function
stringlengths 18
3.86k
| intent_category
stringlengths 5
24
|
---|---|
def stretch(self, input_image):
self.img = cv2.imread(input_image, 0)
self.original_image = copy.deepcopy(self.img)
x, _, _ = plt.hist(self.img.ravel(), 256, [0, 256], label="x")
self.k = np.sum(x)
for i in range(len(x)):
prk = x[i] / self.k
self.sk += prk
last = (self.L - 1) * self.sk
if self.rem != 0:
self.rem = int(last % last)
last = int(last + 1 if self.rem >= 0.5 else last)
self.last_list.append(last)
self.number_of_rows = int(np.ma.count(self.img) / self.img[1].size)
self.number_of_cols = self.img[1].size
for i in range(self.number_of_cols):
for j in range(self.number_of_rows):
num = self.img[j][i]
if num != self.last_list[num]:
self.img[j][i] = self.last_list[num]
cv2.imwrite("output_data/output.jpg", self.img) | digital_image_processing |
def plot_histogram(self):
plt.hist(self.img.ravel(), 256, [0, 256]) | digital_image_processing |
def show_image(self):
cv2.imshow("Output-Image", self.img)
cv2.imshow("Input-Image", self.original_image)
cv2.waitKey(5000)
cv2.destroyAllWindows() | digital_image_processing |
def gen_gaussian_kernel(k_size, sigma):
center = k_size // 2
x, y = np.mgrid[0 - center : k_size - center, 0 - center : k_size - center]
g = (
1
/ (2 * np.pi * sigma)
* np.exp(-(np.square(x) + np.square(y)) / (2 * np.square(sigma)))
)
return g | digital_image_processing |
def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255):
image_row, image_col = image.shape[0], image.shape[1]
# gaussian_filter
gaussian_out = img_convolve(image, gen_gaussian_kernel(9, sigma=1.4))
# get the gradient and degree by sobel_filter
sobel_grad, sobel_theta = sobel_filter(gaussian_out)
gradient_direction = np.rad2deg(sobel_theta)
gradient_direction += PI
dst = np.zeros((image_row, image_col))
for row in range(1, image_row - 1):
for col in range(1, image_col - 1):
direction = gradient_direction[row, col]
if (
0 <= direction < 22.5
or 15 * PI / 8 <= direction <= 2 * PI
or 7 * PI / 8 <= direction <= 9 * PI / 8
):
w = sobel_grad[row, col - 1]
e = sobel_grad[row, col + 1]
if sobel_grad[row, col] >= w and sobel_grad[row, col] >= e:
dst[row, col] = sobel_grad[row, col]
elif (PI / 8 <= direction < 3 * PI / 8) or (
9 * PI / 8 <= direction < 11 * PI / 8
):
sw = sobel_grad[row + 1, col - 1]
ne = sobel_grad[row - 1, col + 1]
if sobel_grad[row, col] >= sw and sobel_grad[row, col] >= ne:
dst[row, col] = sobel_grad[row, col]
elif (3 * PI / 8 <= direction < 5 * PI / 8) or (
11 * PI / 8 <= direction < 13 * PI / 8
):
n = sobel_grad[row - 1, col]
s = sobel_grad[row + 1, col]
if sobel_grad[row, col] >= n and sobel_grad[row, col] >= s:
dst[row, col] = sobel_grad[row, col]
elif (5 * PI / 8 <= direction < 7 * PI / 8) or (
13 * PI / 8 <= direction < 15 * PI / 8
):
nw = sobel_grad[row - 1, col - 1]
se = sobel_grad[row + 1, col + 1]
if sobel_grad[row, col] >= nw and sobel_grad[row, col] >= se:
dst[row, col] = sobel_grad[row, col]
if dst[row, col] >= threshold_high:
dst[row, col] = strong
elif dst[row, col] <= threshold_low:
dst[row, col] = 0
else:
dst[row, col] = weak
for row in range(1, image_row):
for col in range(1, image_col):
if dst[row, col] == weak:
if 255 in (
dst[row, col + 1],
dst[row, col - 1],
dst[row - 1, col],
dst[row + 1, col],
dst[row - 1, col - 1],
dst[row + 1, col - 1],
dst[row - 1, col + 1],
dst[row + 1, col + 1],
):
dst[row, col] = strong
else:
dst[row, col] = 0
return dst | digital_image_processing |
def __init__(self, input_img, threshold: int):
self.min_threshold = 0
# max greyscale value for #FFFFFF
self.max_threshold = int(self.get_greyscale(255, 255, 255))
if not self.min_threshold < threshold < self.max_threshold:
raise ValueError(f"Factor value should be from 0 to {self.max_threshold}")
self.input_img = input_img
self.threshold = threshold
self.width, self.height = self.input_img.shape[1], self.input_img.shape[0]
# error table size (+4 columns and +1 row) greater than input image because of
# lack of if statements
self.error_table = [
[0 for _ in range(self.height + 4)] for __ in range(self.width + 1)
]
self.output_img = np.ones((self.width, self.height, 3), np.uint8) * 255 | digital_image_processing |
def get_greyscale(cls, blue: int, green: int, red: int) -> float:
return 0.114 * blue + 0.587 * green + 0.2126 * red | digital_image_processing |
def process(self) -> None:
for y in range(self.height):
for x in range(self.width):
greyscale = int(self.get_greyscale(*self.input_img[y][x]))
if self.threshold > greyscale + self.error_table[y][x]:
self.output_img[y][x] = (0, 0, 0)
current_error = greyscale + self.error_table[x][y]
else:
self.output_img[y][x] = (255, 255, 255)
current_error = greyscale + self.error_table[x][y] - 255
self.error_table[y][x + 1] += int(8 / 32 * current_error)
self.error_table[y][x + 2] += int(4 / 32 * current_error)
self.error_table[y + 1][x] += int(8 / 32 * current_error)
self.error_table[y + 1][x + 1] += int(4 / 32 * current_error)
self.error_table[y + 1][x + 2] += int(2 / 32 * current_error)
self.error_table[y + 1][x - 1] += int(4 / 32 * current_error)
self.error_table[y + 1][x - 2] += int(2 / 32 * current_error) | digital_image_processing |
def get_rotation(
img: np.ndarray, pt1: np.ndarray, pt2: np.ndarray, rows: int, cols: int
) -> np.ndarray:
matrix = cv2.getAffineTransform(pt1, pt2)
return cv2.warpAffine(img, matrix, (rows, cols)) | digital_image_processing |
def diophantine(a: int, b: int, c: int) -> tuple[float, float]:
assert (
c % greatest_common_divisor(a, b) == 0
) # greatest_common_divisor(a,b) function implemented below
(d, x, y) = extended_gcd(a, b) # extended_gcd(a,b) function implemented below
r = c / d
return (r * x, r * y) | blockchain |
def diophantine_all_soln(a: int, b: int, c: int, n: int = 2) -> None:
(x0, y0) = diophantine(a, b, c) # Initial value
d = greatest_common_divisor(a, b)
p = a // d
q = b // d
for i in range(n):
x = x0 + i * q
y = y0 - i * p
print(x, y) | blockchain |
def greatest_common_divisor(a: int, b: int) -> int:
if a < b:
a, b = b, a
while a % b != 0:
a, b = b, a % b
return b | blockchain |
def extended_gcd(a: int, b: int) -> tuple[int, int, int]:
assert a >= 0 and b >= 0
if b == 0:
d, x, y = a, 1, 0
else:
(d, p, q) = extended_gcd(b, a % b)
x = q
y = p - q * (a // b)
assert a % d == 0 and b % d == 0
assert d == a * x + b * y
return (d, x, y) | blockchain |
def modular_division(a: int, b: int, n: int) -> int:
assert n > 1 and a > 0 and greatest_common_divisor(a, n) == 1
(d, t, s) = extended_gcd(n, a) # Implemented below
x = (b * s) % n
return x | blockchain |
def invert_modulo(a: int, n: int) -> int:
(b, x) = extended_euclid(a, n) # Implemented below
if b < 0:
b = (b % n + n) % n
return b | blockchain |
def modular_division2(a: int, b: int, n: int) -> int:
s = invert_modulo(a, n)
x = (b * s) % n
return x | blockchain |
def extended_gcd(a: int, b: int) -> tuple[int, int, int]:
assert a >= 0 and b >= 0
if b == 0:
d, x, y = a, 1, 0
else:
(d, p, q) = extended_gcd(b, a % b)
x = q
y = p - q * (a // b)
assert a % d == 0 and b % d == 0
assert d == a * x + b * y
return (d, x, y) | blockchain |
def extended_euclid(a: int, b: int) -> tuple[int, int]:
if b == 0:
return (1, 0)
(x, y) = extended_euclid(b, a % b)
k = a // b
return (y, x - k * y) | blockchain |
def greatest_common_divisor(a: int, b: int) -> int:
if a < b:
a, b = b, a
while a % b != 0:
a, b = b, a % b
return b | blockchain |
def extended_euclid(a: int, b: int) -> tuple[int, int]:
if b == 0:
return (1, 0)
(x, y) = extended_euclid(b, a % b)
k = a // b
return (y, x - k * y) | blockchain |
def chinese_remainder_theorem(n1: int, r1: int, n2: int, r2: int) -> int:
(x, y) = extended_euclid(n1, n2)
m = n1 * n2
n = r2 * x * n1 + r1 * y * n2
return (n % m + m) % m | blockchain |
def invert_modulo(a: int, n: int) -> int:
(b, x) = extended_euclid(a, n)
if b < 0:
b = (b % n + n) % n
return b | blockchain |
def chinese_remainder_theorem2(n1: int, r1: int, n2: int, r2: int) -> int:
x, y = invert_modulo(n1, n2), invert_modulo(n2, n1)
m = n1 * n2
n = r2 * x * n1 + r1 * y * n2
return (n % m + m) % m | blockchain |
def chunker(seq: Iterable[str], size: int) -> Generator[tuple[str, ...], None, None]:
it = iter(seq)
while True:
chunk = tuple(itertools.islice(it, size))
if not chunk:
return
yield chunk | ciphers |
def prepare_input(dirty: str) -> str:
dirty = "".join([c.upper() for c in dirty if c in string.ascii_letters])
clean = ""
if len(dirty) < 2:
return dirty
for i in range(len(dirty) - 1):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(clean) & 1:
clean += "X"
return clean | ciphers |
def generate_table(key: str) -> list[str]:
# I and J are used interchangeably to allow
# us to use a 5x5 table (25 letters)
alphabet = "ABCDEFGHIKLMNOPQRSTUVWXYZ"
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
table = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(char)
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(char)
return table | ciphers |
def encode(plaintext: str, key: str) -> str:
table = generate_table(key)
plaintext = prepare_input(plaintext)
ciphertext = ""
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for char1, char2 in chunker(plaintext, 2):
row1, col1 = divmod(table.index(char1), 5)
row2, col2 = divmod(table.index(char2), 5)
if row1 == row2:
ciphertext += table[row1 * 5 + (col1 + 1) % 5]
ciphertext += table[row2 * 5 + (col2 + 1) % 5]
elif col1 == col2:
ciphertext += table[((row1 + 1) % 5) * 5 + col1]
ciphertext += table[((row2 + 1) % 5) * 5 + col2]
else: # rectangle
ciphertext += table[row1 * 5 + col2]
ciphertext += table[row2 * 5 + col1]
return ciphertext | ciphers |
def chi_squared_statistic_values_sorting_key(key: int) -> tuple[float, str]:
return chi_squared_statistic_values[key] | ciphers |
def primitive_root(p_val: int) -> int:
print("Generating primitive root of p")
while True:
g = random.randrange(3, p_val)
if pow(g, 2, p_val) == 1:
continue
if pow(g, p_val, p_val) == 1:
continue
return g | ciphers |
def generate_key(key_size: int) -> tuple[tuple[int, int, int, int], tuple[int, int]]:
print("Generating prime p...")
p = rabin_miller.generate_large_prime(key_size) # select large prime number.
e_1 = primitive_root(p) # one primitive root on modulo p.
d = random.randrange(3, p) # private_key -> have to be greater than 2 for safety.
e_2 = cryptomath.find_mod_inverse(pow(e_1, d, p), p)
public_key = (key_size, e_1, e_2, p)
private_key = (key_size, d)
return public_key, private_key | ciphers |
def make_key_files(name: str, key_size: int) -> None:
if os.path.exists(f"{name}_pubkey.txt") or os.path.exists(f"{name}_privkey.txt"):
print("\nWARNING:")
print(
f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'
"Use a different name or delete these files and re-run this program."
)
sys.exit()
public_key, private_key = generate_key(key_size)
print(f"\nWriting public key to file {name}_pubkey.txt...")
with open(f"{name}_pubkey.txt", "w") as fo:
fo.write(f"{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}")
print(f"Writing private key to file {name}_privkey.txt...")
with open(f"{name}_privkey.txt", "w") as fo:
fo.write(f"{private_key[0]},{private_key[1]}") | ciphers |
def main() -> None:
print("Making key files...")
make_key_files("elgamal", 2048)
print("Key files generation successful") | ciphers |
def encode(plain: str) -> list[int]:
return [ord(elem) - 96 for elem in plain] | ciphers |
def decode(encoded: list[int]) -> str:
return "".join(chr(elem + 96) for elem in encoded) | ciphers |
def main() -> None:
encoded = encode(input("-> ").strip().lower())
print("Encoded: ", encoded)
print("Decoded:", decode(encoded)) | ciphers |
def encrypt(plaintext: str, key: str) -> str:
if not isinstance(plaintext, str):
raise TypeError("plaintext must be a string")
if not isinstance(key, str):
raise TypeError("key must be a string")
if not plaintext:
raise ValueError("plaintext is empty")
if not key:
raise ValueError("key is empty")
key += plaintext
plaintext = plaintext.lower()
key = key.lower()
plaintext_iterator = 0
key_iterator = 0
ciphertext = ""
while plaintext_iterator < len(plaintext):
if (
ord(plaintext[plaintext_iterator]) < 97
or ord(plaintext[plaintext_iterator]) > 122
):
ciphertext += plaintext[plaintext_iterator]
plaintext_iterator += 1
elif ord(key[key_iterator]) < 97 or ord(key[key_iterator]) > 122:
key_iterator += 1
else:
ciphertext += chr(
(
(ord(plaintext[plaintext_iterator]) - 97 + ord(key[key_iterator]))
- 97
)
% 26
+ 97
)
key_iterator += 1
plaintext_iterator += 1
return ciphertext | ciphers |
def decrypt(ciphertext: str, key: str) -> str:
if not isinstance(ciphertext, str):
raise TypeError("ciphertext must be a string")
if not isinstance(key, str):
raise TypeError("key must be a string")
if not ciphertext:
raise ValueError("ciphertext is empty")
if not key:
raise ValueError("key is empty")
key = key.lower()
ciphertext_iterator = 0
key_iterator = 0
plaintext = ""
while ciphertext_iterator < len(ciphertext):
if (
ord(ciphertext[ciphertext_iterator]) < 97
or ord(ciphertext[ciphertext_iterator]) > 122
):
plaintext += ciphertext[ciphertext_iterator]
else:
plaintext += chr(
(ord(ciphertext[ciphertext_iterator]) - ord(key[key_iterator])) % 26
+ 97
)
key += chr(
(ord(ciphertext[ciphertext_iterator]) - ord(key[key_iterator])) % 26
+ 97
)
key_iterator += 1
ciphertext_iterator += 1
return plaintext | ciphers |
def base64_encode(data: bytes) -> bytes:
# Make sure the supplied data is a bytes-like object
if not isinstance(data, bytes):
raise TypeError(
f"a bytes-like object is required, not '{data.__class__.__name__}'"
)
binary_stream = "".join(bin(byte)[2:].zfill(8) for byte in data)
padding_needed = len(binary_stream) % 6 != 0
if padding_needed:
# The padding that will be added later
padding = b"=" * ((6 - len(binary_stream) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(binary_stream) % 6)
else:
padding = b""
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6], 2)]
for index in range(0, len(binary_stream), 6)
).encode()
+ padding
) | ciphers |
def base64_decode(encoded_data: str) -> bytes:
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(encoded_data, bytes) and not isinstance(encoded_data, str):
raise TypeError(
"argument should be a bytes-like object or ASCII string, not "
f"'{encoded_data.__class__.__name__}'"
)
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(encoded_data, bytes):
try:
encoded_data = encoded_data.decode("utf-8")
except UnicodeDecodeError:
raise ValueError("base64 encoded data should only contain ASCII characters")
padding = encoded_data.count("=")
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding]
), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data
), "Invalid base64 character(s) found."
# Check the padding
assert len(encoded_data) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
encoded_data = encoded_data[:-padding]
binary_stream = "".join(
bin(B64_CHARSET.index(char))[2:].zfill(6) for char in encoded_data
)[: -padding * 2]
else:
binary_stream = "".join(
bin(B64_CHARSET.index(char))[2:].zfill(6) for char in encoded_data
)
data = [
int(binary_stream[index : index + 8], 2)
for index in range(0, len(binary_stream), 8)
]
return bytes(data) | ciphers |
def rsafactor(d: int, e: int, n: int) -> list[int]:
k = d * e - 1
p = 0
q = 0
while p == 0:
g = random.randint(2, n - 1)
t = k
while True:
if t % 2 == 0:
t = t // 2
x = (g**t) % n
y = math.gcd(x - 1, n)
if x > 1 and y > 1:
p = y
q = n // y
break # find the correct factors
else:
break # t is not divisible by 2, break and choose another g
return sorted([p, q]) | ciphers |
def encrypt(text: str) -> tuple[list[int], list[int]]:
plain = []
for i in range(len(key)):
p = int((cipher[i] - (key[i]) ** 2) / key[i])
plain.append(chr(p))
return "".join(plain) | ciphers |
def remove_duplicates(key: str) -> str:
key_no_dups = ""
for ch in key:
if ch == " " or ch not in key_no_dups and ch.isalpha():
key_no_dups += ch
return key_no_dups | ciphers |
def create_cipher_map(key: str) -> dict[str, str]:
# Create a list of the letters in the alphabet
alphabet = [chr(i + 65) for i in range(26)]
# Remove duplicate characters from key
key = remove_duplicates(key.upper())
offset = len(key)
# First fill cipher with key characters
cipher_alphabet = {alphabet[i]: char for i, char in enumerate(key)}
# Then map remaining characters in alphabet to
# the alphabet from the beginning
for i in range(len(cipher_alphabet), 26):
char = alphabet[i - offset]
# Ensure we are not mapping letters to letters previously mapped
while char in key:
offset -= 1
char = alphabet[i - offset]
cipher_alphabet[alphabet[i]] = char
return cipher_alphabet | ciphers |
def encipher(message: str, cipher_map: dict[str, str]) -> str:
return "".join(cipher_map.get(ch, ch) for ch in message.upper()) | ciphers |
def decipher(message: str, cipher_map: dict[str, str]) -> str:
# Reverse our cipher mappings
rev_cipher_map = {v: k for k, v in cipher_map.items()}
return "".join(rev_cipher_map.get(ch, ch) for ch in message.upper()) | ciphers |
def main() -> None:
message = input("Enter message to encode or decode: ").strip()
key = input("Enter keyword: ").strip()
option = input("Encipher or decipher? E/D:").strip()[0].lower()
try:
func = {"e": encipher, "d": decipher}[option]
except KeyError:
raise KeyError("invalid input option")
cipher_map = create_cipher_map(key)
print(func(message, cipher_map)) | ciphers |
def __init__(self, group: int = 14) -> None:
if group not in primes:
raise ValueError("Unsupported Group")
self.prime = primes[group]["prime"]
self.generator = primes[group]["generator"]
self.__private_key = int(hexlify(urandom(32)), base=16) | ciphers |
def get_private_key(self) -> str:
return hex(self.__private_key)[2:] | ciphers |
def generate_public_key(self) -> str:
public_key = pow(self.generator, self.__private_key, self.prime)
return hex(public_key)[2:] | ciphers |
def is_valid_public_key(self, key: int) -> bool:
# check if the other public key is valid based on NIST SP800-56
return (
2 <= key <= self.prime - 2
and pow(key, (self.prime - 1) // 2, self.prime) == 1
) | ciphers |
def generate_shared_key(self, other_key_str: str) -> str:
other_key = int(other_key_str, base=16)
if not self.is_valid_public_key(other_key):
raise ValueError("Invalid public key")
shared_key = pow(other_key, self.__private_key, self.prime)
return sha256(str(shared_key).encode()).hexdigest() | ciphers |
def is_valid_public_key_static(remote_public_key_str: int, prime: int) -> bool:
# check if the other public key is valid based on NIST SP800-56
return (
2 <= remote_public_key_str <= prime - 2
and pow(remote_public_key_str, (prime - 1) // 2, prime) == 1
) | ciphers |
def generate_shared_key_static(
local_private_key_str: str, remote_public_key_str: str, group: int = 14
) -> str:
local_private_key = int(local_private_key_str, base=16)
remote_public_key = int(remote_public_key_str, base=16)
prime = primes[group]["prime"]
if not DiffieHellman.is_valid_public_key_static(remote_public_key, prime):
raise ValueError("Invalid public key")
shared_key = pow(remote_public_key, local_private_key, prime)
return sha256(str(shared_key).encode()).hexdigest() | ciphers |
def check_keys(key_a: int, key_b: int, mode: str) -> None:
if mode == "encrypt":
if key_a == 1:
sys.exit(
"The affine cipher becomes weak when key "
"A is set to 1. Choose different key"
)
if key_b == 0:
sys.exit(
"The affine cipher becomes weak when key "
"B is set to 0. Choose different key"
)
if key_a < 0 or key_b < 0 or key_b > len(SYMBOLS) - 1:
sys.exit(
"Key A must be greater than 0 and key B must "
f"be between 0 and {len(SYMBOLS) - 1}."
)
if cryptomath.gcd(key_a, len(SYMBOLS)) != 1:
sys.exit(
f"Key A {key_a} and the symbol set size {len(SYMBOLS)} "
"are not relatively prime. Choose a different key."
) | ciphers |
def encrypt_message(key: int, message: str) -> str:
key_a, key_b = divmod(key, len(SYMBOLS))
check_keys(key_a, key_b, "encrypt")
cipher_text = ""
for symbol in message:
if symbol in SYMBOLS:
sym_index = SYMBOLS.find(symbol)
cipher_text += SYMBOLS[(sym_index * key_a + key_b) % len(SYMBOLS)]
else:
cipher_text += symbol
return cipher_text | ciphers |
def decrypt_message(key: int, message: str) -> str:
key_a, key_b = divmod(key, len(SYMBOLS))
check_keys(key_a, key_b, "decrypt")
plain_text = ""
mod_inverse_of_key_a = cryptomath.find_mod_inverse(key_a, len(SYMBOLS))
for symbol in message:
if symbol in SYMBOLS:
sym_index = SYMBOLS.find(symbol)
plain_text += SYMBOLS[
(sym_index - key_b) * mod_inverse_of_key_a % len(SYMBOLS)
]
else:
plain_text += symbol
return plain_text | ciphers |
def get_random_key() -> int:
while True:
key_b = random.randint(2, len(SYMBOLS))
key_b = random.randint(2, len(SYMBOLS))
if cryptomath.gcd(key_b, len(SYMBOLS)) == 1 and key_b % len(SYMBOLS) != 0:
return key_b * len(SYMBOLS) + key_b | ciphers |
def main() -> None:
message = input("Enter message: ").strip()
key = int(input("Enter key [2000 - 9000]: ").strip())
mode = input("Encrypt/Decrypt [E/D]: ").strip().lower()
if mode.startswith("e"):
mode = "encrypt"
translated = encrypt_message(key, message)
elif mode.startswith("d"):
mode = "decrypt"
translated = decrypt_message(key, message)
print(f"\n{mode.title()}ed text: \n{translated}") | ciphers |
def get_blocks_from_text(
message: str, block_size: int = DEFAULT_BLOCK_SIZE
) -> list[int]:
message_bytes = message.encode("ascii")
block_ints = []
for block_start in range(0, len(message_bytes), block_size):
block_int = 0
for i in range(block_start, min(block_start + block_size, len(message_bytes))):
block_int += message_bytes[i] * (BYTE_SIZE ** (i % block_size))
block_ints.append(block_int)
return block_ints | ciphers |
def get_text_from_blocks(
block_ints: list[int], message_length: int, block_size: int = DEFAULT_BLOCK_SIZE
) -> str:
message: list[str] = []
for block_int in block_ints:
block_message: list[str] = []
for i in range(block_size - 1, -1, -1):
if len(message) + i < message_length:
ascii_number = block_int // (BYTE_SIZE**i)
block_int = block_int % (BYTE_SIZE**i)
block_message.insert(0, chr(ascii_number))
message.extend(block_message)
return "".join(message) | ciphers |
def encrypt_message(
message: str, key: tuple[int, int], block_size: int = DEFAULT_BLOCK_SIZE
) -> list[int]:
encrypted_blocks = []
n, e = key
for block in get_blocks_from_text(message, block_size):
encrypted_blocks.append(pow(block, e, n))
return encrypted_blocks | ciphers |
def decrypt_message(
encrypted_blocks: list[int],
message_length: int,
key: tuple[int, int],
block_size: int = DEFAULT_BLOCK_SIZE,
) -> str:
decrypted_blocks = []
n, d = key
for block in encrypted_blocks:
decrypted_blocks.append(pow(block, d, n))
return get_text_from_blocks(decrypted_blocks, message_length, block_size) | ciphers |
def read_key_file(key_filename: str) -> tuple[int, int, int]:
with open(key_filename) as fo:
content = fo.read()
key_size, n, eor_d = content.split(",")
return (int(key_size), int(n), int(eor_d)) | ciphers |
def encrypt_and_write_to_file(
message_filename: str,
key_filename: str,
message: str,
block_size: int = DEFAULT_BLOCK_SIZE,
) -> str:
key_size, n, e = read_key_file(key_filename)
if key_size < block_size * 8:
sys.exit(
"ERROR: Block size is %s bits and key size is %s bits. The RSA cipher "
"requires the block size to be equal to or greater than the key size. "
"Either decrease the block size or use different keys."
% (block_size * 8, key_size)
)
encrypted_blocks = [str(i) for i in encrypt_message(message, (n, e), block_size)]
encrypted_content = ",".join(encrypted_blocks)
encrypted_content = f"{len(message)}_{block_size}_{encrypted_content}"
with open(message_filename, "w") as fo:
fo.write(encrypted_content)
return encrypted_content | ciphers |
def read_from_file_and_decrypt(message_filename: str, key_filename: str) -> str:
key_size, n, d = read_key_file(key_filename)
with open(message_filename) as fo:
content = fo.read()
message_length_str, block_size_str, encrypted_message = content.split("_")
message_length = int(message_length_str)
block_size = int(block_size_str)
if key_size < block_size * 8:
sys.exit(
"ERROR: Block size is %s bits and key size is %s bits. The RSA cipher "
"requires the block size to be equal to or greater than the key size. "
"Did you specify the correct key file and encrypted file?"
% (block_size * 8, key_size)
)
encrypted_blocks = []
for block in encrypted_message.split(","):
encrypted_blocks.append(int(block))
return decrypt_message(encrypted_blocks, message_length, (n, d), block_size) | ciphers |
def main() -> None:
filename = "encrypted_file.txt"
response = input(r"Encrypt\Decrypt [e\d]: ")
if response.lower().startswith("e"):
mode = "encrypt"
elif response.lower().startswith("d"):
mode = "decrypt"
if mode == "encrypt":
if not os.path.exists("rsa_pubkey.txt"):
rkg.make_key_files("rsa", 1024)
message = input("\nEnter message: ")
pubkey_filename = "rsa_pubkey.txt"
print(f"Encrypting and writing to {filename}...")
encrypted_text = encrypt_and_write_to_file(filename, pubkey_filename, message)
print("\nEncrypted text:")
print(encrypted_text)
elif mode == "decrypt":
privkey_filename = "rsa_privkey.txt"
print(f"Reading from {filename} and decrypting...")
decrypted_text = read_from_file_and_decrypt(filename, privkey_filename)
print("writing decryption to rsa_decryption.txt...")
with open("rsa_decryption.txt", "w") as dec:
dec.write(decrypted_text)
print("\nDecryption:")
print(decrypted_text) | ciphers |
def __init__(self, key: int = 0):
# private field
self.__key = key | ciphers |
def encrypt(self, content: str, key: int) -> list[str]:
# precondition
assert isinstance(key, int) and isinstance(content, str)
key = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(ch) ^ key) for ch in content] | ciphers |
def decrypt(self, content: str, key: int) -> list[str]:
# precondition
assert isinstance(key, int) and isinstance(content, list)
key = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(ch) ^ key) for ch in content] | ciphers |
def encrypt_string(self, content: str, key: int = 0) -> str:
# precondition
assert isinstance(key, int) and isinstance(content, str)
key = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
ans = ""
for ch in content:
ans += chr(ord(ch) ^ key)
return ans | ciphers |
def decrypt_string(self, content: str, key: int = 0) -> str:
# precondition
assert isinstance(key, int) and isinstance(content, str)
key = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
ans = ""
for ch in content:
ans += chr(ord(ch) ^ key)
return ans | ciphers |
def encrypt_file(self, file: str, key: int = 0) -> bool:
# precondition
assert isinstance(file, str) and isinstance(key, int)
try:
with open(file) as fin, open("encrypt.out", "w+") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(line, key))
except OSError:
return False
return True | ciphers |
def decrypt_file(self, file: str, key: int) -> bool:
# precondition
assert isinstance(file, str) and isinstance(key, int)
try:
with open(file) as fin, open("decrypt.out", "w+") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(line, key))
except OSError:
return False
return True | ciphers |
def greatest_common_divisor(a: int, b: int) -> int:
return b if a == 0 else greatest_common_divisor(b % a, a) | ciphers |
def __init__(self, encrypt_key: numpy.ndarray) -> None:
self.encrypt_key = self.modulus(encrypt_key) # mod36 calc's on the encrypt key
self.check_determinant() # validate the determinant of the encryption key
self.break_key = encrypt_key.shape[0] | ciphers |
def replace_letters(self, letter: str) -> int:
return self.key_string.index(letter) | ciphers |
def replace_digits(self, num: int) -> str:
return self.key_string[round(num)] | ciphers |
def check_determinant(self) -> None:
det = round(numpy.linalg.det(self.encrypt_key))
if det < 0:
det = det % len(self.key_string)
req_l = len(self.key_string)
if greatest_common_divisor(det, len(self.key_string)) != 1:
raise ValueError(
f"determinant modular {req_l} of encryption key({det}) is not co prime "
f"w.r.t {req_l}.\nTry another key."
) | ciphers |
def process_text(self, text: str) -> str:
chars = [char for char in text.upper() if char in self.key_string]
last = chars[-1]
while len(chars) % self.break_key != 0:
chars.append(last)
return "".join(chars) | ciphers |
def encrypt(self, text: str) -> str:
text = self.process_text(text.upper())
encrypted = ""
for i in range(0, len(text) - self.break_key + 1, self.break_key):
batch = text[i : i + self.break_key]
vec = [self.replace_letters(char) for char in batch]
batch_vec = numpy.array([vec]).T
batch_encrypted = self.modulus(self.encrypt_key.dot(batch_vec)).T.tolist()[
0
]
encrypted_batch = "".join(
self.replace_digits(num) for num in batch_encrypted
)
encrypted += encrypted_batch
return encrypted | ciphers |
def make_decrypt_key(self) -> numpy.ndarray:
det = round(numpy.linalg.det(self.encrypt_key))
if det < 0:
det = det % len(self.key_string)
det_inv = None
for i in range(len(self.key_string)):
if (det * i) % len(self.key_string) == 1:
det_inv = i
break
inv_key = (
det_inv
* numpy.linalg.det(self.encrypt_key)
* numpy.linalg.inv(self.encrypt_key)
)
return self.to_int(self.modulus(inv_key)) | ciphers |
def decrypt(self, text: str) -> str:
decrypt_key = self.make_decrypt_key()
text = self.process_text(text.upper())
decrypted = ""
for i in range(0, len(text) - self.break_key + 1, self.break_key):
batch = text[i : i + self.break_key]
vec = [self.replace_letters(char) for char in batch]
batch_vec = numpy.array([vec]).T
batch_decrypted = self.modulus(decrypt_key.dot(batch_vec)).T.tolist()[0]
decrypted_batch = "".join(
self.replace_digits(num) for num in batch_decrypted
)
decrypted += decrypted_batch
return decrypted | ciphers |
def main() -> None:
n = int(input("Enter the order of the encryption key: "))
hill_matrix = []
print("Enter each row of the encryption key with space separated integers")
for _ in range(n):
row = [int(x) for x in input().split()]
hill_matrix.append(row)
hc = HillCipher(numpy.array(hill_matrix))
print("Would you like to encrypt or decrypt some text? (1 or 2)")
option = input("\n1. Encrypt\n2. Decrypt\n")
if option == "1":
text_e = input("What text would you like to encrypt?: ")
print("Your encrypted text is:")
print(hc.encrypt(text_e))
elif option == "2":
text_d = input("What text would you like to decrypt?: ")
print("Your decrypted text is:")
print(hc.decrypt(text_d)) | ciphers |
def encrypt(message: str) -> str:
return " ".join(MORSE_CODE_DICT[char] for char in message.upper()) | ciphers |
def decrypt(message: str) -> str:
return "".join(REVERSE_DICT[char] for char in message.split()) | ciphers |
def main() -> None:
message = "Morse code here!"
print(message)
message = encrypt(message)
print(message)
message = decrypt(message)
print(message) | ciphers |
def main() -> None:
message = input("Enter message: ")
key = int(input(f"Enter key [2-{len(message) - 1}]: "))
mode = input("Encryption/Decryption [e/d]: ")
if mode.lower().startswith("e"):
text = encrypt_message(key, message)
elif mode.lower().startswith("d"):
text = decrypt_message(key, message)
# Append pipe symbol (vertical bar) to identify spaces at the end.
print(f"Output:\n{text + '|'}") | ciphers |
def encrypt_message(key: int, message: str) -> str:
cipher_text = [""] * key
for col in range(key):
pointer = col
while pointer < len(message):
cipher_text[col] += message[pointer]
pointer += key
return "".join(cipher_text) | ciphers |
def decrypt_message(key: int, message: str) -> str:
num_cols = math.ceil(len(message) / key)
num_rows = key
num_shaded_boxes = (num_cols * num_rows) - len(message)
plain_text = [""] * num_cols
col = 0
row = 0
for symbol in message:
plain_text[col] += symbol
col += 1
if (
(col == num_cols)
or (col == num_cols - 1)
and (row >= num_rows - num_shaded_boxes)
):
col = 0
row += 1
return "".join(plain_text) | ciphers |
def translate_message(
key: str, message: str, mode: Literal["encrypt", "decrypt"]
) -> str:
chars_a = LETTERS if mode == "decrypt" else key
chars_b = key if mode == "decrypt" else LETTERS
translated = ""
# loop through each symbol in the message
for symbol in message:
if symbol.upper() in chars_a:
# encrypt/decrypt the symbol
sym_index = chars_a.find(symbol.upper())
if symbol.isupper():
translated += chars_b[sym_index].upper()
else:
translated += chars_b[sym_index].lower()
else:
# symbol is not in LETTERS, just add it
translated += symbol
return translated | ciphers |
def encrypt_message(key: str, message: str) -> str:
return translate_message(key, message, "encrypt") | ciphers |
def decrypt_message(key: str, message: str) -> str:
return translate_message(key, message, "decrypt") | ciphers |
def main() -> None:
message = "Hello World"
key = "QWERTYUIOPASDFGHJKLZXCVBNM"
mode = "decrypt" # set to 'encrypt' or 'decrypt'
if mode == "encrypt":
translated = encrypt_message(key, message)
elif mode == "decrypt":
translated = decrypt_message(key, message)
print(f"Using the key {key}, the {mode}ed message is: {translated}") | ciphers |
def decrypt(message: str) -> None:
for key in range(len(string.ascii_uppercase)):
translated = ""
for symbol in message:
if symbol in string.ascii_uppercase:
num = string.ascii_uppercase.find(symbol)
num = num - key
if num < 0:
num = num + len(string.ascii_uppercase)
translated = translated + string.ascii_uppercase[num]
else:
translated = translated + symbol
print(f"Decryption using Key #{key}: {translated}") | ciphers |
def main() -> None:
message = input("Encrypted message: ")
message = message.upper()
decrypt(message) | ciphers |
def rabin_miller(num: int) -> bool:
s = num - 1
t = 0
while s % 2 == 0:
s = s // 2
t += 1
for _ in range(5):
a = random.randrange(2, num - 1)
v = pow(a, s, num)
if v != 1:
i = 0
while v != (num - 1):
if i == t - 1:
return False
else:
i = i + 1
v = (v**2) % num
return True | ciphers |
def is_prime_low_num(num: int) -> bool:
if num < 2:
return False
low_primes = [
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(num) | ciphers |
def generate_large_prime(keysize: int = 1024) -> int:
while True:
num = random.randrange(2 ** (keysize - 1), 2 ** (keysize))
if is_prime_low_num(num):
return num | ciphers |
def encrypt(input_string: str, key: int, alphabet: str | None = None) -> str:
# Set default alphabet to lower and upper case english chars
alpha = alphabet or ascii_letters
# The final result string
result = ""
for character in input_string:
if character not in alpha:
# Append without encryption if character is not in the alphabet
result += character
else:
# Get the index of the new key and make sure it isn't too large
new_key = (alpha.index(character) + key) % len(alpha)
# Append the encoded character to the alphabet
result += alpha[new_key]
return result | ciphers |
def decrypt(input_string: str, key: int, alphabet: str | None = None) -> str:
# Turn on decode mode by making the key negative
key *= -1
return encrypt(input_string, key, alphabet) | ciphers |