:param int start: Beginning position.
:param int end: Stop comparison at this position.
"""
args = [suffix, start] + ([] if end is None else [end])
return self.value_no_colors.endswith(*args) | 0.005282 |
def logon(self, password='admin'):
"""
Parameters
----------
password : str
default 'admin'
Returns
-------
dict
"""
r = self._basic_post(url='logon', data=password)
return r.json() | 0.007299 |
def rest(self, token, endpoint=None, timeout=None):
"""Obtain a metadata REST API client."""
from . import rest
return rest.SignalFxRestClient(
token=token,
endpoint=endpoint or self._api_endpoint,
timeout=timeout or self._timeout) | 0.006873 |
def align_blocks(source_sentences, target_sentences, params = LanguageIndependent):
"""Creates the sentence alignment of two blocks of texts (usually paragraphs).
@param source_sentences: The list of source sentence lengths.
@param target_sentences: The list of target sentence lengths.
@param params: the sentence alignment parameters.
@return: The sentence alignments, a list of index pairs.
"""
alignment_types = list(params.PRIORS.keys())
# there are always three rows in the history (with the last of them being filled)
# and the rows are always |target_text| + 2, so that we never have to do
# boundary checks
D = [(len(target_sentences) + 2) * [0] for x in range(2)]
# for the first sentence, only substitution, insertion or deletion are
# allowed, and they are all equally likely ( == 1)
D.append([0, 1])
try:
D[-2][1] = 1
D[-2][2] = 1
except:
pass
backlinks = {}
for i in range(len(source_sentences)):
for j in range(len(target_sentences)):
m = []
for a in alignment_types:
k = D[-(1 + a[0])][j + 2 - a[1]]
if k > 0:
p = k * \
align_probability(i, j, source_sentences, target_sentences, a, params)
m.append((p, a))
if len(m) > 0:
v = max(m)
backlinks[(i, j)] = v[1]
D[-1].append(v[0])
else:
backlinks[(i, j)] = (1, 1)
D[-1].append(0)
D.pop(0)
D.append([0, 0])
return trace(backlinks, source_sentences, target_sentences) | 0.006555 |
def open_upload_stream_with_id(
self, file_id, filename, chunk_size_bytes=None, metadata=None):
"""Opens a Stream that the application can write the contents of the
file to.
The user must specify the file id and filename, and can choose to add
any additional information in the metadata field of the file document
or modify the chunk size.
For example::
my_db = MongoClient().test
fs = GridFSBucket(my_db)
grid_in, file_id = fs.open_upload_stream(
ObjectId(),
"test_file",
chunk_size_bytes=4,
metadata={"contentType": "text/plain"})
grid_in.write("data I want to store!")
grid_in.close() # uploaded on close
Returns an instance of :class:`~gridfs.grid_file.GridIn`.
Raises :exc:`~gridfs.errors.NoFile` if no such version of
that file exists.
Raises :exc:`~ValueError` if `filename` is not a string.
:Parameters:
- `file_id`: The id to use for this file. The id must not have
already been used for another file.
- `filename`: The name of the file to upload.
- `chunk_size_bytes` (options): The number of bytes per chunk of this
file. Defaults to the chunk_size_bytes in :class:`GridFSBucket`.
- `metadata` (optional): User data for the 'metadata' field of the
files collection document. If not provided the metadata field will
be omitted from the files collection document.
"""
validate_string("filename", filename)
opts = {"_id": file_id,
"filename": filename,
"chunk_size": (chunk_size_bytes if chunk_size_bytes
is not None else self._chunk_size_bytes)}
if metadata is not None:
opts["metadata"] = metadata
return GridIn(self._collection, **opts) | 0.001014 |
def effectiveTagSet(self):
"""Return a :class:`~pyasn1.type.tag.TagSet` object of the currently initialized component or self (if |ASN.1| is tagged)."""
if self.tagSet:
return self.tagSet
else:
component = self.getComponent()
return component.effectiveTagSet | 0.009434 |
def load(self, filename, format_file='cloudupdrs'):
"""
This is a general load data method where the format of data to load can be passed as a parameter,
:param str filename: The path to load data from
:param str format_file: format of the file. Default is CloudUPDRS. Set to mpower for mpower data.
:return dataframe: data_frame.x, data_frame.y, data_frame.z: x, y, z components of the acceleration \
data_frame.index is the datetime-like index
"""
try:
ts = load_data(filename, format_file)
validator = CloudUPDRSDataFrameValidator()
if validator.is_valid(ts):
return ts
else:
logging.error('Error loading data, wrong format.')
return None
except IOError as e:
ierr = "({}): {}".format(e.errno, e.strerror)
logging.error("load data, file not found, I/O error %s", ierr)
except ValueError as verr:
logging.error("load data ValueError ->%s", verr.message)
except:
logging.error("Unexpected error on load data method: %s", sys.exc_info()[0]) | 0.005863 |