function
stringlengths 18
3.86k
| intent_category
stringlengths 5
24
|
---|---|
def find_max(nums: list[int | float]) -> int | float:
if len(nums) == 0:
raise ValueError("find_max() arg is an empty sequence")
max_num = nums[0]
for x in nums:
if x > max_num:
max_num = x
return max_num | maths |
def sum_of_series(first_term: int, common_diff: int, num_of_terms: int) -> float:
total = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff)
# formula for sum of series
return total | maths |
def main():
print(sum_of_series(1, 1, 10)) | maths |
def decimal_to_fraction(decimal: int | float | str) -> tuple[int, int]:
try:
decimal = float(decimal)
except ValueError:
raise ValueError("Please enter a valid number")
fractional_part = decimal - int(decimal)
if fractional_part == 0:
return int(decimal), 1
else:
number_of_frac_digits = len(str(decimal).split(".")[1])
numerator = int(decimal * (10**number_of_frac_digits))
denominator = 10**number_of_frac_digits
divisor, dividend = denominator, numerator
while True:
remainder = dividend % divisor
if remainder == 0:
break
dividend, divisor = divisor, remainder
numerator, denominator = numerator / divisor, denominator / divisor
return int(numerator), int(denominator) | maths |
def greatest_common_divisor(a: int, b: int) -> int:
return abs(b) if a == 0 else greatest_common_divisor(b % a, a) | maths |
def gcd_by_iterative(x: int, y: int) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
x, y = y, x % y
return abs(x) | maths |
def main():
try:
nums = input("Enter two integers separated by comma (,): ").split(",")
num_1 = int(nums[0])
num_2 = int(nums[1])
print(
f"greatest_common_divisor({num_1}, {num_2}) = "
f"{greatest_common_divisor(num_1, num_2)}"
)
print(f"By iterative gcd({num_1}, {num_2}) = {gcd_by_iterative(num_1, num_2)}")
except (IndexError, UnboundLocalError, ValueError):
print("Wrong input") | maths |
def n31(a: int) -> tuple[list[int], int]:
if not isinstance(a, int):
raise TypeError(f"Must be int, not {type(a).__name__}")
if a < 1:
raise ValueError(f"Given integer must be positive, not {a}")
path = [a]
while a != 1:
if a % 2 == 0:
a //= 2
else:
a = 3 * a + 1
path.append(a)
return path, len(path) | maths |
def test_n31():
assert n31(4) == ([4, 2, 1], 3)
assert n31(11) == ([11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1], 15)
assert n31(31) == (
[
31,
94,
47,
142,
71,
214,
107,
322,
161,
484,
242,
121,
364,
182,
91,
274,
137,
412,
206,
103,
310,
155,
466,
233,
700,
350,
175,
526,
263,
790,
395,
1186,
593,
1780,
890,
445,
1336,
668,
334,
167,
502,
251,
754,
377,
1132,
566,
283,
850,
425,
1276,
638,
319,
958,
479,
1438,
719,
2158,
1079,
3238,
1619,
4858,
2429,
7288,
3644,
1822,
911,
2734,
1367,
4102,
2051,
6154,
3077,
9232,
4616,
2308,
1154,
577,
1732,
866,
433,
1300,
650,
325,
976,
488,
244,
122,
61,
184,
92,
46,
23,
70,
35,
106,
53,
160,
80,
40,
20,
10,
5,
16,
8,
4,
2,
1,
],
107,
) | maths |
def signum(num: float) -> int:
if num < 0:
return -1
return 1 if num else 0 | maths |
def test_signum() -> None:
assert signum(5) == 1
assert signum(-5) == -1
assert signum(0) == 0 | maths |
def add(first: int, second: int) -> int:
while second != 0:
c = first & second
first ^= second
second = c << 1
return first | maths |
def get_factors(
number: int, factors: Counter | None = None, factor: int = 2
) -> Counter:
match number:
case int(number) if number == 1:
return Counter({1: 1})
case int(num) if number > 0:
number = num
case _:
raise TypeError("number must be integer and greater than zero")
factors = factors or Counter()
if number == factor: # break condition
# all numbers are factors of itself
factors[factor] += 1
return factors
if number % factor > 0:
# if it is greater than zero
# so it is not a factor of number and we check next number
return get_factors(number, factors, factor + 1)
factors[factor] += 1
# else we update factors (that is Counter(dict-like) type) and check again
return get_factors(number // factor, factors, factor) | maths |
def get_greatest_common_divisor(*numbers: int) -> int:
# we just need factors, not numbers itself
try:
same_factors, *factors = map(get_factors, numbers)
except TypeError as e:
raise Exception("numbers must be integer and greater than zero") from e
for factor in factors:
same_factors &= factor
# get common factor between all
# `&` return common elements with smaller value (for Counter type)
# now, same_factors is something like {2: 2, 3: 4} that means 2 * 2 * 3 * 3 * 3 * 3
mult = 1
# power each factor and multiply
# for {2: 2, 3: 4}, it is [4, 81] and then 324
for m in [factor**power for factor, power in same_factors.items()]:
mult *= m
return mult | maths |
def average_absolute_deviation(nums: list[int]) -> float:
if not nums: # Makes sure that the list is not empty
raise ValueError("List is empty")
average = sum(nums) / len(nums) # Calculate the average
return sum(abs(x - average) for x in nums) / len(nums) | maths |
def gamma(num: float) -> float:
if num <= 0:
raise ValueError("math domain error")
if num > 171.5:
raise OverflowError("math range error")
elif num - int(num) not in (0, 0.5):
raise NotImplementedError("num must be an integer or a half-integer")
elif num == 0.5:
return sqrt(pi)
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1) | maths |
def test_gamma() -> None:
assert gamma(0.5) == sqrt(pi)
assert gamma(1) == 1.0
assert gamma(2) == 1.0 | maths |
def jaccard_similarity(set_a, set_b, alternative_union=False):
if isinstance(set_a, set) and isinstance(set_b, set):
intersection = len(set_a.intersection(set_b))
if alternative_union:
union = len(set_a) + len(set_b)
else:
union = len(set_a.union(set_b))
return intersection / union
if isinstance(set_a, (list, tuple)) and isinstance(set_b, (list, tuple)):
intersection = [element for element in set_a if element in set_b]
if alternative_union:
union = len(set_a) + len(set_b)
return len(intersection) / union
else:
union = set_a + [element for element in set_b if element not in set_a]
return len(intersection) / len(union)
return len(intersection) / len(union)
return None | maths |
def multiplicative_persistence(num: int) -> int:
if not isinstance(num, int):
raise ValueError("multiplicative_persistence() only accepts integral values")
if num < 0:
raise ValueError("multiplicative_persistence() does not accept negative values")
steps = 0
num_string = str(num)
while len(num_string) != 1:
numbers = [int(i) for i in num_string]
total = 1
for i in range(0, len(numbers)):
total *= numbers[i]
num_string = str(total)
steps += 1
return steps | maths |
def additive_persistence(num: int) -> int:
if not isinstance(num, int):
raise ValueError("additive_persistence() only accepts integral values")
if num < 0:
raise ValueError("additive_persistence() does not accept negative values")
steps = 0
num_string = str(num)
while len(num_string) != 1:
numbers = [int(i) for i in num_string]
total = 0
for i in range(0, len(numbers)):
total += numbers[i]
num_string = str(total)
steps += 1
return steps | maths |
def proth(number: int) -> int:
if not isinstance(number, int):
raise TypeError(f"Input value of [number={number}] must be an integer")
if number < 1:
raise ValueError(f"Input value of [number={number}] must be > 0")
elif number == 1:
return 3
elif number == 2:
return 5
else:
block_index = int(math.log(number // 3, 2)) + 2
proth_list = [3, 5]
proth_index = 2
increment = 3
for block in range(1, block_index):
for _ in range(increment):
proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1])
proth_index += 1
increment *= 2
return proth_list[number - 1] | maths |
def sumset(set_a: set, set_b: set) -> set:
assert isinstance(set_a, set), f"The input value of [set_a={set_a}] is not a set"
assert isinstance(set_b, set), f"The input value of [set_b={set_b}] is not a set"
return {a + b for a in set_a for b in set_b} | maths |
def is_prime_big(n, prec=1000):
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
d = n - 1
exp = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
count = 0
while count < prec:
a = random.randint(2, n - 1)
b = bin_exp_mod(a, d, n)
if b != 1:
flag = True
for _ in range(exp):
if b == n - 1:
flag = False
break
b = b * b
b %= n
if flag:
return False
count += 1
return True | maths |
def sigmoid(vector: np.array) -> np.array:
return 1 / (1 + np.exp(-vector)) | maths |
def sigmoid_linear_unit(vector: np.array) -> np.array:
return vector * sigmoid(vector) | maths |
def is_prime(number: int) -> bool:
# precondition
assert isinstance(number, int) and (
number >= 0
), "'number' must been an int and positive"
status = True
# 0 and 1 are none primes.
if number <= 1:
status = False
for divisor in range(2, int(round(sqrt(number))) + 1):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
status = False
break
# precondition
assert isinstance(status, bool), "'status' must been from type bool"
return status | maths |
def sieve_er(n):
# precondition
assert isinstance(n, int) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
begin_list = list(range(2, n + 1))
ans = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(begin_list)):
for j in range(i + 1, len(begin_list)):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
begin_list[j] = 0
# filters actual prime numbers.
ans = [x for x in begin_list if x != 0]
# precondition
assert isinstance(ans, list), "'ans' must been from type list"
return ans | maths |
def get_prime_numbers(n):
# precondition
assert isinstance(n, int) and (n > 2), "'N' must been an int and > 2"
ans = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2, n + 1):
if is_prime(number):
ans.append(number)
# precondition
assert isinstance(ans, list), "'ans' must been from type list"
return ans | maths |
def prime_factorization(number):
# precondition
assert isinstance(number, int) and number >= 0, "'number' must been an int and >= 0"
ans = [] # this list will be returns of the function.
# potential prime number factors.
factor = 2
quotient = number
if number == 0 or number == 1:
ans.append(number)
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(number):
while quotient != 1:
if is_prime(factor) and (quotient % factor == 0):
ans.append(factor)
quotient /= factor
else:
factor += 1
else:
ans.append(number)
# precondition
assert isinstance(ans, list), "'ans' must been from type list"
return ans | maths |
def greatest_prime_factor(number):
# precondition
assert isinstance(number, int) and (
number >= 0
), "'number' bust been an int and >= 0"
ans = 0
# prime factorization of 'number'
prime_factors = prime_factorization(number)
ans = max(prime_factors)
# precondition
assert isinstance(ans, int), "'ans' must been from type int"
return ans | maths |
def smallest_prime_factor(number):
# precondition
assert isinstance(number, int) and (
number >= 0
), "'number' bust been an int and >= 0"
ans = 0
# prime factorization of 'number'
prime_factors = prime_factorization(number)
ans = min(prime_factors)
# precondition
assert isinstance(ans, int), "'ans' must been from type int"
return ans | maths |
def is_even(number):
# precondition
assert isinstance(number, int), "'number' must been an int"
assert isinstance(number % 2 == 0, bool), "compare bust been from type bool"
return number % 2 == 0 | maths |
def is_odd(number):
# precondition
assert isinstance(number, int), "'number' must been an int"
assert isinstance(number % 2 != 0, bool), "compare bust been from type bool"
return number % 2 != 0 | maths |
def goldbach(number):
# precondition
assert (
isinstance(number, int) and (number > 2) and is_even(number)
), "'number' must been an int, even and > 2"
ans = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
prime_numbers = get_prime_numbers(number)
len_pn = len(prime_numbers)
# run variable for while-loops.
i = 0
j = None
# exit variable. for break up the loops
loop = True
while i < len_pn and loop:
j = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
loop = False
ans.append(prime_numbers[i])
ans.append(prime_numbers[j])
j += 1
i += 1
# precondition
assert (
isinstance(ans, list)
and (len(ans) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0])
and is_prime(ans[1])
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans | maths |
def gcd(number1, number2):
# precondition
assert (
isinstance(number1, int)
and isinstance(number2, int)
and (number1 >= 0)
and (number2 >= 0)
), "'number1' and 'number2' must been positive integer."
rest = 0
while number2 != 0:
rest = number1 % number2
number1 = number2
number2 = rest
# precondition
assert isinstance(number1, int) and (
number1 >= 0
), "'number' must been from type int and positive"
return number1 | maths |
def kg_v(number1, number2):
# precondition
assert (
isinstance(number1, int)
and isinstance(number2, int)
and (number1 >= 1)
and (number2 >= 1)
), "'number1' and 'number2' must been positive integer."
ans = 1 # actual answer that will be return.
# for kgV (x,1)
if number1 > 1 and number2 > 1:
# builds the prime factorization of 'number1' and 'number2'
prime_fac_1 = prime_factorization(number1)
prime_fac_2 = prime_factorization(number2)
elif number1 == 1 or number2 == 1:
prime_fac_1 = []
prime_fac_2 = []
ans = max(number1, number2)
count1 = 0
count2 = 0
done = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_1:
if n not in done:
if n in prime_fac_2:
count1 = prime_fac_1.count(n)
count2 = prime_fac_2.count(n)
for _ in range(max(count1, count2)):
ans *= n
else:
count1 = prime_fac_1.count(n)
for _ in range(count1):
ans *= n
done.append(n)
# iterates through primeFac2
for n in prime_fac_2:
if n not in done:
count2 = prime_fac_2.count(n)
for _ in range(count2):
ans *= n
done.append(n)
# precondition
assert isinstance(ans, int) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans | maths |
def get_prime(n):
# precondition
assert isinstance(n, int) and (n >= 0), "'number' must been a positive int"
index = 0
ans = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(ans):
ans += 1
# precondition
assert isinstance(ans, int) and is_prime(
ans
), "'ans' must been a prime number and from type int"
return ans | maths |
def get_primes_between(p_number_1, p_number_2):
# precondition
assert (
is_prime(p_number_1) and is_prime(p_number_2) and (p_number_1 < p_number_2)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
number = p_number_1 + 1 # jump to the next number
ans = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(number):
number += 1
while number < p_number_2:
ans.append(number)
number += 1
# fetch the next prime number.
while not is_prime(number):
number += 1
# precondition
assert (
isinstance(ans, list)
and ans[0] != p_number_1
and ans[len(ans) - 1] != p_number_2
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans | maths |
def get_divisors(n):
# precondition
assert isinstance(n, int) and (n >= 1), "'n' must been int and >= 1"
ans = [] # will be returned.
for divisor in range(1, n + 1):
if n % divisor == 0:
ans.append(divisor)
# precondition
assert ans[0] == 1 and ans[len(ans) - 1] == n, "Error in function getDivisiors(...)"
return ans | maths |
def is_perfect_number(number):
# precondition
assert isinstance(number, int) and (
number > 1
), "'number' must been an int and >= 1"
divisors = get_divisors(number)
# precondition
assert (
isinstance(divisors, list)
and (divisors[0] == 1)
and (divisors[len(divisors) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1]) == number | maths |
def simplify_fraction(numerator, denominator):
# precondition
assert (
isinstance(numerator, int)
and isinstance(denominator, int)
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
gcd_of_fraction = gcd(abs(numerator), abs(denominator))
# precondition
assert (
isinstance(gcd_of_fraction, int)
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) | maths |
def factorial(n):
# precondition
assert isinstance(n, int) and (n >= 0), "'n' must been a int and >= 0"
ans = 1 # this will be return.
for factor in range(1, n + 1):
ans *= factor
return ans | maths |
def extended_euclidean_algorithm(a: int, b: int) -> tuple[int, int]:
# base cases
if abs(a) == 1:
return a, 0
elif abs(b) == 1:
return 0, b
old_remainder, remainder = a, b
old_coeff_a, coeff_a = 1, 0
old_coeff_b, coeff_b = 0, 1
while remainder != 0:
quotient = old_remainder // remainder
old_remainder, remainder = remainder, old_remainder - quotient * remainder
old_coeff_a, coeff_a = coeff_a, old_coeff_a - quotient * coeff_a
old_coeff_b, coeff_b = coeff_b, old_coeff_b - quotient * coeff_b
# sign correction for negative numbers
if a < 0:
old_coeff_a = -old_coeff_a
if b < 0:
old_coeff_b = -old_coeff_b
return old_coeff_a, old_coeff_b | maths |
def liouville_lambda(number: int) -> int:
if not isinstance(number, int):
raise TypeError(f"Input value of [number={number}] must be an integer")
if number < 1:
raise ValueError("Input must be a positive integer")
return -1 if len(prime_factors(number)) % 2 else 1 | maths |
def bailey_borwein_plouffe(digit_position: int, precision: int = 1000) -> str:
if (not isinstance(digit_position, int)) or (digit_position <= 0):
raise ValueError("Digit position must be a positive integer")
elif (not isinstance(precision, int)) or (precision < 0):
raise ValueError("Precision must be a nonnegative integer")
# compute an approximation of (16 ** (n - 1)) * pi whose fractional part is mostly
# accurate
sum_result = (
4 * _subsum(digit_position, 1, precision)
- 2 * _subsum(digit_position, 4, precision)
- _subsum(digit_position, 5, precision)
- _subsum(digit_position, 6, precision)
)
# return the first hex digit of the fractional part of the result
return hex(int((sum_result % 1) * 16))[2:] | maths |
def _subsum(
digit_pos_to_extract: int, denominator_addend: int, precision: int
) -> float:
# only care about first digit of fractional part; don't need decimal
total = 0.0
for sum_index in range(digit_pos_to_extract + precision):
denominator = 8 * sum_index + denominator_addend
if sum_index < digit_pos_to_extract:
# if the exponential term is an integer and we mod it by the denominator
# before dividing, only the integer part of the sum will change;
# the fractional part will not
exponential_term = pow(
16, digit_pos_to_extract - 1 - sum_index, denominator
)
else:
exponential_term = pow(16, digit_pos_to_extract - 1 - sum_index)
total += exponential_term / denominator
return total | maths |
def max_sub_array_sum(a: list, size: int = 0):
size = size or len(a)
max_so_far = -maxsize - 1
max_ending_here = 0
for i in range(0, size):
max_ending_here = max_ending_here + a[i]
max_so_far = max(max_so_far, max_ending_here)
max_ending_here = max(max_ending_here, 0)
return max_so_far | maths |
def add(a: float, b: float) -> float:
return a + b | maths |
def zeller(date_input: str) -> str:
# Days of the week for response
days = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
convert_datetime_days = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(date_input) < 11:
raise ValueError("Must be 10 characters long")
# Get month
m: int = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12")
sep_1: str = date_input[2]
# Validate
if sep_1 not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get day
d: int = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31")
# Get second separator
sep_2: str = date_input[5]
# Validate
if sep_2 not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get year
y: int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?"
)
# Get datetime obj for validation
dt_ck = datetime.date(int(y), int(m), int(d))
# Start math
if m <= 2:
y = y - 1
m = m + 12
# maths var
c: int = int(str(y)[:2])
k: int = int(str(y)[2:])
t: int = int(2.6 * m - 5.39)
u: int = int(c / 4)
v: int = int(k / 4)
x: int = int(d + k)
z: int = int(t + u + v + x)
w: int = int(z - (2 * c))
f: int = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer.")
# Response
response: str = f"Your date {date_input}, is a {days[str(f)]}!"
return response | maths |
def multiplication_table(number: int, number_of_terms: int) -> str:
return "\n".join(
f"{number} * {i} = {number * i}" for i in range(1, number_of_terms + 1)
) | maths |
def lucas_lehmer_test(p: int) -> bool:
if p < 2:
raise ValueError("p should not be less than 2!")
elif p == 2:
return True
s = 4
m = (1 << p) - 1
for _ in range(p - 2):
s = ((s * s) - 2) % m
return s == 0 | maths |
def factors_of_a_number(num: int) -> list:
facs: list[int] = []
if num < 1:
return facs
facs.append(1)
if num == 1:
return facs
facs.append(num)
for i in range(2, int(sqrt(num)) + 1):
if num % i == 0: # If i is a factor of num
facs.append(i)
d = num // i # num//i is the other factor of num
if d != i: # If d and i are distinct
facs.append(d) # we have found another factor
facs.sort()
return facs | maths |
def quadratic_roots(a: int, b: int, c: int) -> tuple[complex, complex]:
if a == 0:
raise ValueError("Coefficient 'a' must not be zero.")
delta = b * b - 4 * a * c
root_1 = (-b + sqrt(delta)) / (2 * a)
root_2 = (-b - sqrt(delta)) / (2 * a)
return (
root_1.real if not root_1.imag else root_1,
root_2.real if not root_2.imag else root_2,
) | maths |
def main():
solution1, solution2 = quadratic_roots(a=5, b=6, c=1)
print(f"The solutions are: {solution1} and {solution2}") | maths |
def runge_kutta(f, y0, x0, h, x_end):
n = int(np.ceil((x_end - x0) / h))
y = np.zeros((n + 1,))
y[0] = y0
x = x0
for k in range(n):
k1 = f(x, y[k])
k2 = f(x + 0.5 * h, y[k] + 0.5 * h * k1)
k3 = f(x + 0.5 * h, y[k] + 0.5 * h * k2)
k4 = f(x + h, y[k] + h * k3)
y[k + 1] = y[k] + (1 / 6) * h * (k1 + 2 * k2 + 2 * k3 + k4)
x += h
return y | maths |
def perfect(number: int) -> bool:
return sum(i for i in range(1, number // 2 + 1) if number % i == 0) == number | maths |
def ugly_numbers(n: int) -> int:
ugly_nums = [1]
i2, i3, i5 = 0, 0, 0
next_2 = ugly_nums[i2] * 2
next_3 = ugly_nums[i3] * 3
next_5 = ugly_nums[i5] * 5
for _ in range(1, n):
next_num = min(next_2, next_3, next_5)
ugly_nums.append(next_num)
if next_num == next_2:
i2 += 1
next_2 = ugly_nums[i2] * 2
if next_num == next_3:
i3 += 1
next_3 = ugly_nums[i3] * 3
if next_num == next_5:
i5 += 1
next_5 = ugly_nums[i5] * 5
return ugly_nums[-1] | maths |
def bin_exp_mod(a, n, b):
# mod b
assert b != 0, "This cannot accept modulo that is == 0"
if n == 0:
return 1
if n % 2 == 1:
return (bin_exp_mod(a, n - 1, b) * a) % b
r = bin_exp_mod(a, n / 2, b)
return (r * r) % b | maths |
def binary_exponentiation(a, n, mod):
if n == 0:
return 1
elif n % 2 == 1:
return (binary_exponentiation(a, n - 1, mod) * a) % mod
else:
b = binary_exponentiation(a, n / 2, mod)
return (b * b) % mod | maths |
def sigmoid(vector: np.array) -> np.array:
return 1 / (1 + np.exp(-vector)) | maths |
def gaussian_error_linear_unit(vector: np.array) -> np.array:
return vector * sigmoid(1.702 * vector) | maths |
def power(base: int, exponent: int) -> float:
return base * power(base, (exponent - 1)) if exponent else 1 | maths |
def catalan(number: int) -> int:
if not isinstance(number, int):
raise TypeError(f"Input value of [number={number}] must be an integer")
if number < 1:
raise ValueError(f"Input value of [number={number}] must be > 0")
current_number = 1
for i in range(1, number):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number | maths |
def negative_exist(arr: list) -> int:
arr = arr or [0]
max_number = arr[0]
for i in arr:
if i >= 0:
return 0
elif max_number <= i:
max_number = i
return max_number | maths |
def kadanes(arr: list) -> int:
max_sum = negative_exist(arr)
if max_sum < 0:
return max_sum
max_sum = 0
max_till_element = 0
for i in arr:
max_till_element += i
max_sum = max(max_sum, max_till_element)
max_till_element = max(max_till_element, 0)
return max_sum | maths |
def factors(number: int) -> list[int]:
values = [1]
for i in range(2, int(sqrt(number)) + 1, 1):
if number % i == 0:
values.append(i)
if int(number // i) != i:
values.append(int(number // i))
return sorted(values) | maths |
def abundant(n: int) -> bool:
return sum(factors(n)) > n | maths |
def semi_perfect(number: int) -> bool:
values = factors(number)
r = len(values)
subset = [[0 for i in range(number + 1)] for j in range(r + 1)]
for i in range(r + 1):
subset[i][0] = True
for i in range(1, number + 1):
subset[0][i] = False
for i in range(1, r + 1):
for j in range(1, number + 1):
if j < values[i - 1]:
subset[i][j] = subset[i - 1][j]
else:
subset[i][j] = subset[i - 1][j] or subset[i - 1][j - values[i - 1]]
return subset[r][number] != 0 | maths |
def weird(number: int) -> bool:
return abundant(number) and not semi_perfect(number) | maths |
def twin_prime(number: int) -> int:
if not isinstance(number, int):
raise TypeError(f"Input value of [number={number}] must be an integer")
if is_prime(number) and is_prime(number + 2):
return number + 2
else:
return -1 | maths |
def f(x: float) -> float:
return x * x | maths |
def simpson_integration(function, a: float, b: float, precision: int = 4) -> float:
assert callable(
function
), f"the function(object) passed should be callable your input : {function}"
assert isinstance(a, (float, int)), f"a should be float or integer your input : {a}"
assert isinstance(function(a), (float, int)), (
"the function should return integer or float return type of your function, "
f"{type(a)}"
)
assert isinstance(b, (float, int)), f"b should be float or integer your input : {b}"
assert (
isinstance(precision, int) and precision > 0
), f"precision should be positive integer your input : {precision}"
# just applying the formula of simpson for approximate integration written in
# mentioned article in first comment of this file and above this function
h = (b - a) / N_STEPS
result = function(a) + function(b)
for i in range(1, N_STEPS):
a1 = a + h * i
result += function(a1) * (4 if i % 2 else 2)
result *= h / 3
return round(result, precision) | maths |
def __init__(self): | maths |
def explicit_euler(
ode_func: Callable, y0: float, x0: float, step_size: float, x_end: float
) -> np.ndarray:
n = int(np.ceil((x_end - x0) / step_size))
y = np.zeros((n + 1,))
y[0] = y0
x = x0
for k in range(n):
y[k + 1] = y[k] + step_size * ode_func(x, y[k])
x += step_size
return y | maths |
def double_factorial(n: int) -> int:
if not isinstance(n, int):
raise ValueError("double_factorial() only accepts integral values")
if n < 0:
raise ValueError("double_factorial() not defined for negative values")
return 1 if n <= 1 else n * double_factorial(n - 2) | maths |
def qr_householder(a):
m, n = a.shape
t = min(m, n)
q = np.eye(m)
r = a.copy()
for k in range(t - 1):
# select a column of modified matrix A':
x = r[k:, [k]]
# construct first basis vector
e1 = np.zeros_like(x)
e1[0] = 1.0
# determine scaling factor
alpha = np.linalg.norm(x)
# construct vector v for Householder reflection
v = x + np.sign(x[0]) * alpha * e1
v /= np.linalg.norm(v)
# construct the Householder matrix
q_k = np.eye(m - k) - 2.0 * v @ v.T
# pad with ones and zeros as necessary
q_k = np.block([[np.eye(k), np.zeros((k, m - k))], [np.zeros((m - k, k)), q_k]])
q = q @ q_k.T
r = q_k @ r
return q, r | maths |
def max_sum_in_array(array: list[int], k: int) -> int:
if len(array) < k or k < 0:
raise ValueError("Invalid Input")
max_sum = current_sum = sum(array[:k])
for i in range(len(array) - k):
current_sum = current_sum - array[i] + array[i + k]
max_sum = max(max_sum, current_sum)
return max_sum | maths |
def make_dataset() -> tuple[list[int], int]:
arr = [randint(-1000, 1000) for i in range(10)]
r = randint(-5000, 5000)
return (arr, r) | maths |
def triplet_sum1(arr: list[int], target: int) -> tuple[int, ...]:
for triplet in permutations(arr, 3):
if sum(triplet) == target:
return tuple(sorted(triplet))
return (0, 0, 0) | maths |
def triplet_sum2(arr: list[int], target: int) -> tuple[int, int, int]:
arr.sort()
n = len(arr)
for i in range(n - 1):
left, right = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0) | maths |
def solution_times() -> tuple[float, float]:
times1 = repeat(setup=setup_code, stmt=test_code1, repeat=5, number=10000)
times2 = repeat(setup=setup_code, stmt=test_code2, repeat=5, number=10000)
return (min(times1), min(times2)) | maths |
def mobius(n: int) -> int:
factors = prime_factors(n)
if is_square_free(factors):
return -1 if len(factors) % 2 else 1
return 0 | maths |
def floor(x: float) -> int:
return int(x) if x - int(x) >= 0 else int(x) - 1 | maths |
def maclaurin_sin(theta: float, accuracy: int = 30) -> float:
if not isinstance(theta, (int, float)):
raise ValueError("maclaurin_sin() requires either an int or float for theta")
if not isinstance(accuracy, int) or accuracy <= 0:
raise ValueError("maclaurin_sin() requires a positive int for accuracy")
theta = float(theta)
div = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(accuracy)
) | maths |
def maclaurin_cos(theta: float, accuracy: int = 30) -> float:
if not isinstance(theta, (int, float)):
raise ValueError("maclaurin_cos() requires either an int or float for theta")
if not isinstance(accuracy, int) or accuracy <= 0:
raise ValueError("maclaurin_cos() requires a positive int for accuracy")
theta = float(theta)
div = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(accuracy)) | maths |
def recursive_lucas_number(n_th_number: int) -> int:
if not isinstance(n_th_number, int):
raise TypeError("recursive_lucas_number accepts only integer arguments.")
if n_th_number == 0:
return 2
if n_th_number == 1:
return 1
return recursive_lucas_number(n_th_number - 1) + recursive_lucas_number(
n_th_number - 2
) | maths |
def dynamic_lucas_number(n_th_number: int) -> int:
if not isinstance(n_th_number, int):
raise TypeError("dynamic_lucas_number accepts only integer arguments.")
a, b = 2, 1
for _ in range(n_th_number):
a, b = b, a + b
return a | maths |
def is_in_circle(x: float, y: float) -> bool:
distance_from_centre = sqrt((x**2) + (y**2))
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1 | maths |
def area_under_curve_estimator(
iterations: int,
function_to_integrate: Callable[[float], float],
min_value: float = 0.0,
max_value: float = 1.0,
) -> float:
return mean(
function_to_integrate(uniform(min_value, max_value)) for _ in range(iterations)
) * (max_value - min_value) | maths |
def identity_function(x: float) -> float:
return x | maths |
def function_to_integrate(x: float) -> float:
return sqrt(4.0 - x * x) | maths |
def is_square_free(factors: list[int]) -> bool:
return len(set(factors)) == len(factors) | maths |
def neville_interpolate(x_points: list, y_points: list, x0: int) -> list:
n = len(x_points)
q = [[0] * n for i in range(n)]
for i in range(n):
q[i][1] = y_points[i]
for i in range(2, n):
for j in range(i, n):
q[j][i] = (
(x0 - x_points[j - i + 1]) * q[j][i - 1]
- (x0 - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q] | maths |
def evaluate_poly(poly: Sequence[float], x: float) -> float:
return sum(c * (x**i) for i, c in enumerate(poly)) | maths |
def horner(poly: Sequence[float], x: float) -> float:
result = 0.0
for coeff in reversed(poly):
result = result * x + coeff
return result | maths |
def ceil(x: float) -> int:
return int(x) if x - int(x) <= 0 else int(x) + 1 | maths |
def __init__(self, poly_a=None, poly_b=None):
# Input as list
self.polyA = list(poly_a or [0])[:]
self.polyB = list(poly_b or [0])[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
self.len_A = len(self.polyA)
while self.polyB[-1] == 0:
self.polyB.pop()
self.len_B = len(self.polyB)
# Add 0 to make lengths equal a power of 2
self.c_max_length = int(
2 ** np.ceil(np.log2(len(self.polyA) + len(self.polyB) - 1))
)
while len(self.polyA) < self.c_max_length:
self.polyA.append(0)
while len(self.polyB) < self.c_max_length:
self.polyB.append(0)
# A complex root used for the fourier transform
self.root = complex(mpmath.root(x=1, n=self.c_max_length, k=1))
# The product
self.product = self.__multiply() | maths |
def __dft(self, which):
dft = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB]
# Corner case
if len(dft) <= 1:
return dft[0]
#
next_ncol = self.c_max_length // 2
while next_ncol > 0:
new_dft = [[] for i in range(next_ncol)]
root = self.root**next_ncol
# First half of next step
current_root = 1
for j in range(self.c_max_length // (next_ncol * 2)):
for i in range(next_ncol):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j])
current_root *= root
# Second half of next step
current_root = 1
for j in range(self.c_max_length // (next_ncol * 2)):
for i in range(next_ncol):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j])
current_root *= root
# Update
dft = new_dft
next_ncol = next_ncol // 2
return dft[0] | maths |
def __multiply(self):
dft_a = self.__dft("A")
dft_b = self.__dft("B")
inverce_c = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0]) <= 1:
return inverce_c[0]
# Inverse DFT
next_ncol = 2
while next_ncol <= self.c_max_length:
new_inverse_c = [[] for i in range(next_ncol)]
root = self.root ** (next_ncol // 2)
current_root = 1
# First half of next step
for j in range(self.c_max_length // next_ncol):
for i in range(next_ncol // 2):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2
)
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root)
)
current_root *= root
# Update
inverce_c = new_inverse_c
next_ncol *= 2
# Unpack
inverce_c = [round(x[0].real, 8) + round(x[0].imag, 8) * 1j for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c | maths |
def __str__(self):
a = "A = " + " + ".join(
f"{coef}*x^{i}" for coef, i in enumerate(self.polyA[: self.len_A])
)
b = "B = " + " + ".join(
f"{coef}*x^{i}" for coef, i in enumerate(self.polyB[: self.len_B])
)
c = "A*B = " + " + ".join(
f"{coef}*x^{i}" for coef, i in enumerate(self.product)
)
return "\n".join((a, b, c)) | maths |