function
stringlengths
18
3.86k
intent_category
stringlengths
5
24
def get_mid(p1: tuple[float, float], p2: tuple[float, float]) -> tuple[float, float]: return (p1[0] + p2[0]) / 2, (p1[1] + p2[1]) / 2
fractals
def triangle( vertex1: tuple[float, float], vertex2: tuple[float, float], vertex3: tuple[float, float], depth: int, ) -> None: my_pen.up() my_pen.goto(vertex1[0], vertex1[1]) my_pen.down() my_pen.goto(vertex2[0], vertex2[1]) my_pen.goto(vertex3[0], vertex3[1]) my_pen.goto(vertex1[0], vertex1[1]) if depth == 0: return triangle(vertex1, get_mid(vertex1, vertex2), get_mid(vertex1, vertex3), depth - 1) triangle(vertex2, get_mid(vertex1, vertex2), get_mid(vertex2, vertex3), depth - 1) triangle(vertex3, get_mid(vertex3, vertex2), get_mid(vertex1, vertex3), depth - 1)
fractals
def get_distance(x: float, y: float, max_step: int) -> float: a = x b = y for step in range(max_step): # noqa: B007 a_new = a * a - b * b + x b = 2 * a * b + y a = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1)
fractals
def get_black_and_white_rgb(distance: float) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255)
fractals
def get_color_coded_rgb(distance: float) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(distance, 1, 1))
fractals
def get_image( image_width: int = 800, image_height: int = 600, figure_center_x: float = -0.6, figure_center_y: float = 0, figure_width: float = 3.2, max_step: int = 50, use_distance_color_coding: bool = True, ) -> Image.Image: img = Image.new("RGB", (image_width, image_height)) pixels = img.load() # loop through the image-coordinates for image_x in range(image_width): for image_y in range(image_height): # determine the figure-coordinates based on the image-coordinates figure_height = figure_width / image_width * image_height figure_x = figure_center_x + (image_x / image_width - 0.5) * figure_width figure_y = figure_center_y + (image_y / image_height - 0.5) * figure_height distance = get_distance(figure_x, figure_y, max_step) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: pixels[image_x, image_y] = get_color_coded_rgb(distance) else: pixels[image_x, image_y] = get_black_and_white_rgb(distance) return img
fractals
def iterate(initial_vectors: list[numpy.ndarray], steps: int) -> list[numpy.ndarray]: vectors = initial_vectors for _ in range(steps): vectors = iteration_step(vectors) return vectors
fractals
def iteration_step(vectors: list[numpy.ndarray]) -> list[numpy.ndarray]: new_vectors = [] for i, start_vector in enumerate(vectors[:-1]): end_vector = vectors[i + 1] new_vectors.append(start_vector) difference_vector = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3, 60) ) new_vectors.append(start_vector + difference_vector * 2 / 3) new_vectors.append(vectors[-1]) return new_vectors
fractals
def rotate(vector: numpy.ndarray, angle_in_degrees: float) -> numpy.ndarray: theta = numpy.radians(angle_in_degrees) c, s = numpy.cos(theta), numpy.sin(theta) rotation_matrix = numpy.array(((c, -s), (s, c))) return numpy.dot(rotation_matrix, vector)
fractals
def plot(vectors: list[numpy.ndarray]) -> None: # avoid stretched display of graph axes = plt.gca() axes.set_aspect("equal") # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() x_coordinates, y_coordinates = zip(*vectors) plt.plot(x_coordinates, y_coordinates) plt.show()
fractals
def minimum_squares_to_represent_a_number(number: int) -> int: if number != int(number): raise ValueError("the value of input must be a natural number") if number < 0: raise ValueError("the value of input must not be a negative number") if number == 0: return 1 answers = [-1] * (number + 1) answers[0] = 0 for i in range(1, number + 1): answer = sys.maxsize root = int(math.sqrt(i)) for j in range(1, root + 1): current_answer = 1 + answers[i - (j**2)] answer = min(answer, current_answer) answers[i] = answer return answers[number]
dynamic_programming
def fizz_buzz(number: int, iterations: int) -> str: if not isinstance(iterations, int): raise ValueError("iterations must be defined as integers") if not isinstance(number, int) or not number >= 1: raise ValueError( ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz") out = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(number) # print(out) number += 1 out += " " return out
dynamic_programming
def combination_util(arr, n, r, index, data, i): if index == r: for j in range(r): print(data[j], end=" ") print(" ") return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location data[index] = arr[i] combination_util(arr, n, r, index + 1, data, i + 1) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(arr, n, r, index, data, i + 1) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil()
dynamic_programming
def print_combination(arr, n, r): # A temporary array to store all combination one by one data = [0] * r # Print all combination using temporary array 'data[]' combination_util(arr, n, r, 0, data, 0)
dynamic_programming
def dynamic_programming(index: int) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1) return min( costs[0] + dynamic_programming(index + 1), costs[1] + dynamic_programming(index + 7), costs[2] + dynamic_programming(index + 30), )
dynamic_programming
def naive_cut_rod_recursive(n: int, prices: list): _enforce_args(n, prices) if n == 0: return 0 max_revue = float("-inf") for i in range(1, n + 1): max_revue = max( max_revue, prices[i - 1] + naive_cut_rod_recursive(n - i, prices) ) return max_revue
dynamic_programming
def top_down_cut_rod(n: int, prices: list): _enforce_args(n, prices) max_rev = [float("-inf") for _ in range(n + 1)] return _top_down_cut_rod_recursive(n, prices, max_rev)
dynamic_programming
def _top_down_cut_rod_recursive(n: int, prices: list, max_rev: list): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: max_revenue = float("-inf") for i in range(1, n + 1): max_revenue = max( max_revenue, prices[i - 1] + _top_down_cut_rod_recursive(n - i, prices, max_rev), ) max_rev[n] = max_revenue return max_rev[n]
dynamic_programming
def bottom_up_cut_rod(n: int, prices: list): _enforce_args(n, prices) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. max_rev = [float("-inf") for _ in range(n + 1)] max_rev[0] = 0 for i in range(1, n + 1): max_revenue_i = max_rev[i] for j in range(1, i + 1): max_revenue_i = max(max_revenue_i, prices[j - 1] + max_rev[i - j]) max_rev[i] = max_revenue_i return max_rev[n]
dynamic_programming
def _enforce_args(n: int, prices: list): if n < 0: raise ValueError(f"n must be greater than or equal to 0. Got n = {n}") if n > len(prices): raise ValueError( "Each integral piece of rod must have a corresponding " f"price. Got n = {n} but length of prices = {len(prices)}" )
dynamic_programming
def main(): prices = [6, 10, 12, 15, 20, 23] n = len(prices) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. expected_max_revenue = 36 max_rev_top_down = top_down_cut_rod(n, prices) max_rev_bottom_up = bottom_up_cut_rod(n, prices) max_rev_naive = naive_cut_rod_recursive(n, prices) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive
dynamic_programming
def find_max_sub_array(a, low, high): if low == high: return low, high, a[low] else: mid = (low + high) // 2 left_low, left_high, left_sum = find_max_sub_array(a, low, mid) right_low, right_high, right_sum = find_max_sub_array(a, mid + 1, high) cross_left, cross_right, cross_sum = find_max_cross_sum(a, low, mid, high) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum else: return cross_left, cross_right, cross_sum
dynamic_programming
def find_max_cross_sum(a, low, mid, high): left_sum, max_left = -999999999, -1 right_sum, max_right = -999999999, -1 summ = 0 for i in range(mid, low - 1, -1): summ += a[i] if summ > left_sum: left_sum = summ max_left = i summ = 0 for i in range(mid + 1, high + 1): summ += a[i] if summ > right_sum: right_sum = summ max_right = i return max_left, max_right, (left_sum + right_sum)
dynamic_programming
def max_sub_array(nums: list[int]) -> int: best = 0 current = 0 for i in nums: current += i current = max(current, 0) best = max(best, current) return best
dynamic_programming
def all_construct(target: str, word_bank: list[str] | None = None) -> list[list[str]]: word_bank = word_bank or [] # create a table table_size: int = len(target) + 1 table: list[list[list[str]]] = [] for _ in range(table_size): table.append([]) # seed value table[0] = [[]] # because empty string has empty combination # iterate through the indices for i in range(table_size): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(word)] == word: new_combinations: list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(word)] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(target)]: combination.reverse() return table[len(target)]
dynamic_programming
def fibonacci(n: int) -> int: if n < 0: raise ValueError("Negative arguments are not supported") return _fib(n)[0]
dynamic_programming
def _fib(n: int) -> tuple[int, int]: if n == 0: # (F(0), F(1)) return (0, 1) # F(2n) = F(n)[2F(n+1) − F(n)] # F(2n+1) = F(n+1)^2+F(n)^2 a, b = _fib(n // 2) c = a * (b * 2 - a) d = a * a + b * b return (d, c + d) if n % 2 else (c, d)
dynamic_programming
def min_distance(index1: int, index2: int) -> int: # if first word index is overflow - delete all from the second word if index1 >= len_word1: return len_word2 - index2 # if second word index is overflow - delete all from the first word if index2 >= len_word2: return len_word1 - index1 diff = int(word1[index1] != word2[index2]) # current letters not identical return min( 1 + min_distance(index1 + 1, index2), 1 + min_distance(index1, index2 + 1), diff + min_distance(index1 + 1, index2 + 1), )
dynamic_programming
def abbr(a: str, b: str) -> bool: n = len(a) m = len(b) dp = [[False for _ in range(m + 1)] for _ in range(n + 1)] dp[0][0] = True for i in range(n): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: dp[i + 1][j + 1] = True if a[i].islower(): dp[i + 1][j] = True return dp[n][m]
dynamic_programming
def max_subarray_sum(nums: list) -> int: if not nums: return 0 n = len(nums) res, s, s_pre = nums[0], nums[0], nums[0] for i in range(1, n): s = max(nums[i], s_pre + nums[i]) s_pre = s res = max(res, s) return res
dynamic_programming
def longest_common_subsequence(x: str, y: str): # find the length of strings assert x is not None assert y is not None m = len(x) n = len(y) # declaring the array for storing the dp values l = [[0] * (n + 1) for _ in range(m + 1)] # noqa: E741 for i in range(1, m + 1): for j in range(1, n + 1): match = 1 if x[i - 1] == y[j - 1] else 0 l[i][j] = max(l[i - 1][j], l[i][j - 1], l[i - 1][j - 1] + match) seq = "" i, j = m, n while i > 0 and j > 0: match = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: seq = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq
dynamic_programming
def longest_common_substring(text1: str, text2: str) -> str: if not (isinstance(text1, str) and isinstance(text2, str)): raise ValueError("longest_common_substring() takes two strings for inputs") text1_length = len(text1) text2_length = len(text2) dp = [[0] * (text2_length + 1) for _ in range(text1_length + 1)] ans_index = 0 ans_length = 0 for i in range(1, text1_length + 1): for j in range(1, text2_length + 1): if text1[i - 1] == text2[j - 1]: dp[i][j] = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: ans_index = i ans_length = dp[i][j] return text1[ans_index - ans_length : ans_index]
dynamic_programming
def mf_knapsack(i, wt, val, j): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: val = mf_knapsack(i - 1, wt, val, j) else: val = max( mf_knapsack(i - 1, wt, val, j), mf_knapsack(i - 1, wt, val, j - wt[i - 1]) + val[i - 1], ) f[i][j] = val return f[i][j]
dynamic_programming
def knapsack(w, wt, val, n): dp = [[0] * (w + 1) for _ in range(n + 1)] for i in range(1, n + 1): for w_ in range(1, w + 1): if wt[i - 1] <= w_: dp[i][w_] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]], dp[i - 1][w_]) else: dp[i][w_] = dp[i - 1][w_] return dp[n][w_], dp
dynamic_programming
def knapsack_with_example_solution(w: int, wt: list, val: list): if not (isinstance(wt, (list, tuple)) and isinstance(val, (list, tuple))): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) num_items = len(wt) if num_items != len(val): raise ValueError( "The number of weights must be the " "same as the number of values.\nBut " f"got {num_items} weights and {len(val)} values" ) for i in range(num_items): if not isinstance(wt[i], int): raise TypeError( "All weights must be integers but " f"got weight of type {type(wt[i])} at index {i}" ) optimal_val, dp_table = knapsack(w, wt, val, num_items) example_optional_set: set = set() _construct_solution(dp_table, wt, num_items, w, example_optional_set) return optimal_val, example_optional_set
dynamic_programming
def _construct_solution(dp: list, wt: list, i: int, j: int, optimal_set: set): # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(dp, wt, i - 1, j, optimal_set) else: optimal_set.add(i) _construct_solution(dp, wt, i - 1, j - wt[i - 1], optimal_set)
dynamic_programming
def catalan_numbers(upper_limit: int) -> "list[int]": if upper_limit < 0: raise ValueError("Limit for the Catalan sequence must be ≥ 0") catalan_list = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 catalan_list[0] = 1 if upper_limit > 0: catalan_list[1] = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2, upper_limit + 1): for j in range(i): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list
dynamic_programming
def minimum_cost_path(matrix: list[list[int]]) -> int: # preprocessing the first row for i in range(1, len(matrix[0])): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1, len(matrix)): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1, len(matrix)): for j in range(1, len(matrix[0])): matrix[i][j] += min(matrix[i - 1][j], matrix[i][j - 1]) return matrix[-1][-1]
dynamic_programming
def dp_count(s, n): if n < 0: return 0 # table[i] represents the number of ways to get to amount i table = [0] * (n + 1) # There is exactly 1 way to get to zero(You pick no coins). table[0] = 1 # Pick all coins one by one and update table[] values # after the index greater than or equal to the value of the # picked coin for coin_val in s: for j in range(coin_val, n + 1): table[j] += table[j - coin_val] return table[n]
dynamic_programming
def matrix_chain_order(array): n = len(array) matrix = [[0 for x in range(n)] for x in range(n)] sol = [[0 for x in range(n)] for x in range(n)] for chain_length in range(2, n): for a in range(1, n - chain_length + 1): b = a + chain_length - 1 matrix[a][b] = sys.maxsize for c in range(a, b): cost = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: matrix[a][b] = cost sol[a][b] = c return matrix, sol
dynamic_programming
def print_optiomal_solution(optimal_solution, i, j): if i == j: print("A" + str(i), end=" ") else: print("(", end=" ") print_optiomal_solution(optimal_solution, i, optimal_solution[i][j]) print_optiomal_solution(optimal_solution, optimal_solution[i][j] + 1, j) print(")", end=" ")
dynamic_programming
def main(): array = [30, 35, 15, 5, 10, 20, 25] n = len(array) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 matrix, optimal_solution = matrix_chain_order(array) print("No. of Operation required: " + str(matrix[1][n - 1])) print_optiomal_solution(optimal_solution, 1, n - 1)
dynamic_programming
def count_of_possible_combinations(target: int) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item) for item in array)
dynamic_programming
def count_of_possible_combinations_with_dp_array( target: int, dp_array: list[int]
dynamic_programming
def combination_sum_iv_bottom_up(n: int, array: list[int], target: int) -> int: dp_array = [0] * (target + 1) dp_array[0] = 1 for i in range(1, target + 1): for j in range(n): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target]
dynamic_programming
def min_steps_to_one(number: int) -> int: if number <= 0: raise ValueError(f"n must be greater than 0. Got n = {number}") table = [number + 1] * (number + 1) # starting position table[1] = 0 for i in range(1, number): table[i + 1] = min(table[i + 1], table[i] + 1) # check if out of bounds if i * 2 <= number: table[i * 2] = min(table[i * 2], table[i] + 1) # check if out of bounds if i * 3 <= number: table[i * 3] = min(table[i * 3], table[i] + 1) return table[number]
dynamic_programming
def __init__(self, arr): # we need a list not a string, so do something to change the type self.array = arr.split(",")
dynamic_programming
def solve_sub_array(self): rear = [int(self.array[0])] * len(self.array) sum_value = [int(self.array[0])] * len(self.array) for i in range(1, len(self.array)): sum_value[i] = max( int(self.array[i]) + sum_value[i - 1], int(self.array[i]) ) rear[i] = max(sum_value[i], rear[i - 1]) return rear[len(self.array) - 1]
dynamic_programming
def longest_subsequence(array: list[int]) -> list[int]: # This function is recursive array_length = len(array) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else pivot = array[0] is_found = False i = 1 longest_subseq: list[int] = [] while not is_found and i < array_length: if array[i] < pivot: is_found = True temp_array = [element for element in array[i:] if element >= array[i]] temp_array = longest_subsequence(temp_array) if len(temp_array) > len(longest_subseq): longest_subseq = temp_array else: i += 1 temp_array = [element for element in array[1:] if element >= pivot] temp_array = [pivot, *longest_subsequence(temp_array)] if len(temp_array) > len(longest_subseq): return temp_array else: return longest_subseq
dynamic_programming
def __init__(self, task_performed, total): self.total_tasks = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 self.dp = [ [-1 for i in range(total + 1)] for j in range(2 ** len(task_performed)) ] self.task = defaultdict(list) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 self.final_mask = (1 << len(task_performed)) - 1
dynamic_programming
def count_ways_until(self, mask, task_no): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement total_ways_util = self.count_ways_until(mask, task_no + 1) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p), task_no + 1) # save the value. self.dp[mask][task_no] = total_ways_util return self.dp[mask][task_no]
dynamic_programming
def count_no_of_ways(self, task_performed): # Store the list of persons for each task for i in range(len(task_performed)): for j in task_performed[i]: self.task[j].append(i) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0, 1)
dynamic_programming
def factorial(num: int) -> int: if num < 0: raise ValueError("Number should not be negative.") return 1 if num in (0, 1) else num * factorial(num - 1)
dynamic_programming
def is_sum_subset(arr: list[int], required_sum: int) -> bool: # a subset value says 1 if that subset sum can be formed else 0 # initially no subsets can be formed hence False/0 arr_len = len(arr) subset = [[False] * (required_sum + 1) for _ in range(arr_len + 1)] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1): subset[i][0] = True # sum is not zero and set is empty then false for i in range(1, required_sum + 1): subset[0][i] = False for i in range(1, arr_len + 1): for j in range(1, required_sum + 1): if arr[i - 1] > j: subset[i][j] = subset[i - 1][j] if arr[i - 1] <= j: subset[i][j] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum]
dynamic_programming
def __init__(self): self.word1 = "" self.word2 = "" self.dp = []
dynamic_programming
def __min_dist_top_down_dp(self, m: int, n: int) -> int: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.word1[m] == self.word2[n]: self.dp[m][n] = self.__min_dist_top_down_dp(m - 1, n - 1) else: insert = self.__min_dist_top_down_dp(m, n - 1) delete = self.__min_dist_top_down_dp(m - 1, n) replace = self.__min_dist_top_down_dp(m - 1, n - 1) self.dp[m][n] = 1 + min(insert, delete, replace) return self.dp[m][n]
dynamic_programming
def min_dist_top_down(self, word1: str, word2: str) -> int: self.word1 = word1 self.word2 = word2 self.dp = [[-1 for _ in range(len(word2))] for _ in range(len(word1))] return self.__min_dist_top_down_dp(len(word1) - 1, len(word2) - 1)
dynamic_programming
def min_dist_bottom_up(self, word1: str, word2: str) -> int: self.word1 = word1 self.word2 = word2 m = len(word1) n = len(word2) self.dp = [[0 for _ in range(n + 1)] for _ in range(m + 1)] for i in range(m + 1): for j in range(n + 1): if i == 0: # first string is empty self.dp[i][j] = j elif j == 0: # second string is empty self.dp[i][j] = i elif word1[i - 1] == word2[j - 1]: # last characters are equal self.dp[i][j] = self.dp[i - 1][j - 1] else: insert = self.dp[i][j - 1] delete = self.dp[i - 1][j] replace = self.dp[i - 1][j - 1] self.dp[i][j] = 1 + min(insert, delete, replace) return self.dp[m][n]
dynamic_programming
def __init__(self, n=0): # a graph with Node 0,1,...,N-1 self.n = n self.w = [ [math.inf for j in range(0, n)] for i in range(0, n) ] # adjacency matrix for weight self.dp = [ [math.inf for j in range(0, n)] for i in range(0, n) ] # dp[i][j] stores minimum distance from i to j
dynamic_programming
def add_edge(self, u, v, w): self.dp[u][v] = w
dynamic_programming
def floyd_warshall(self): for k in range(0, self.n): for i in range(0, self.n): for j in range(0, self.n): self.dp[i][j] = min(self.dp[i][j], self.dp[i][k] + self.dp[k][j])
dynamic_programming
def show_min(self, u, v): return self.dp[u][v]
dynamic_programming
def list_of_submasks(mask: int) -> list[int]: assert ( isinstance(mask, int) and mask > 0 ), f"mask needs to be positive integer, your input {mask}" all_submasks = [] submask = mask while submask: all_submasks.append(submask) submask = (submask - 1) & mask return all_submasks
dynamic_programming
def climb_stairs(number_of_steps: int) -> int: assert ( isinstance(number_of_steps, int) and number_of_steps > 0 ), f"number_of_steps needs to be positive integer, your input {number_of_steps}" if number_of_steps == 1: return 1 previous, current = 1, 1 for _ in range(number_of_steps - 1): current, previous = current + previous, current return current
dynamic_programming
def is_breakable(index: int) -> bool: if index == len_string: return True trie_node = trie for i in range(index, len_string): trie_node = trie_node.get(string[i], None) if trie_node is None: return False if trie_node.get(word_keeper_key, False) and is_breakable(i + 1): return True return False
dynamic_programming
def partition(m: int) -> int: memo: list[list[int]] = [[0 for _ in range(m)] for _ in range(m + 1)] for i in range(m + 1): memo[i][0] = 1 for n in range(m + 1): for k in range(1, m): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1]
dynamic_programming
def find_minimum_partitions(string: str) -> int: length = len(string) cut = [0] * length is_palindromic = [[False for i in range(length)] for j in range(length)] for i, c in enumerate(string): mincut = i for j in range(i + 1): if c == string[j] and (i - j < 2 or is_palindromic[j + 1][i - 1]): is_palindromic[j][i] = True mincut = min(mincut, 0 if j == 0 else (cut[j - 1] + 1)) cut[i] = mincut return cut[length - 1]
dynamic_programming
def ceil_index(v, l, r, key): # noqa: E741 while r - l > 1: m = (l + r) // 2 if v[m] >= key: r = m else: l = m # noqa: E741 return r
dynamic_programming
def longest_increasing_subsequence_length(v: list[int]) -> int: if len(v) == 0: return 0 tail = [0] * len(v) length = 1 tail[0] = v[0] for i in range(1, len(v)): if v[i] < tail[0]: tail[0] = v[i] elif v[i] > tail[length - 1]: tail[length] = v[i] length += 1 else: tail[ceil_index(tail, -1, length - 1, v[i])] = v[i] return length
dynamic_programming
def viterbi( observations_space: list, states_space: list, initial_probabilities: dict, transition_probabilities: dict, emission_probabilities: dict, ) -> list: _validation( observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ) # Creates data structures and fill initial step probabilities: dict = {} pointers: dict = {} for state in states_space: observation = observations_space[0] probabilities[(state, observation)] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) pointers[(state, observation)] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1, len(observations_space)): observation = observations_space[o] prior_observation = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function arg_max = "" max_probability = -1 for k_state in states_space: probability = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: max_probability = probability arg_max = k_state # Update probabilities and pointers dicts probabilities[(state, observation)] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) pointers[(state, observation)] = arg_max # The final observation final_observation = observations_space[len(observations_space) - 1] # argmax for given final observation arg_max = "" max_probability = -1 for k_state in states_space: probability = probabilities[(k_state, final_observation)] if probability > max_probability: max_probability = probability arg_max = k_state last_state = arg_max # Process pointers backwards previous = last_state result = [] for o in range(len(observations_space) - 1, -1, -1): result.append(previous) previous = pointers[previous, observations_space[o]] result.reverse() return result
dynamic_programming
def _validation( observations_space: Any, states_space: Any, initial_probabilities: Any, transition_probabilities: Any, emission_probabilities: Any, ) -> None: _validate_not_empty( observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ) _validate_lists(observations_space, states_space) _validate_dicts( initial_probabilities, transition_probabilities, emission_probabilities )
dynamic_programming
def _validate_not_empty( observations_space: Any, states_space: Any, initial_probabilities: Any, transition_probabilities: Any, emission_probabilities: Any, ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter")
dynamic_programming
def _validate_lists(observations_space: Any, states_space: Any) -> None: _validate_list(observations_space, "observations_space") _validate_list(states_space, "states_space")
dynamic_programming
def _validate_list(_object: Any, var_name: str) -> None: if not isinstance(_object, list): raise ValueError(f"{var_name} must be a list") else: for x in _object: if not isinstance(x, str): raise ValueError(f"{var_name} must be a list of strings")
dynamic_programming
def _validate_dicts( initial_probabilities: Any, transition_probabilities: Any, emission_probabilities: Any, ) -> None: _validate_dict(initial_probabilities, "initial_probabilities", float) _validate_nested_dict(transition_probabilities, "transition_probabilities") _validate_nested_dict(emission_probabilities, "emission_probabilities")
dynamic_programming
def _validate_nested_dict(_object: Any, var_name: str) -> None: _validate_dict(_object, var_name, dict) for x in _object.values(): _validate_dict(x, var_name, float, True)
dynamic_programming
def _validate_dict( _object: Any, var_name: str, value_type: type, nested: bool = False ) -> None: if not isinstance(_object, dict): raise ValueError(f"{var_name} must be a dict") if not all(isinstance(x, str) for x in _object): raise ValueError(f"{var_name} all keys must be strings") if not all(isinstance(x, value_type) for x in _object.values()): nested_text = "nested dictionary " if nested else "" raise ValueError( f"{var_name} {nested_text}all values must be {value_type.__name__}" )
dynamic_programming
def __init__(self) -> None: self.sequence = [0, 1]
dynamic_programming
def get(self, index: int) -> list: if (difference := index - (len(self.sequence) - 2)) >= 1: for _ in range(difference): self.sequence.append(self.sequence[-1] + self.sequence[-2]) return self.sequence[:index]
dynamic_programming
def main(): print( "Fibonacci Series Using Dynamic Programming\n", "Enter the index of the Fibonacci number you want to calculate ", "in the prompt below. (To exit enter exit or Ctrl-C)\n", sep="", ) fibonacci = Fibonacci() while True: prompt: str = input(">> ") if prompt in {"exit", "quit"}: break try: index: int = int(prompt) except ValueError: print("Enter a number or 'exit'") continue print(fibonacci.get(index))
dynamic_programming
def maximum_non_adjacent_sum(nums: list[int]) -> int: if not nums: return 0 max_including = nums[0] max_excluding = 0 for num in nums[1:]: max_including, max_excluding = ( max_excluding + num, max(max_including, max_excluding), ) return max(max_excluding, max_including)
dynamic_programming
def __init__( self, sample: list[list[float]], target: list[int], learning_rate: float = 0.01, epoch_number: int = 1000, bias: float = -1, ) -> None: self.sample = sample if len(self.sample) == 0: raise ValueError("Sample data can not be empty") self.target = target if len(self.target) == 0: raise ValueError("Target data can not be empty") if len(self.sample) != len(self.target): raise ValueError("Sample data and Target data do not have matching lengths") self.learning_rate = learning_rate self.epoch_number = epoch_number self.bias = bias self.number_sample = len(sample) self.col_sample = len(sample[0]) # number of columns in dataset self.weight: list = []
neural_network
def training(self) -> None: for sample in self.sample: sample.insert(0, self.bias) for _ in range(self.col_sample): self.weight.append(random.random()) self.weight.insert(0, self.bias) epoch_count = 0 while True: has_misclassified = False for i in range(self.number_sample): u = 0 for j in range(self.col_sample + 1): u = u + self.weight[j] * self.sample[i][j] y = self.sign(u) if y != self.target[i]: for j in range(self.col_sample + 1): self.weight[j] = ( self.weight[j] + self.learning_rate * (self.target[i] - y) * self.sample[i][j] ) has_misclassified = True # print('Epoch: \n',epoch_count) epoch_count = epoch_count + 1 # if you want control the epoch or just by error if not has_misclassified: print(("\nEpoch:\n", epoch_count)) print("------------------------\n") # if epoch_count > self.epoch_number or not error: break
neural_network
def sort(self, sample: list[float]) -> None: if len(self.sample) == 0: raise ValueError("Sample data can not be empty") sample.insert(0, self.bias) u = 0 for i in range(self.col_sample + 1): u = u + self.weight[i] * sample[i] y = self.sign(u) if y == -1: print(("Sample: ", sample)) print("classification: P1") else: print(("Sample: ", sample)) print("classification: P2")
neural_network
def sign(self, u: float) -> int: return 1 if u >= 0 else -1
neural_network
def sigmoid(x): return 1 / (1 + np.exp(-1 * x))
neural_network
def __init__( self, units, activation=None, learning_rate=None, is_input_layer=False ): self.units = units self.weight = None self.bias = None self.activation = activation if learning_rate is None: learning_rate = 0.3 self.learn_rate = learning_rate self.is_input_layer = is_input_layer
neural_network
def initializer(self, back_units): self.weight = np.asmatrix(np.random.normal(0, 0.5, (self.units, back_units))) self.bias = np.asmatrix(np.random.normal(0, 0.5, self.units)).T if self.activation is None: self.activation = sigmoid
neural_network
def cal_gradient(self): # activation function may be sigmoid or linear if self.activation == sigmoid: gradient_mat = np.dot(self.output, (1 - self.output).T) gradient_activation = np.diag(np.diag(gradient_mat)) else: gradient_activation = 1 return gradient_activation
neural_network
def forward_propagation(self, xdata): self.xdata = xdata if self.is_input_layer: # input layer self.wx_plus_b = xdata self.output = xdata return xdata else: self.wx_plus_b = np.dot(self.weight, self.xdata) - self.bias self.output = self.activation(self.wx_plus_b) return self.output
neural_network
def back_propagation(self, gradient): gradient_activation = self.cal_gradient() # i * i 维 gradient = np.asmatrix(np.dot(gradient.T, gradient_activation)) self._gradient_weight = np.asmatrix(self.xdata) self._gradient_bias = -1 self._gradient_x = self.weight self.gradient_weight = np.dot(gradient.T, self._gradient_weight.T) self.gradient_bias = gradient * self._gradient_bias self.gradient = np.dot(gradient, self._gradient_x).T # upgrade: the Negative gradient direction self.weight = self.weight - self.learn_rate * self.gradient_weight self.bias = self.bias - self.learn_rate * self.gradient_bias.T # updates the weights and bias according to learning rate (0.3 if undefined) return self.gradient
neural_network
def __init__(self): self.layers = [] self.train_mse = [] self.fig_loss = plt.figure() self.ax_loss = self.fig_loss.add_subplot(1, 1, 1)
neural_network
def add_layer(self, layer): self.layers.append(layer)
neural_network
def build(self): for i, layer in enumerate(self.layers[:]): if i < 1: layer.is_input_layer = True else: layer.initializer(self.layers[i - 1].units)
neural_network
def summary(self): for i, layer in enumerate(self.layers[:]): print(f"------- layer {i} -------") print("weight.shape ", np.shape(layer.weight)) print("bias.shape ", np.shape(layer.bias))
neural_network
def train(self, xdata, ydata, train_round, accuracy): self.train_round = train_round self.accuracy = accuracy self.ax_loss.hlines(self.accuracy, 0, self.train_round * 1.1) x_shape = np.shape(xdata) for _ in range(train_round): all_loss = 0 for row in range(x_shape[0]): _xdata = np.asmatrix(xdata[row, :]).T _ydata = np.asmatrix(ydata[row, :]).T # forward propagation for layer in self.layers: _xdata = layer.forward_propagation(_xdata) loss, gradient = self.cal_loss(_ydata, _xdata) all_loss = all_loss + loss # back propagation: the input_layer does not upgrade for layer in self.layers[:0:-1]: gradient = layer.back_propagation(gradient) mse = all_loss / x_shape[0] self.train_mse.append(mse) self.plot_loss() if mse < self.accuracy: print("----达到精度----") return mse return None
neural_network
def cal_loss(self, ydata, ydata_): self.loss = np.sum(np.power((ydata - ydata_), 2)) self.loss_gradient = 2 * (ydata_ - ydata) # vector (shape is the same as _ydata.shape) return self.loss, self.loss_gradient
neural_network
def plot_loss(self): if self.ax_loss.lines: self.ax_loss.lines.remove(self.ax_loss.lines[0]) self.ax_loss.plot(self.train_mse, "r-") plt.ion() plt.xlabel("step") plt.ylabel("loss") plt.show() plt.pause(0.1)
neural_network
def example(): x = np.random.randn(10, 10) y = np.asarray( [ [0.8, 0.4], [0.4, 0.3], [0.34, 0.45], [0.67, 0.32], [0.88, 0.67], [0.78, 0.77], [0.55, 0.66], [0.55, 0.43], [0.54, 0.1], [0.1, 0.5], ] ) model = BPNN() for i in (10, 20, 30, 2): model.add_layer(DenseLayer(i)) model.build() model.summary() model.train(xdata=x, ydata=y, train_round=100, accuracy=0.01)
neural_network
def __init__( self, conv1_get, size_p1, bp_num1, bp_num2, bp_num3, rate_w=0.2, rate_t=0.2 ): self.num_bp1 = bp_num1 self.num_bp2 = bp_num2 self.num_bp3 = bp_num3 self.conv1 = conv1_get[:2] self.step_conv1 = conv1_get[2] self.size_pooling1 = size_p1 self.rate_weight = rate_w self.rate_thre = rate_t self.w_conv1 = [ np.mat(-1 * np.random.rand(self.conv1[0], self.conv1[0]) + 0.5) for i in range(self.conv1[1]) ] self.wkj = np.mat(-1 * np.random.rand(self.num_bp3, self.num_bp2) + 0.5) self.vji = np.mat(-1 * np.random.rand(self.num_bp2, self.num_bp1) + 0.5) self.thre_conv1 = -2 * np.random.rand(self.conv1[1]) + 1 self.thre_bp2 = -2 * np.random.rand(self.num_bp2) + 1 self.thre_bp3 = -2 * np.random.rand(self.num_bp3) + 1
neural_network