function
stringlengths 18
3.86k
| intent_category
stringlengths 5
24
|
---|---|
def __init__(self) -> None:
self.data: list[Any] = []
self.head: int = 0
self.tail: int = 0 | data_structures |
def is_empty(self) -> bool:
return self.head == self.tail | data_structures |
def push(self, data: Any) -> None:
self.data.append(data)
self.tail = self.tail + 1 | data_structures |
def pop(self) -> Any:
ret = self.data[self.head]
self.head = self.head + 1
return ret | data_structures |
def count(self) -> int:
return self.tail - self.head | data_structures |
def print_queue(self) -> None:
print(self.data)
print("**************")
print(self.data[self.head : self.tail]) | data_structures |
def __init__(self, data: Any) -> None:
self.data = data
self.left: MyNode | None = None
self.right: MyNode | None = None
self.height: int = 1 | data_structures |
def get_data(self) -> Any:
return self.data | data_structures |
def get_left(self) -> MyNode | None:
return self.left | data_structures |
def get_right(self) -> MyNode | None:
return self.right | data_structures |
def get_height(self) -> int:
return self.height | data_structures |
def set_data(self, data: Any) -> None:
self.data = data
return | data_structures |
def set_left(self, node: MyNode | None) -> None:
self.left = node
return | data_structures |
def set_right(self, node: MyNode | None) -> None:
self.right = node
return | data_structures |
def set_height(self, height: int) -> None:
self.height = height
return | data_structures |
def get_height(node: MyNode | None) -> int:
if node is None:
return 0
return node.get_height() | data_structures |
def my_max(a: int, b: int) -> int:
if a > b:
return a
return b | data_structures |
def right_rotation(node: MyNode) -> MyNode:
print("left rotation node:", node.get_data())
ret = node.get_left()
assert ret is not None
node.set_left(ret.get_right())
ret.set_right(node)
h1 = my_max(get_height(node.get_right()), get_height(node.get_left())) + 1
node.set_height(h1)
h2 = my_max(get_height(ret.get_right()), get_height(ret.get_left())) + 1
ret.set_height(h2)
return ret | data_structures |
def left_rotation(node: MyNode) -> MyNode:
print("right rotation node:", node.get_data())
ret = node.get_right()
assert ret is not None
node.set_right(ret.get_left())
ret.set_left(node)
h1 = my_max(get_height(node.get_right()), get_height(node.get_left())) + 1
node.set_height(h1)
h2 = my_max(get_height(ret.get_right()), get_height(ret.get_left())) + 1
ret.set_height(h2)
return ret | data_structures |
def lr_rotation(node: MyNode) -> MyNode:
left_child = node.get_left()
assert left_child is not None
node.set_left(left_rotation(left_child))
return right_rotation(node) | data_structures |
def rl_rotation(node: MyNode) -> MyNode:
right_child = node.get_right()
assert right_child is not None
node.set_right(right_rotation(right_child))
return left_rotation(node) | data_structures |
def insert_node(node: MyNode | None, data: Any) -> MyNode | None:
if node is None:
return MyNode(data)
if data < node.get_data():
node.set_left(insert_node(node.get_left(), data))
if (
get_height(node.get_left()) - get_height(node.get_right()) == 2
): # an unbalance detected
left_child = node.get_left()
assert left_child is not None
if (
data < left_child.get_data()
): # new node is the left child of the left child
node = right_rotation(node)
else:
node = lr_rotation(node)
else:
node.set_right(insert_node(node.get_right(), data))
if get_height(node.get_right()) - get_height(node.get_left()) == 2:
right_child = node.get_right()
assert right_child is not None
if data < right_child.get_data():
node = rl_rotation(node)
else:
node = left_rotation(node)
h1 = my_max(get_height(node.get_right()), get_height(node.get_left())) + 1
node.set_height(h1)
return node | data_structures |
def get_right_most(root: MyNode) -> Any:
while True:
right_child = root.get_right()
if right_child is None:
break
root = right_child
return root.get_data() | data_structures |
def get_left_most(root: MyNode) -> Any:
while True:
left_child = root.get_left()
if left_child is None:
break
root = left_child
return root.get_data() | data_structures |
def del_node(root: MyNode, data: Any) -> MyNode | None:
left_child = root.get_left()
right_child = root.get_right()
if root.get_data() == data:
if left_child is not None and right_child is not None:
temp_data = get_left_most(right_child)
root.set_data(temp_data)
root.set_right(del_node(right_child, temp_data))
elif left_child is not None:
root = left_child
elif right_child is not None:
root = right_child
else:
return None
elif root.get_data() > data:
if left_child is None:
print("No such data")
return root
else:
root.set_left(del_node(left_child, data))
else: # root.get_data() < data
if right_child is None:
return root
else:
root.set_right(del_node(right_child, data))
if get_height(right_child) - get_height(left_child) == 2:
assert right_child is not None
if get_height(right_child.get_right()) > get_height(right_child.get_left()):
root = left_rotation(root)
else:
root = rl_rotation(root)
elif get_height(right_child) - get_height(left_child) == -2:
assert left_child is not None
if get_height(left_child.get_left()) > get_height(left_child.get_right()):
root = right_rotation(root)
else:
root = lr_rotation(root)
height = my_max(get_height(root.get_right()), get_height(root.get_left())) + 1
root.set_height(height)
return root | data_structures |
def __init__(self) -> None:
self.root: MyNode | None = None | data_structures |
def get_height(self) -> int:
return get_height(self.root) | data_structures |
def insert(self, data: Any) -> None:
print("insert:" + str(data))
self.root = insert_node(self.root, data) | data_structures |
def del_node(self, data: Any) -> None:
print("delete:" + str(data))
if self.root is None:
print("Tree is empty!")
return
self.root = del_node(self.root, data) | data_structures |
def __str__(
self,
) -> str: # a level traversale, gives a more intuitive look on the tree
output = ""
q = MyQueue()
q.push(self.root)
layer = self.get_height()
if layer == 0:
return output
cnt = 0
while not q.is_empty():
node = q.pop()
space = " " * int(math.pow(2, layer - 1))
output += space
if node is None:
output += "*"
q.push(None)
q.push(None)
else:
output += str(node.get_data())
q.push(node.get_left())
q.push(node.get_right())
output += space
cnt = cnt + 1
for i in range(100):
if cnt == math.pow(2, i) - 1:
layer = layer - 1
if layer == 0:
output += "\n*************************************"
return output
output += "\n"
break
output += "\n*************************************"
return output | data_structures |
def _test() -> None:
import doctest
doctest.testmod() | data_structures |
def __init__(self, value: int | None = None):
self.value = value
self.prior = random()
self.left: Node | None = None
self.right: Node | None = None | data_structures |
def __repr__(self) -> str:
from pprint import pformat
if self.left is None and self.right is None:
return f"'{self.value}: {self.prior:.5}'"
else:
return pformat(
{f"{self.value}: {self.prior:.5}": (self.left, self.right)}, indent=1
) | data_structures |
def __str__(self) -> str:
value = str(self.value) + " "
left = str(self.left or "")
right = str(self.right or "")
return value + left + right | data_structures |
def split(root: Node | None, value: int) -> tuple[Node | None, Node | None]:
if root is None: # None tree is split into 2 Nones
return None, None
elif root.value is None:
return None, None
else:
if value < root.value:
left, root.left = split(root.left, value)
return left, root
else:
root.right, right = split(root.right, value)
return root, right | data_structures |
def merge(left: Node | None, right: Node | None) -> Node | None:
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
left.right = merge(left.right, right)
return left
else:
right.left = merge(left, right.left)
return right | data_structures |
def insert(root: Node | None, value: int) -> Node | None:
node = Node(value)
left, right = split(root, value)
return merge(merge(left, node), right) | data_structures |
def erase(root: Node | None, value: int) -> Node | None:
left, right = split(root, value - 1)
_, right = split(right, value)
return merge(left, right) | data_structures |
def inorder(root: Node | None) -> None:
if not root: # None
return
else:
inorder(root.left)
print(root.value, end=",")
inorder(root.right) | data_structures |
def interact_treap(root: Node | None, args: str) -> Node | None:
for arg in args.split():
if arg[0] == "+":
root = insert(root, int(arg[1:]))
elif arg[0] == "-":
root = erase(root, int(arg[1:]))
else:
print("Unknown command")
return root | data_structures |
def __init__(self, arr: list[T], fnc: Callable[[T, T], T]) -> None:
any_type: Any | T = None
self.N: int = len(arr)
self.st: list[T] = [any_type for _ in range(self.N)] + arr
self.fn = fnc
self.build() | data_structures |
def build(self) -> None:
for p in range(self.N - 1, 0, -1):
self.st[p] = self.fn(self.st[p * 2], self.st[p * 2 + 1]) | data_structures |
def update(self, p: int, v: T) -> None:
p += self.N
self.st[p] = v
while p > 1:
p = p // 2
self.st[p] = self.fn(self.st[p * 2], self.st[p * 2 + 1]) | data_structures |
def query(self, l: int, r: int) -> T | None: # noqa: E741
l, r = l + self.N, r + self.N
res: T | None = None
while l <= r:
if l % 2 == 1:
res = self.st[l] if res is None else self.fn(res, self.st[l])
if r % 2 == 0:
res = self.st[r] if res is None else self.fn(res, self.st[r])
l, r = (l + 1) // 2, (r - 1) // 2
return res | data_structures |
def test_all_segments() -> None:
for i in range(len(test_array)):
for j in range(i, len(test_array)):
min_range = reduce(min, test_array[i : j + 1])
max_range = reduce(max, test_array[i : j + 1])
sum_range = reduce(lambda a, b: a + b, test_array[i : j + 1])
assert min_range == min_segment_tree.query(i, j)
assert max_range == max_segment_tree.query(i, j)
assert sum_range == sum_segment_tree.query(i, j) | data_structures |
def __init__(self, start, end, val, left=None, right=None):
self.start = start
self.end = end
self.val = val
self.mid = (start + end) // 2
self.left = left
self.right = right | data_structures |
def __repr__(self):
return f"SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})" | data_structures |
def __init__(self, collection: Sequence, function):
self.collection = collection
self.fn = function
if self.collection:
self.root = self._build_tree(0, len(collection) - 1) | data_structures |
def update(self, i, val):
self._update_tree(self.root, i, val) | data_structures |
def query_range(self, i, j):
return self._query_range(self.root, i, j) | data_structures |
def _build_tree(self, start, end):
if start == end:
return SegmentTreeNode(start, end, self.collection[start])
mid = (start + end) // 2
left = self._build_tree(start, mid)
right = self._build_tree(mid + 1, end)
return SegmentTreeNode(start, end, self.fn(left.val, right.val), left, right) | data_structures |
def _update_tree(self, node, i, val):
if node.start == i and node.end == i:
node.val = val
return
if i <= node.mid:
self._update_tree(node.left, i, val)
else:
self._update_tree(node.right, i, val)
node.val = self.fn(node.left.val, node.right.val) | data_structures |
def _query_range(self, node, i, j):
if node.start == i and node.end == j:
return node.val
if i <= node.mid:
if j <= node.mid:
# range in left child tree
return self._query_range(node.left, i, j)
else:
# range in left child tree and right child tree
return self.fn(
self._query_range(node.left, i, node.mid),
self._query_range(node.right, node.mid + 1, j),
)
else:
# range in right child tree
return self._query_range(node.right, i, j) | data_structures |
def traverse(self):
if self.root is not None:
queue = Queue()
queue.put(self.root)
while not queue.empty():
node = queue.get()
yield node
if node.left is not None:
queue.put(node.left)
if node.right is not None:
queue.put(node.right) | data_structures |
def __init__(self, arr: list[int] | None = None, size: int | None = None) -> None:
if arr is None and size is not None:
self.size = size
self.tree = [0] * size
elif arr is not None:
self.init(arr)
else:
raise ValueError("Either arr or size must be specified") | data_structures |
def init(self, arr: list[int]) -> None:
self.size = len(arr)
self.tree = deepcopy(arr)
for i in range(1, self.size):
j = self.next_(i)
if j < self.size:
self.tree[j] += self.tree[i] | data_structures |
def get_array(self) -> list[int]:
arr = self.tree[:]
for i in range(self.size - 1, 0, -1):
j = self.next_(i)
if j < self.size:
arr[j] -= arr[i]
return arr | data_structures |
def next_(index: int) -> int:
return index + (index & (-index)) | data_structures |
def prev(index: int) -> int:
return index - (index & (-index)) | data_structures |
def add(self, index: int, value: int) -> None:
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
index = self.next_(index) | data_structures |
def update(self, index: int, value: int) -> None:
self.add(index, value - self.get(index)) | data_structures |
def prefix(self, right: int) -> int:
if right == 0:
return 0
result = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
right = self.prev(right)
return result | data_structures |
def query(self, left: int, right: int) -> int:
return self.prefix(right) - self.prefix(left) | data_structures |
def get(self, index: int) -> int:
return self.query(index, index + 1) | data_structures |
def rank_query(self, value: int) -> int:
value -= self.tree[0]
if value < 0:
return -1
j = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
i = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i | data_structures |
def __init__(self, value: int | None = None):
self.value = value
self.parent: Node | None = None # Added in order to delete a node easier
self.left: Node | None = None
self.right: Node | None = None | data_structures |
def __repr__(self) -> str:
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value)
return pformat({f"{self.value}": (self.left, self.right)}, indent=1) | data_structures |
def __init__(self, root: Node | None = None):
self.root = root | data_structures |
def __str__(self) -> str:
return str(self.root) | data_structures |
def __reassign_nodes(self, node: Node, new_children: Node | None) -> None:
if new_children is not None: # reset its kids
new_children.parent = node.parent
if node.parent is not None: # reset its parent
if self.is_right(node): # If it is the right children
node.parent.right = new_children
else:
node.parent.left = new_children
else:
self.root = None | data_structures |
def is_right(self, node: Node) -> bool:
if node.parent and node.parent.right:
return node == node.parent.right
return False | data_structures |
def empty(self) -> bool:
return self.root is None | data_structures |
def __insert(self, value) -> None:
new_node = Node(value) # create a new Node
if self.empty(): # if Tree is empty
self.root = new_node # set its root
else: # Tree is not empty
parent_node = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
parent_node.left = new_node # We insert the new node in a leaf
break
else:
parent_node = parent_node.left
else:
if parent_node.right is None:
parent_node.right = new_node
break
else:
parent_node = parent_node.right
new_node.parent = parent_node | data_structures |
def insert(self, *values) -> None:
for value in values:
self.__insert(value) | data_structures |
def search(self, value) -> Node | None:
if self.empty():
raise IndexError("Warning: Tree is empty! please use another.")
else:
node = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
node = node.left if value < node.value else node.right
return node | data_structures |
def get_max(self, node: Node | None = None) -> Node | None:
if node is None:
if self.root is None:
return None
node = self.root
if not self.empty():
while node.right is not None:
node = node.right
return node | data_structures |
def get_min(self, node: Node | None = None) -> Node | None:
if node is None:
node = self.root
if self.root is None:
return None
if not self.empty():
node = self.root
while node.left is not None:
node = node.left
return node | data_structures |
def remove(self, value: int) -> None:
node = self.search(value) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(node, None)
elif node.left is None: # Has only right children
self.__reassign_nodes(node, node.right)
elif node.right is None: # Has only left children
self.__reassign_nodes(node, node.left)
else:
tmp_node = self.get_max(
node.left
) # Gets the max value of the left branch
self.remove(tmp_node.value) # type: ignore
node.value = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure | data_structures |
def preorder_traverse(self, node: Node | None) -> Iterable:
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left)
yield from self.preorder_traverse(node.right) | data_structures |
def traversal_tree(self, traversal_function=None) -> Any:
if traversal_function is None:
return self.preorder_traverse(self.root)
else:
return traversal_function(self.root) | data_structures |
def inorder(self, arr: list, node: Node | None) -> None:
if node:
self.inorder(arr, node.left)
arr.append(node.value)
self.inorder(arr, node.right) | data_structures |
def find_kth_smallest(self, k: int, node: Node) -> int: | data_structures |
def make_tree() -> Node | None:
tree = Node(1)
tree.left = Node(2)
tree.right = Node(3)
tree.left.left = Node(4)
tree.left.right = Node(5)
return tree | data_structures |
def preorder(root: Node | None) -> list[int]:
return [root.data, *preorder(root.left), *preorder(root.right)] if root else [] | data_structures |
def postorder(root: Node | None) -> list[int]:
return postorder(root.left) + postorder(root.right) + [root.data] if root else [] | data_structures |
def inorder(root: Node | None) -> list[int]:
return [*inorder(root.left), root.data, *inorder(root.right)] if root else [] | data_structures |
def height(root: Node | None) -> int:
return (max(height(root.left), height(root.right)) + 1) if root else 0 | data_structures |
def level_order(root: Node | None) -> Sequence[Node | None]:
output: list[Any] = []
if root is None:
return output
process_queue = deque([root])
while process_queue:
node = process_queue.popleft()
output.append(node.data)
if node.left:
process_queue.append(node.left)
if node.right:
process_queue.append(node.right)
return output | data_structures |
def populate_output(root: Node | None, level: int) -> None:
if not root:
return
if level == 1:
output.append(root.data)
elif level > 1:
populate_output(root.left, level - 1)
populate_output(root.right, level - 1) | data_structures |
def populate_output(root: Node | None, level: int) -> None:
if root is None:
return
if level == 1:
output.append(root.data)
elif level > 1:
populate_output(root.right, level - 1)
populate_output(root.left, level - 1) | data_structures |
def zigzag(root: Node | None) -> Sequence[Node | None] | list[Any]:
if root is None:
return []
output: list[Sequence[Node | None]] = []
flag = 0
height_tree = height(root)
for h in range(1, height_tree + 1):
if not flag:
output.append(get_nodes_from_left_to_right(root, h))
flag = 1
else:
output.append(get_nodes_from_right_to_left(root, h))
flag = 0
return output | data_structures |
def main() -> None: # Main function for testing.
root = make_tree()
print(f"In-order Traversal: {inorder(root)}")
print(f"Pre-order Traversal: {preorder(root)}")
print(f"Post-order Traversal: {postorder(root)}", "\n")
print(f"Height of Tree: {height(root)}", "\n")
print("Complete Level Order Traversal: ")
print(level_order(root), "\n")
print("Level-wise order Traversal: ")
for level in range(1, height(root) + 1):
print(f"Level {level}:", get_nodes_from_left_to_right(root, level=level))
print("\nZigZag order Traversal: ")
print(zigzag(root)) | data_structures |
def __init__(
self,
label: int | None = None,
color: int = 0,
parent: RedBlackTree | None = None,
left: RedBlackTree | None = None,
right: RedBlackTree | None = None,
) -> None:
self.label = label
self.parent = parent
self.left = left
self.right = right
self.color = color | data_structures |
def rotate_left(self) -> RedBlackTree:
parent = self.parent
right = self.right
if right is None:
return self
self.right = right.left
if self.right:
self.right.parent = self
self.parent = right
right.left = self
if parent is not None:
if parent.left == self:
parent.left = right
else:
parent.right = right
right.parent = parent
return right | data_structures |
def rotate_right(self) -> RedBlackTree:
if self.left is None:
return self
parent = self.parent
left = self.left
self.left = left.right
if self.left:
self.left.parent = self
self.parent = left
left.right = self
if parent is not None:
if parent.right is self:
parent.right = left
else:
parent.left = left
left.parent = parent
return left | data_structures |
def insert(self, label: int) -> RedBlackTree:
if self.label is None:
# Only possible with an empty tree
self.label = label
return self
if self.label == label:
return self
elif self.label > label:
if self.left:
self.left.insert(label)
else:
self.left = RedBlackTree(label, 1, self)
self.left._insert_repair()
else:
if self.right:
self.right.insert(label)
else:
self.right = RedBlackTree(label, 1, self)
self.right._insert_repair()
return self.parent or self | data_structures |
def _insert_repair(self) -> None:
if self.label == label:
if self.left and self.right:
# It's easier to balance a node with at most one child,
# so we replace this node with the greatest one less than
# it and remove that.
value = self.left.get_max()
if value is not None:
self.label = value
self.left.remove(value)
else:
# This node has at most one non-None child, so we don't
# need to replace
child = self.left or self.right
if self.color == 1:
# This node is red, and its child is black
# The only way this happens to a node with one child
# is if both children are None leaves.
# We can just remove this node and call it a day.
if self.parent:
if self.is_left():
self.parent.left = None
else:
self.parent.right = None
else:
# The node is black
if child is None:
# This node and its child are black
if self.parent is None:
# The tree is now empty
return RedBlackTree(None)
else:
self._remove_repair()
if self.is_left():
self.parent.left = None
else:
self.parent.right = None
self.parent = None
else:
# This node is black and its child is red
# Move the child node here and make it black
self.label = child.label
self.left = child.left
self.right = child.right
if self.left:
self.left.parent = self
if self.right:
self.right.parent = self
elif self.label is not None and self.label > label:
if self.left:
self.left.remove(label)
else:
if self.right:
self.right.remove(label)
return self.parent or self | data_structures |
def _remove_repair(self) -> None:
is colored in a way which matches these five properties:
(wording stolen from wikipedia article)
1. Each node is either red or black.
2. The root node is black.
3. All leaves are black.
4. If a node is red, then both its children are black.
5. Every path from any node to all of its descendent NIL nodes
has the same number of black nodes.
This function runs in O(n) time, because properties 4 and 5 take
that long to check.
Red-Black Tree. See check_color_properties for more info.
leaves of the tree, or None if there isn't one such value (the
tree is color incorrectly).
found somewhere in the tree.
Guaranteed to run in O(log(n)) time.
it's found, and None otherwise.
This method is guaranteed to run in O(log(n)) time.
This method is guaranteed to run in O(log(n)) time.
This method is guaranteed to run in O(log(n)) time.
This method is guaranteed to run in O(log(n)) time.
if self.parent is None:
return None
else:
return self.parent.parent | data_structures |
def sibling(self) -> RedBlackTree | None:
if self.parent is None:
return False
return self.parent.left is self.parent.left is self | data_structures |
def is_right(self) -> bool:
Return the number of nodes in this tree.
if not isinstance(other, RedBlackTree):
return NotImplemented
if self.label == other.label:
return self.left == other.left and self.right == other.right
else:
return False | data_structures |