function
stringlengths 18
3.86k
| intent_category
stringlengths 5
24
|
---|---|
def color(node: RedBlackTree | None) -> int: | data_structures |
def test_insertion_speed() -> bool:
tree = RedBlackTree(-1)
for i in range(300000):
tree = tree.insert(i)
return True | data_structures |
def test_insert() -> bool:
tree = RedBlackTree(0)
tree.insert(8)
tree.insert(-8)
tree.insert(4)
tree.insert(12)
tree.insert(10)
tree.insert(11)
ans = RedBlackTree(0, 0)
ans.left = RedBlackTree(-8, 0, ans)
ans.right = RedBlackTree(8, 1, ans)
ans.right.left = RedBlackTree(4, 0, ans.right)
ans.right.right = RedBlackTree(11, 0, ans.right)
ans.right.right.left = RedBlackTree(10, 1, ans.right.right)
ans.right.right.right = RedBlackTree(12, 1, ans.right.right)
return tree == ans | data_structures |
def test_insert_and_search() -> bool:
insertion and removal of elements, and the balancing of the tree.
tree = RedBlackTree(0)
tree.insert(-16)
tree.insert(16)
tree.insert(8)
tree.insert(24)
tree.insert(20)
tree.insert(22)
tuples = [(-20, None, -16), (-10, -16, 0), (8, 8, 8), (50, 24, None)]
for val, floor, ceil in tuples:
if tree.floor(val) != floor or tree.ceil(val) != ceil:
return False
return True | data_structures |
def test_min_max() -> bool:
tree = RedBlackTree(0)
tree = tree.insert(-16)
tree.insert(16)
tree.insert(8)
tree.insert(24)
tree.insert(20)
tree.insert(22)
if list(tree.inorder_traverse()) != [-16, 0, 8, 16, 20, 22, 24]:
return False
if list(tree.preorder_traverse()) != [0, -16, 16, 8, 22, 20, 24]:
return False
if list(tree.postorder_traverse()) != [-16, 8, 20, 24, 22, 16, 0]:
return False
return True | data_structures |
def __init__(self, value: int) -> None:
self.value = value
self.left: Node | None = None
self.right: Node | None = None | data_structures |
def __init__(self) -> None:
self.paths = 0 | data_structures |
def depth_first_search(self, node: Node | None, path_sum: int) -> None:
if node is None:
return
if path_sum == self.target:
self.paths += 1
if node.left:
self.depth_first_search(node.left, path_sum + node.left.value)
if node.right:
self.depth_first_search(node.right, path_sum + node.right.value) | data_structures |
def path_sum(self, node: Node | None, target: int | None = None) -> int:
if node is None:
return 0
if target is not None:
self.target = target
self.depth_first_search(node, node.value)
self.path_sum(node.left)
self.path_sum(node.right)
return self.paths | data_structures |
def make_tree() -> TreeNode:
return TreeNode(3, TreeNode(9), TreeNode(20, TreeNode(15), TreeNode(7))) | data_structures |
def depth_first_search(
root: TreeNode | None, depth: int, right_view: list[int] | data_structures |
def depth_first_search(
root: TreeNode | None, depth: int, left_view: list[int] | data_structures |
def breadth_first_search(root: TreeNode, top_view: list[int]) -> None:
queue = [(root, 0)]
lookup = defaultdict(list)
while queue:
first = queue.pop(0)
node, hd = first
lookup[hd].append(node.val)
if node.left:
queue.append((node.left, hd - 1))
if node.right:
queue.append((node.right, hd + 1))
for pair in sorted(lookup.items(), key=lambda each: each[0]):
top_view.append(pair[1][0]) | data_structures |
def breadth_first_search(root: TreeNode, bottom_view: list[int]) -> None:
queue = [(root, 0)]
lookup = defaultdict(list)
while queue:
first = queue.pop(0)
node, hd = first
lookup[hd].append(node.val)
if node.left:
queue.append((node.left, hd - 1))
if node.right:
queue.append((node.right, hd + 1))
for pair in sorted(lookup.items(), key=lambda each: each[0]):
bottom_view.append(pair[1][-1]) | data_structures |
def count_nodes(node: TreeNode | None) -> int:
if node is None:
return 0
return count_nodes(node.left) + count_nodes(node.right) + 1 | data_structures |
def count_coins(node: TreeNode | None) -> int:
if node is None:
return 0
return count_coins(node.left) + count_coins(node.right) + node.data | data_structures |
def get_distrib(node: TreeNode | None) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0, 1)
left_distrib_moves, left_distrib_excess = get_distrib(node.left)
right_distrib_moves, right_distrib_excess = get_distrib(node.right)
coins_to_left = 1 - left_distrib_excess
coins_to_right = 1 - right_distrib_excess
result_moves = (
left_distrib_moves
+ right_distrib_moves
+ abs(coins_to_left)
+ abs(coins_to_right)
)
result_excess = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(result_moves, result_excess) | data_structures |
def __init__(self, data: int) -> None:
self.data = data
self.left: Node | None = None
self.right: Node | None = None | data_structures |
def display(tree: Node | None) -> None: # In Order traversal of the tree
if tree:
display(tree.left)
print(tree.data)
display(tree.right) | data_structures |
def depth_of_tree(tree: Node | None) -> int:
return 1 + max(depth_of_tree(tree.left), depth_of_tree(tree.right)) if tree else 0 | data_structures |
def is_full_binary_tree(tree: Node) -> bool:
if not tree:
return True
if tree.left and tree.right:
return is_full_binary_tree(tree.left) and is_full_binary_tree(tree.right)
else:
return not tree.left and not tree.right | data_structures |
def main() -> None: # Main function for testing.
tree = Node(1)
tree.left = Node(2)
tree.right = Node(3)
tree.left.left = Node(4)
tree.left.right = Node(5)
tree.left.right.left = Node(6)
tree.right.left = Node(7)
tree.right.left.left = Node(8)
tree.right.left.left.right = Node(9)
print(is_full_binary_tree(tree))
print(depth_of_tree(tree))
print("Tree is: ")
display(tree) | data_structures |
def __init__(self, a):
self.N = len(a)
self.st = [0] * (
4 * self.N
) # approximate the overall size of segment tree with array N
self.build(1, 0, self.N - 1) | data_structures |
def left(self, idx):
return idx * 2 | data_structures |
def right(self, idx):
return idx * 2 + 1 | data_structures |
def build(self, idx, l, r): # noqa: E741
if l == r:
self.st[idx] = A[l]
else:
mid = (l + r) // 2
self.build(self.left(idx), l, mid)
self.build(self.right(idx), mid + 1, r)
self.st[idx] = max(self.st[self.left(idx)], self.st[self.right(idx)]) | data_structures |
def update(self, a, b, val):
return self.update_recursive(1, 0, self.N - 1, a - 1, b - 1, val) | data_structures |
def update_recursive(self, idx, l, r, a, b, val): # noqa: E741
if r < a or l > b:
return True
if l == r:
self.st[idx] = val
return True
mid = (l + r) // 2
self.update_recursive(self.left(idx), l, mid, a, b, val)
self.update_recursive(self.right(idx), mid + 1, r, a, b, val)
self.st[idx] = max(self.st[self.left(idx)], self.st[self.right(idx)])
return True | data_structures |
def query(self, a, b):
return self.query_recursive(1, 0, self.N - 1, a - 1, b - 1) | data_structures |
def query_recursive(self, idx, l, r, a, b): # noqa: E741
if r < a or l > b:
return -math.inf
if l >= a and r <= b:
return self.st[idx]
mid = (l + r) // 2
q1 = self.query_recursive(self.left(idx), l, mid, a, b)
q2 = self.query_recursive(self.right(idx), mid + 1, r, a, b)
return max(q1, q2) | data_structures |
def show_data(self):
show_list = []
for i in range(1, N + 1):
show_list += [self.query(i, i)]
print(show_list) | data_structures |
def swap(a: int, b: int) -> tuple[int, int]:
a ^= b
b ^= a
a ^= b
return a, b | data_structures |
def create_sparse(max_node: int, parent: list[list[int]]) -> list[list[int]]:
j = 1
while (1 << j) < max_node:
for i in range(1, max_node + 1):
parent[j][i] = parent[j - 1][parent[j - 1][i]]
j += 1
return parent | data_structures |
def lowest_common_ancestor(
u: int, v: int, level: list[int], parent: list[list[int]]
) -> int:
# u must be deeper in the tree than v
if level[u] < level[v]:
u, v = swap(u, v)
# making depth of u same as depth of v
for i in range(18, -1, -1):
if level[u] - (1 << i) >= level[v]:
u = parent[i][u]
# at the same depth if u==v that mean lca is found
if u == v:
return u
# moving both nodes upwards till lca in found
for i in range(18, -1, -1):
if parent[i][u] not in [0, parent[i][v]]:
u, v = parent[i][u], parent[i][v]
# returning longest common ancestor of u,v
return parent[0][u] | data_structures |
def breadth_first_search(
level: list[int],
parent: list[list[int]],
max_node: int,
graph: dict[int, list[int]],
root: int = 1,
) -> tuple[list[int], list[list[int]]]:
level[root] = 0
q: Queue[int] = Queue(maxsize=max_node)
q.put(root)
while q.qsize() != 0:
u = q.get()
for v in graph[u]:
if level[v] == -1:
level[v] = level[u] + 1
q.put(v)
parent[0][v] = u
return level, parent | data_structures |
def main() -> None:
max_node = 13
# initializing with 0
parent = [[0 for _ in range(max_node + 10)] for _ in range(20)]
# initializing with -1 which means every node is unvisited
level = [-1 for _ in range(max_node + 10)]
graph: dict[int, list[int]] = {
1: [2, 3, 4],
2: [5],
3: [6, 7],
4: [8],
5: [9, 10],
6: [11],
7: [],
8: [12, 13],
9: [],
10: [],
11: [],
12: [],
13: [],
}
level, parent = breadth_first_search(level, parent, max_node, graph, 1)
parent = create_sparse(max_node, parent)
print("LCA of node 1 and 3 is: ", lowest_common_ancestor(1, 3, level, parent))
print("LCA of node 5 and 6 is: ", lowest_common_ancestor(5, 6, level, parent))
print("LCA of node 7 and 11 is: ", lowest_common_ancestor(7, 11, level, parent))
print("LCA of node 6 and 7 is: ", lowest_common_ancestor(6, 7, level, parent))
print("LCA of node 4 and 12 is: ", lowest_common_ancestor(4, 12, level, parent))
print("LCA of node 8 and 8 is: ", lowest_common_ancestor(8, 8, level, parent)) | data_structures |
def __init__(self, size: int) -> None:
self.size = size
# approximate the overall size of segment tree with given value
self.segment_tree = [0 for i in range(0, 4 * size)]
# create array to store lazy update
self.lazy = [0 for i in range(0, 4 * size)]
self.flag = [0 for i in range(0, 4 * size)] # flag for lazy update | data_structures |
def left(self, idx: int) -> int:
return idx * 2 | data_structures |
def right(self, idx: int) -> int:
return idx * 2 + 1 | data_structures |
def build(
self, idx: int, left_element: int, right_element: int, a: list[int]
) -> None:
if left_element == right_element:
self.segment_tree[idx] = a[left_element - 1]
else:
mid = (left_element + right_element) // 2
self.build(self.left(idx), left_element, mid, a)
self.build(self.right(idx), mid + 1, right_element, a)
self.segment_tree[idx] = max(
self.segment_tree[self.left(idx)], self.segment_tree[self.right(idx)]
) | data_structures |
def update(
self, idx: int, left_element: int, right_element: int, a: int, b: int, val: int
) -> bool:
if self.flag[idx] is True:
self.segment_tree[idx] = self.lazy[idx]
self.flag[idx] = False
if left_element != right_element:
self.lazy[self.left(idx)] = self.lazy[idx]
self.lazy[self.right(idx)] = self.lazy[idx]
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True
if right_element < a or left_element > b:
return True
if left_element >= a and right_element <= b:
self.segment_tree[idx] = val
if left_element != right_element:
self.lazy[self.left(idx)] = val
self.lazy[self.right(idx)] = val
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True
return True
mid = (left_element + right_element) // 2
self.update(self.left(idx), left_element, mid, a, b, val)
self.update(self.right(idx), mid + 1, right_element, a, b, val)
self.segment_tree[idx] = max(
self.segment_tree[self.left(idx)], self.segment_tree[self.right(idx)]
)
return True | data_structures |
def query(
self, idx: int, left_element: int, right_element: int, a: int, b: int
) -> int | float:
if self.flag[idx] is True:
self.segment_tree[idx] = self.lazy[idx]
self.flag[idx] = False
if left_element != right_element:
self.lazy[self.left(idx)] = self.lazy[idx]
self.lazy[self.right(idx)] = self.lazy[idx]
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True
if right_element < a or left_element > b:
return -math.inf
if left_element >= a and right_element <= b:
return self.segment_tree[idx]
mid = (left_element + right_element) // 2
q1 = self.query(self.left(idx), left_element, mid, a, b)
q2 = self.query(self.right(idx), mid + 1, right_element, a, b)
return max(q1, q2) | data_structures |
def __str__(self) -> str:
return str([self.query(1, 1, self.size, i, i) for i in range(1, self.size + 1)]) | data_structures |
def __init__(self, size: int) -> None:
self.size = size
self.arr = [0] * size
self.tree = [0] * size | data_structures |
def get_next(index: int) -> int:
return index | (index + 1) | data_structures |
def get_prev(index: int) -> int:
return (index & (index + 1)) - 1 | data_structures |
def update(self, index: int, value: int) -> None:
self.arr[index] = value
while index < self.size:
current_left_border = self.get_prev(index) + 1
if current_left_border == index:
self.tree[index] = value
else:
self.tree[index] = max(value, current_left_border, index)
index = self.get_next(index) | data_structures |
def query(self, left: int, right: int) -> int:
right -= 1 # Because of right is exclusive
result = 0
while left <= right:
current_left = self.get_prev(right)
if left <= current_left:
result = max(result, self.tree[right])
right = current_left
else:
result = max(result, self.arr[right])
right -= 1
return result | data_structures |
def __init__(self, label: int, parent: Node | None) -> None:
self.label = label
self.parent = parent
self.left: Node | None = None
self.right: Node | None = None | data_structures |
def __init__(self) -> None:
self.root: Node | None = None | data_structures |
def empty(self) -> None:
self.root = None | data_structures |
def is_empty(self) -> bool:
return self.root is None | data_structures |
def put(self, label: int) -> None:
self.root = self._put(self.root, label) | data_structures |
def _put(self, node: Node | None, label: int, parent: Node | None = None) -> Node:
if node is None:
node = Node(label, parent)
else:
if label < node.label:
node.left = self._put(node.left, label, node)
elif label > node.label:
node.right = self._put(node.right, label, node)
else:
raise Exception(f"Node with label {label} already exists")
return node | data_structures |
def search(self, label: int) -> Node:
return self._search(self.root, label) | data_structures |
def _search(self, node: Node | None, label: int) -> Node:
if node is None:
raise Exception(f"Node with label {label} does not exist")
else:
if label < node.label:
node = self._search(node.left, label)
elif label > node.label:
node = self._search(node.right, label)
return node | data_structures |
def remove(self, label: int) -> None:
node = self.search(label)
if node.right and node.left:
lowest_node = self._get_lowest_node(node.right)
lowest_node.left = node.left
lowest_node.right = node.right
node.left.parent = lowest_node
if node.right:
node.right.parent = lowest_node
self._reassign_nodes(node, lowest_node)
elif not node.right and node.left:
self._reassign_nodes(node, node.left)
elif node.right and not node.left:
self._reassign_nodes(node, node.right)
else:
self._reassign_nodes(node, None) | data_structures |
def _reassign_nodes(self, node: Node, new_children: Node | None) -> None:
if new_children:
new_children.parent = node.parent
if node.parent:
if node.parent.right == node:
node.parent.right = new_children
else:
node.parent.left = new_children
else:
self.root = new_children | data_structures |
def _get_lowest_node(self, node: Node) -> Node:
if node.left:
lowest_node = self._get_lowest_node(node.left)
else:
lowest_node = node
self._reassign_nodes(node, node.right)
return lowest_node | data_structures |
def exists(self, label: int) -> bool:
try:
self.search(label)
return True
except Exception:
return False | data_structures |
def get_max_label(self) -> int:
if self.root is None:
raise Exception("Binary search tree is empty")
node = self.root
while node.right is not None:
node = node.right
return node.label | data_structures |
def get_min_label(self) -> int:
if self.root is None:
raise Exception("Binary search tree is empty")
node = self.root
while node.left is not None:
node = node.left
return node.label | data_structures |
def inorder_traversal(self) -> Iterator[Node]:
return self._inorder_traversal(self.root) | data_structures |
def _inorder_traversal(self, node: Node | None) -> Iterator[Node]:
if node is not None:
yield from self._inorder_traversal(node.left)
yield node
yield from self._inorder_traversal(node.right) | data_structures |
def preorder_traversal(self) -> Iterator[Node]:
return self._preorder_traversal(self.root) | data_structures |
def _preorder_traversal(self, node: Node | None) -> Iterator[Node]:
if node is not None:
yield node
yield from self._preorder_traversal(node.left)
yield from self._preorder_traversal(node.right) | data_structures |
def _get_binary_search_tree() -> BinarySearchTree:
t = BinarySearchTree()
t.put(8)
t.put(3)
t.put(6)
t.put(1)
t.put(10)
t.put(14)
t.put(13)
t.put(4)
t.put(7)
t.put(5)
return t | data_structures |
def test_put(self) -> None:
t = BinarySearchTree()
assert t.is_empty()
t.put(8)
assert t.root is not None
assert t.root.parent is None
assert t.root.label == 8
t.put(10)
assert t.root.right is not None
assert t.root.right.parent == t.root
assert t.root.right.label == 10
t.put(3)
assert t.root.left is not None
assert t.root.left.parent == t.root
assert t.root.left.label == 3
t.put(6)
assert t.root.left.right is not None
assert t.root.left.right.parent == t.root.left
assert t.root.left.right.label == 6
t.put(1)
assert t.root.left.left is not None
assert t.root.left.left.parent == t.root.left
assert t.root.left.left.label == 1
with self.assertRaises(Exception): # noqa: B017
t.put(1) | data_structures |
def test_search(self) -> None:
t = self._get_binary_search_tree()
node = t.search(6)
assert node.label == 6
node = t.search(13)
assert node.label == 13
with self.assertRaises(Exception): # noqa: B017
t.search(2) | data_structures |
def test_remove(self) -> None:
t = self._get_binary_search_tree()
t.remove(13)
assert t.root is not None
assert t.root.right is not None
assert t.root.right.right is not None
assert t.root.right.right.right is None
assert t.root.right.right.left is None
t.remove(7)
assert t.root.left is not None
assert t.root.left.right is not None
assert t.root.left.right.left is not None
assert t.root.left.right.right is None
assert t.root.left.right.left.label == 4
t.remove(6)
assert t.root.left.left is not None
assert t.root.left.right.right is not None
assert t.root.left.left.label == 1
assert t.root.left.right.label == 4
assert t.root.left.right.right.label == 5
assert t.root.left.right.left is None
assert t.root.left.left.parent == t.root.left
assert t.root.left.right.parent == t.root.left
t.remove(3)
assert t.root is not None
assert t.root.left.label == 4
assert t.root.left.right.label == 5
assert t.root.left.left.label == 1
assert t.root.left.parent == t.root
assert t.root.left.left.parent == t.root.left
assert t.root.left.right.parent == t.root.left
t.remove(4)
assert t.root.left is not None
assert t.root.left.left is not None
assert t.root.left.label == 5
assert t.root.left.right is None
assert t.root.left.left.label == 1
assert t.root.left.parent == t.root
assert t.root.left.left.parent == t.root.left | data_structures |
def test_remove_2(self) -> None:
t = self._get_binary_search_tree()
t.remove(3)
assert t.root is not None
assert t.root.left is not None
assert t.root.left.left is not None
assert t.root.left.right is not None
assert t.root.left.right.left is not None
assert t.root.left.right.right is not None
assert t.root.left.label == 4
assert t.root.left.right.label == 6
assert t.root.left.left.label == 1
assert t.root.left.right.right.label == 7
assert t.root.left.right.left.label == 5
assert t.root.left.parent == t.root
assert t.root.left.right.parent == t.root.left
assert t.root.left.left.parent == t.root.left
assert t.root.left.right.left.parent == t.root.left.right | data_structures |
def test_empty(self) -> None:
t = self._get_binary_search_tree()
t.empty()
assert t.root is None | data_structures |
def test_is_empty(self) -> None:
t = self._get_binary_search_tree()
assert not t.is_empty()
t.empty()
assert t.is_empty() | data_structures |
def test_exists(self) -> None:
t = self._get_binary_search_tree()
assert t.exists(6)
assert not t.exists(-1) | data_structures |
def test_get_max_label(self) -> None:
t = self._get_binary_search_tree()
assert t.get_max_label() == 14
t.empty()
with self.assertRaises(Exception): # noqa: B017
t.get_max_label() | data_structures |
def test_get_min_label(self) -> None:
t = self._get_binary_search_tree()
assert t.get_min_label() == 1
t.empty()
with self.assertRaises(Exception): # noqa: B017
t.get_min_label() | data_structures |
def test_inorder_traversal(self) -> None:
t = self._get_binary_search_tree()
inorder_traversal_nodes = [i.label for i in t.inorder_traversal()]
assert inorder_traversal_nodes == [1, 3, 4, 5, 6, 7, 8, 10, 13, 14] | data_structures |
def test_preorder_traversal(self) -> None:
t = self._get_binary_search_tree()
preorder_traversal_nodes = [i.label for i in t.preorder_traversal()]
assert preorder_traversal_nodes == [8, 3, 1, 6, 4, 5, 7, 10, 14, 13] | data_structures |
def binary_search_tree_example() -> None:
t = BinarySearchTree()
t.put(8)
t.put(3)
t.put(6)
t.put(1)
t.put(10)
t.put(14)
t.put(13)
t.put(4)
t.put(7)
t.put(5)
print(
)
print("Label 6 exists:", t.exists(6))
print("Label 13 exists:", t.exists(13))
print("Label -1 exists:", t.exists(-1))
print("Label 12 exists:", t.exists(12))
# Prints all the elements of the list in inorder traversal
inorder_traversal_nodes = [i.label for i in t.inorder_traversal()]
print("Inorder traversal:", inorder_traversal_nodes)
# Prints all the elements of the list in preorder traversal
preorder_traversal_nodes = [i.label for i in t.preorder_traversal()]
print("Preorder traversal:", preorder_traversal_nodes)
print("Max. label:", t.get_max_label())
print("Min. label:", t.get_min_label())
# Delete elements
print("\nDeleting elements 13, 10, 8, 3, 6, 14")
print(
)
t.remove(13)
t.remove(10)
t.remove(8)
t.remove(3)
t.remove(6)
t.remove(14)
# Prints all the elements of the list in inorder traversal after delete
inorder_traversal_nodes = [i.label for i in t.inorder_traversal()]
print("Inorder traversal after delete:", inorder_traversal_nodes)
# Prints all the elements of the list in preorder traversal after delete
preorder_traversal_nodes = [i.label for i in t.preorder_traversal()]
print("Preorder traversal after delete:", preorder_traversal_nodes)
print("Max. label:", t.get_max_label())
print("Min. label:", t.get_min_label()) | data_structures |
def is_valid_tree(node: TreeNode | None) -> bool:
if node is None:
return True
if not isinstance(node, TreeNode):
return False
try:
float(node.data)
except (TypeError, ValueError):
return False
return is_valid_tree(node.left) and is_valid_tree(node.right) | data_structures |
def is_binary_search_tree_recursive_check(
node: TreeNode | None, left_bound: float, right_bound: float
) -> bool:
if node is None:
return True
return (
left_bound < node.data < right_bound
and is_binary_search_tree_recursive_check(node.left, left_bound, node.data)
and is_binary_search_tree_recursive_check(
node.right, node.data, right_bound
)
) | data_structures |
def __init__(self, value: int) -> None:
self.value = value
self.left: Node | None = None
self.right: Node | None = None | data_structures |
def __init__(self, tree: Node) -> None:
self.tree = tree | data_structures |
def depth_first_search(self, node: Node | None) -> int:
if node is None:
return 0
return node.value + (
self.depth_first_search(node.left) + self.depth_first_search(node.right)
) | data_structures |
def __iter__(self) -> Iterator[int]:
yield self.depth_first_search(self.tree) | data_structures |
def binomial_coefficient(n: int, k: int) -> int:
result = 1 # To kept the Calculated Value
# Since C(n, k) = C(n, n-k)
if k > (n - k):
k = n - k
# Calculate C(n,k)
for i in range(k):
result *= n - i
result //= i + 1
return result | data_structures |
def catalan_number(node_count: int) -> int:
return binomial_coefficient(2 * node_count, node_count) // (node_count + 1) | data_structures |
def factorial(n: int) -> int:
if n < 0:
raise ValueError("factorial() not defined for negative values")
result = 1
for i in range(1, n + 1):
result *= i
return result | data_structures |
def binary_tree_count(node_count: int) -> int:
return catalan_number(node_count) * factorial(node_count) | data_structures |
def __init__(self, ints: Iterable[int]) -> None:
self.head: Node | None = None
for i in sorted(ints, reverse=True):
self.head = Node(i, self.head) | data_structures |
def __iter__(self) -> Iterator[int]:
node = self.head
while node:
yield node.data
node = node.next_node | data_structures |
def __len__(self) -> int:
return len(tuple(iter(self))) | data_structures |
def __str__(self) -> str:
return " -> ".join([str(node) for node in self]) | data_structures |
def merge_lists(
sll_one: SortedLinkedList, sll_two: SortedLinkedList
) -> SortedLinkedList:
return SortedLinkedList(list(sll_one) + list(sll_two)) | data_structures |
def is_palindrome(head):
if not head:
return True
# split the list to two parts
fast, slow = head.next, head
while fast and fast.next:
fast = fast.next.next
slow = slow.next
second = slow.next
slow.next = None # Don't forget here! But forget still works!
# reverse the second part
node = None
while second:
nxt = second.next
second.next = node
node = second
second = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
node = node.next
head = head.next
return True | data_structures |
def is_palindrome_stack(head):
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
slow = fast = cur = head
while fast and fast.next:
fast, slow = fast.next.next, slow.next
# 2. Push the second half into the stack
stack = [slow.val]
while slow.next:
slow = slow.next
stack.append(slow.val)
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
cur = cur.next
return True | data_structures |
def __init__(self, item: Any, next: Any) -> None: # noqa: A002
self.item = item
self.next = next | data_structures |
def __init__(self) -> None:
self.head: Node | None = None
self.size = 0 | data_structures |
def add(self, item: Any) -> None:
self.head = Node(item, self.head)
self.size += 1 | data_structures |
def remove(self) -> Any:
# Switched 'self.is_empty()' to 'self.head is None'
# because mypy was considering the possibility that 'self.head'
# can be None in below else part and giving error
if self.head is None:
return None
else:
item = self.head.item
self.head = self.head.next
self.size -= 1
return item | data_structures |