Datasets:
Tasks:
Text Classification
Languages:
Persian
File size: 4,698 Bytes
331f4c7 2e8cf3d 331f4c7 2e8cf3d 331f4c7 57fa245 2e8cf3d 433e2ec 331f4c7 e7b4280 2e8cf3d e7b4280 2e8cf3d e7b4280 1742452 2e8cf3d 331f4c7 2e8cf3d ff58a90 331f4c7 2e8cf3d 331f4c7 fcdaa9f 2e8cf3d 331f4c7 2e8cf3d 433e2ec 2e8cf3d 331f4c7 433e2ec 331f4c7 2e8cf3d 331f4c7 2e8cf3d 331f4c7 2e8cf3d 331f4c7 2e8cf3d 331f4c7 2e8cf3d 331f4c7 2e8cf3d 331f4c7 2e8cf3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import csv
import datasets
from datasets.tasks import TextClassification
logger = datasets.logging.get_logger(__name__)
_CITATION = """Citation"""
_DESCRIPTION = """Description"""
_DOWNLOAD_URLS = {
"utc_train_text": "https://huggingface.co/datasets/mahdiyehebrahimi/utc/raw/main/utc_train_text.csv",
"utc_test_text": "https://huggingface.co/datasets/mahdiyehebrahimi/utc/raw/main/utc_test_text.csv",
"utc_train_ner": "https://huggingface.co/datasets/mahdiyehebrahimi/utc/raw/main/utc_train_ner.csv",
"utc_test_ner": "https://huggingface.co/datasets/mahdiyehebrahimi/utc/raw/main/utc_test_ner.csv",
"utc_train_concate": "https://huggingface.co/datasets/mahdiyehebrahimi/utc/raw/main/utc_train_concate.csv",
"utc_test_concate": "https://huggingface.co/datasets/mahdiyehebrahimi/utc/raw/main/utc_test_concate.csv",
}
class DatasetNameConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(DatasetNameConfig, self).__init__(**kwargs)
class DatasetName(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
DatasetNameConfig(
name="utc",
version=datasets.Version("1.1.1"),
description=_DESCRIPTION,
),
]
def _info(self):
text_column = "text"
label_column = "label"
# TODO PROVIDE THE LABELS HERE
label_names = ['UndergraduateRegistrationExceptions',
'CentralAuthentication&Email',
'Senior(Registration,Deletion,Leave)',
'Senior(Professor,Seminar,Proposal,Defense)',
'Admissionwithoutatest', 'Calculateandchargetheinternet',
'OfficeAutomation', 'Ph.D.(Admission,Registration,Removal,Leave)',
'Ph.D.(Comprehensive,Research1and2,Opportunity)', 'Yekta|Nikan']
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{text_column: datasets.Value("string"), label_column: datasets.features.ClassLabel(names=label_names)}
),
homepage="https://huggingface.co/datasets/mahdiyehebrahimi/utc",
citation=_CITATION,
task_templates=[TextClassification(text_column=text_column, label_column=label_column)],
)
def _split_generators(self, dl_manager):
"""
Return SplitGenerators.
"""
utc_train_text_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["utc_train_text"])
utc_test_text_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["utc_test_text"])
utc_train_ner_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["utc_train_ner"])
utc_test_ner_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["utc_test_ner"])
utc_train_concate_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["utc_train_concate"])
utc_test_concate_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["utc_test_concate"])
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": utc_train_text_path}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": utc_test_text_path}),
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": utc_train_ner_path}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": utc_test_ner_path}),
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": utc_train_concate_path}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": utc_test_concate_path}),
]
# TODO
def _generate_examples(self, filepath):
"""
Per each file_path read the csv file and iterate it.
For each row yield a tuple of (id, {"text": ..., "label": ..., ...})
Each call to this method yields an output like below:
```
(123, {"text": "I liked it", "label": "positive"})
```
"""
label2id = self.info.features[self.info.task_templates[0].label_column].str2int
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as csv_file:
csv_reader = csv.reader(csv_file, quotechar='"', skipinitialspace=True)
# Uncomment below line to skip the first row if your csv file has a header row
next(csv_reader, None)
for id_, row in enumerate(csv_reader):
text, label = row
label = label2id(label)
# Optional preprocessing here
yield id_, {"text": text, "label": label} |