function
stringlengths
18
3.86k
intent_category
stringlengths
5
24
def surface_area_cube(side_length: float) -> float: if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values") return 6 * side_length**2
maths
def surface_area_cuboid(length: float, breadth: float, height: float) -> float: if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values") return 2 * ((length * breadth) + (breadth * height) + (length * height))
maths
def surface_area_sphere(radius: float) -> float: if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values") return 4 * pi * radius**2
maths
def surface_area_hemisphere(radius: float) -> float: if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values") return 3 * pi * radius**2
maths
def surface_area_cone(radius: float, height: float) -> float: if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values") return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
maths
def surface_area_conical_frustum( radius_1: float, radius_2: float, height: float ) -> float: if radius_1 < 0 or radius_2 < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) slant_height = (height**2 + (radius_1 - radius_2) ** 2) ** 0.5 return pi * ((slant_height * (radius_1 + radius_2)) + radius_1**2 + radius_2**2)
maths
def surface_area_cylinder(radius: float, height: float) -> float: if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values") return 2 * pi * radius * (height + radius)
maths
def surface_area_torus(torus_radius: float, tube_radius: float) -> float: if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values") if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(pi, 2) * torus_radius * tube_radius
maths
def area_rectangle(length: float, width: float) -> float: if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values") return length * width
maths
def area_square(side_length: float) -> float: if side_length < 0: raise ValueError("area_square() only accepts non-negative values") return side_length**2
maths
def area_triangle(base: float, height: float) -> float: if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values") return (base * height) / 2
maths
def area_triangle_three_sides(side1: float, side2: float, side3: float) -> float: if side1 < 0 or side2 < 0 or side3 < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values") elif side1 + side2 < side3 or side1 + side3 < side2 or side2 + side3 < side1: raise ValueError("Given three sides do not form a triangle") semi_perimeter = (side1 + side2 + side3) / 2 area = sqrt( semi_perimeter * (semi_perimeter - side1) * (semi_perimeter - side2) * (semi_perimeter - side3) ) return area
maths
def area_parallelogram(base: float, height: float) -> float: if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values") return base * height
maths
def area_trapezium(base1: float, base2: float, height: float) -> float: if base1 < 0 or base2 < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values") return 1 / 2 * (base1 + base2) * height
maths
def area_circle(radius: float) -> float: if radius < 0: raise ValueError("area_circle() only accepts non-negative values") return pi * radius**2
maths
def area_ellipse(radius_x: float, radius_y: float) -> float: if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values") return pi * radius_x * radius_y
maths
def area_rhombus(diagonal_1: float, diagonal_2: float) -> float: if diagonal_1 < 0 or diagonal_2 < 0: raise ValueError("area_rhombus() only accepts non-negative values") return 1 / 2 * diagonal_1 * diagonal_2
maths
def area_reg_polygon(sides: int, length: float) -> float: if not isinstance(sides, int) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \
maths
def is_ip_v4_address_valid(ip_v4_address: str) -> bool: octets = [int(i) for i in ip_v4_address.split(".") if i.isdigit()] return len(octets) == 4 and all(0 <= int(octet) <= 254 for octet in octets)
maths
def juggler_sequence(number: int) -> list[int]: if not isinstance(number, int): raise TypeError(f"Input value of [number={number}] must be an integer") if number < 1: raise ValueError(f"Input value of [number={number}] must be a positive integer") sequence = [number] while number != 1: if number % 2 == 0: number = math.floor(math.sqrt(number)) else: number = math.floor( math.sqrt(number) * math.sqrt(number) * math.sqrt(number) ) sequence.append(number) return sequence
maths
def trapezoidal_area( fnc: Callable[[int | float], int | float], x_start: int | float, x_end: int | float, steps: int = 100, ) -> float: x1 = x_start fx1 = fnc(x_start) area = 0.0 for _ in range(steps): # Approximates small segments of curve as linear and solve # for trapezoidal area x2 = (x_end - x_start) / steps + x1 fx2 = fnc(x2) area += abs(fx2 + fx1) * (x2 - x1) / 2 # Increment step x1 = x2 fx1 = fx2 return area
maths
def f(x): return x**3
maths
def find_minimum_change(denominations: list[int], value: str) -> list[int]: total_value = int(value) # Initialize Result answer = [] # Traverse through all denomination for denomination in reversed(denominations): # Find denominations while int(total_value) >= int(denomination): total_value -= int(denomination) answer.append(denomination) # Append the "answers" array return answer
maths
def softmax(vector): # Calculate e^x for each x in your vector where e is Euler's # number (approximately 2.718) exponent_vector = np.exp(vector) # Add up the all the exponentials sum_of_exponents = np.sum(exponent_vector) # Divide every exponent by the sum of all exponents softmax_vector = exponent_vector / sum_of_exponents return softmax_vector
maths
def time_func(func, *args, **kwargs): start = time() output = func(*args, **kwargs) end = time() if int(end - start) > 0: print(f"{func.__name__} runtime: {(end - start):0.4f} s") else: print(f"{func.__name__} runtime: {(end - start) * 1000:0.4f} ms") return output
maths
def fib_iterative(n: int) -> list[int]: if n < 0: raise Exception("n is negative") if n == 0: return [0] fib = [0, 1] for _ in range(n - 1): fib.append(fib[-1] + fib[-2]) return fib
maths
def fib_recursive_term(i: int) -> int: if i < 0: raise Exception("n is negative") if i < 2: return i return fib_recursive_term(i - 1) + fib_recursive_term(i - 2)
maths
def fib_recursive_term(i: int) -> int: if i < 0: raise Exception("n is negative") if i < 2: return i return fib_recursive_term(i - 1) + fib_recursive_term(i - 2)
maths
def rec_fn_memoized(num: int) -> int: if num in cache: return cache[num] value = rec_fn_memoized(num - 1) + rec_fn_memoized(num - 2) cache[num] = value return value
maths
def fib_binet(n: int) -> list[int]: if n < 0: raise Exception("n is negative") if n >= 1475: raise Exception("n is too large") sqrt_5 = sqrt(5) phi = (1 + sqrt_5) / 2 return [round(phi**i / sqrt_5) for i in range(n + 1)]
maths
def aliquot_sum(input_num: int) -> int: if not isinstance(input_num, int): raise ValueError("Input must be an integer") if input_num <= 0: raise ValueError("Input must be positive") return sum( divisor for divisor in range(1, input_num // 2 + 1) if input_num % divisor == 0 )
maths
def two_sum(nums: list[int], target: int) -> list[int]: chk_map: dict[int, int] = {} for index, val in enumerate(nums): compl = target - val if compl in chk_map: return [chk_map[compl], index] chk_map[val] = index return []
maths
def sum_of_digits(n: int) -> int: n = abs(n) res = 0 while n > 0: res += n % 10 n //= 10 return res
maths
def sum_of_digits_recursion(n: int) -> int: n = abs(n) return n if n < 10 else n % 10 + sum_of_digits(n // 10)
maths
def sum_of_digits_compact(n: int) -> int: return sum(int(c) for c in str(abs(n)))
maths
def benchmark_a_function(func: Callable, value: int) -> None: call = f"{func.__name__}({value})" timing = timeit(f"__main__.{call}", setup="import __main__") print(f"{call:56} = {func(value)} -- {timing:.4f} seconds")
maths
def prime_sieve(num: int) -> list[int]: if num <= 0: raise ValueError(f"{num}: Invalid input, please enter a positive integer.") sieve = [True] * (num + 1) prime = [] start = 2 end = int(math.sqrt(num)) while start <= end: # If start is a prime if sieve[start] is True: prime.append(start) # Set multiples of start be False for i in range(start * start, num + 1, start): if sieve[i] is True: sieve[i] = False start += 1 for j in range(end + 1, num + 1): if sieve[j] is True: prime.append(j) return prime
maths
def calculate_prob(text: str) -> None: single_char_strings, two_char_strings = analyze_text(text) my_alphas = list(" " + ascii_lowercase) # what is our total sum of probabilities. all_sum = sum(single_char_strings.values()) # one length string my_fir_sum = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: my_str = single_char_strings[ch] prob = my_str / all_sum my_fir_sum += prob * math.log2(prob) # entropy formula. # print entropy print(f"{round(-1 * my_fir_sum):.1f}") # two len string all_sum = sum(two_char_strings.values()) my_sec_sum = 0 # for each alpha (two in size) calculate entropy. for ch0 in my_alphas: for ch1 in my_alphas: sequence = ch0 + ch1 if sequence in two_char_strings: my_str = two_char_strings[sequence] prob = int(my_str) / all_sum my_sec_sum += prob * math.log2(prob) # print second entropy print(f"{round(-1 * my_sec_sum):.1f}") # print the difference between them print(f"{round((-1 * my_sec_sum) - (-1 * my_fir_sum)):.1f}")
maths
def analyze_text(text: str) -> tuple[dict, dict]: single_char_strings = Counter() # type: ignore two_char_strings = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(text) - 1): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings
maths
def main(): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text)
maths
def num_digits(n: int) -> int: digits = 0 n = abs(n) while True: n = n // 10 digits += 1 if n == 0: break return digits
maths
def num_digits_fast(n: int) -> int: return 1 if n == 0 else math.floor(math.log(abs(n), 10) + 1)
maths
def num_digits_faster(n: int) -> int: return len(str(abs(n)))
maths
def benchmark_a_function(func: Callable, value: int) -> None: call = f"{func.__name__}({value})" timing = timeit(f"__main__.{call}", setup="import __main__") print(f"{call}: {func(value)} -- {timing} seconds")
maths
def gaussian(x, mu: float = 0.0, sigma: float = 1.0) -> int: return 1 / sqrt(2 * pi * sigma**2) * exp(-((x - mu) ** 2) / (2 * sigma**2))
maths
def perfect_cube(n: int) -> bool: val = n ** (1 / 3) return (val * val * val) == n
maths
def median(nums: list) -> int | float: sorted_list = sorted(nums) length = len(sorted_list) mid_index = length >> 1 return ( (sorted_list[mid_index] + sorted_list[mid_index - 1]) / 2 if length % 2 == 0 else sorted_list[mid_index] )
maths
def main(): import doctest doctest.testmod()
maths
def mode(input_list: list) -> list[Any]: if not input_list: return [] result = [input_list.count(value) for value in input_list] y = max(result) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(result) if value == y})
maths
def is_automorphic_number(number: int) -> bool: if not isinstance(number, int): raise TypeError(f"Input value of [number={number}] must be an integer") if number < 0: return False number_square = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True
maths
def radians(degree: float) -> float: return degree / (180 / pi)
maths
def collatz_sequence(n: int) -> list[int]: if not isinstance(n, int) or n < 1: raise Exception("Sequence only defined for natural numbers") sequence = [n] while n != 1: n = 3 * n + 1 if n & 1 else n // 2 sequence.append(n) return sequence
maths
def main(): n = 43 sequence = collatz_sequence(n) print(sequence) print(f"collatz sequence from {n} took {len(sequence)} steps.")
maths
def gamma(num: float) -> float: if num <= 0: raise ValueError("math domain error") return quad(integrand, 0, inf, args=(num))[0]
maths
def integrand(x: float, z: float) -> float: return math.pow(x, z - 1) * math.exp(-x)
maths
def sin( angle_in_degrees: float, accuracy: int = 18, rounded_values_count: int = 10 ) -> float: # Simplify the angle to be between 360 and -360 degrees. angle_in_degrees = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians angle_in_radians = radians(angle_in_degrees) result = angle_in_radians a = 3 b = -1 for _ in range(accuracy): result += (b * (angle_in_radians**a)) / factorial(a) b = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(result, rounded_values_count)
maths
def mean(nums: list) -> float: if not nums: raise ValueError("List is empty") return sum(nums) / len(nums)
maths
def arc_length(angle: int, radius: int) -> float: return 2 * pi * radius * (angle / 360)
maths
def res(x, y): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.log10(x) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen")
maths
def equation(x: float) -> float: return 10 - x * x
maths
def bisection(a: float, b: float) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(a) * equation(b) >= 0: raise ValueError("Wrong space!") c = a while (b - a) >= 0.01: # Find middle point c = (a + b) / 2 # Check if middle point is root if equation(c) == 0.0: break # Decide the side to repeat the steps if equation(c) * equation(a) < 0: b = c else: a = c return c
maths
def is_arithmetic_series(series: list) -> bool: if not isinstance(series, list): raise ValueError("Input series is not valid, valid series - [2, 4, 6]") if len(series) == 0: raise ValueError("Input list must be a non empty list") if len(series) == 1: return True common_diff = series[1] - series[0] for index in range(len(series) - 1): if series[index + 1] - series[index] != common_diff: return False return True
maths
def arithmetic_mean(series: list) -> float: if not isinstance(series, list): raise ValueError("Input series is not valid, valid series - [2, 4, 6]") if len(series) == 0: raise ValueError("Input list must be a non empty list") answer = 0 for val in series: answer += val return answer / len(series)
maths
def is_geometric_series(series: list) -> bool: if not isinstance(series, list): raise ValueError("Input series is not valid, valid series - [2, 4, 8]") if len(series) == 0: raise ValueError("Input list must be a non empty list") if len(series) == 1: return True try: common_ratio = series[1] / series[0] for index in range(len(series) - 1): if series[index + 1] / series[index] != common_ratio: return False except ZeroDivisionError: return False return True
maths
def geometric_mean(series: list) -> float: if not isinstance(series, list): raise ValueError("Input series is not valid, valid series - [2, 4, 8]") if len(series) == 0: raise ValueError("Input list must be a non empty list") answer = 1 for value in series: answer *= value return pow(answer, 1 / len(series))
maths
def hexagonal_numbers(length: int) -> list[int]: if length <= 0 or not isinstance(length, int): raise ValueError("Length must be a positive integer.") return [n * (2 * n - 1) for n in range(length)]
maths
def geometric_series( nth_term: float | int, start_term_a: float | int, common_ratio_r: float | int, ) -> list[float | int]: if not all((nth_term, start_term_a, common_ratio_r)): return [] series: list[float | int] = [] power = 1 multiple = common_ratio_r for _ in range(int(nth_term)): if not series: series.append(start_term_a) else: power += 1 series.append(float(start_term_a * multiple)) multiple = pow(float(common_ratio_r), power) return series
maths
def harmonic_series(n_term: str) -> list: if n_term == "": return [] series: list = [] for temp in range(int(n_term)): series.append(f"1/{temp + 1}" if series else "1") return series
maths
def p_series(nth_term: int | float | str, power: int | float | str) -> list[str]: if nth_term == "": return [""] nth_term = int(nth_term) power = int(power) series: list[str] = [] for temp in range(int(nth_term)): series.append(f"1 / {pow(temp + 1, int(power))}" if series else "1") return series
maths
def is_harmonic_series(series: list) -> bool: if not isinstance(series, list): raise ValueError("Input series is not valid, valid series - [1, 2/3, 2]") if len(series) == 0: raise ValueError("Input list must be a non empty list") if len(series) == 1 and series[0] != 0: return True rec_series = [] series_len = len(series) for i in range(0, series_len): if series[i] == 0: raise ValueError("Input series cannot have 0 as an element") rec_series.append(1 / series[i]) common_diff = rec_series[1] - rec_series[0] for index in range(2, series_len): if rec_series[index] - rec_series[index - 1] != common_diff: return False return True
maths
def harmonic_mean(series: list) -> float: if not isinstance(series, list): raise ValueError("Input series is not valid, valid series - [2, 4, 6]") if len(series) == 0: raise ValueError("Input list must be a non empty list") answer = 0 for val in series: answer += 1 / val return len(series) / answer
maths
def __init__(self, degree: int, coefficients: MutableSequence[float]) -> None: if len(coefficients) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1." ) self.coefficients: list[float] = list(coefficients) self.degree = degree
maths
def __add__(self, polynomial_2: Polynomial) -> Polynomial: if self.degree > polynomial_2.degree: coefficients = self.coefficients[:] for i in range(polynomial_2.degree + 1): coefficients[i] += polynomial_2.coefficients[i] return Polynomial(self.degree, coefficients) else: coefficients = polynomial_2.coefficients[:] for i in range(self.degree + 1): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_2.degree, coefficients)
maths
def __sub__(self, polynomial_2: Polynomial) -> Polynomial: return self + polynomial_2 * Polynomial(0, [-1])
maths
def __neg__(self) -> Polynomial: return Polynomial(self.degree, [-c for c in self.coefficients])
maths
def __mul__(self, polynomial_2: Polynomial) -> Polynomial: coefficients: list[float] = [0] * (self.degree + polynomial_2.degree + 1) for i in range(self.degree + 1): for j in range(polynomial_2.degree + 1): coefficients[i + j] += ( self.coefficients[i] * polynomial_2.coefficients[j] ) return Polynomial(self.degree + polynomial_2.degree, coefficients)
maths
def evaluate(self, substitution: int | float) -> int | float: result: int | float = 0 for i in range(self.degree + 1): result += self.coefficients[i] * (substitution**i) return result
maths
def __str__(self) -> str: polynomial = "" for i in range(self.degree, -1, -1): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i])) elif i == 1: polynomial += str(abs(self.coefficients[i])) + "x" else: polynomial += str(abs(self.coefficients[i])) + "x^" + str(i) return polynomial
maths
def __repr__(self) -> str: return self.__str__()
maths
def derivative(self) -> Polynomial: coefficients: list[float] = [0] * self.degree for i in range(self.degree): coefficients[i] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1, coefficients)
maths
def integral(self, constant: int | float = 0) -> Polynomial: coefficients: list[float] = [0] * (self.degree + 2) coefficients[0] = constant for i in range(self.degree + 1): coefficients[i + 1] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1, coefficients)
maths
def __eq__(self, polynomial_2: object) -> bool: if not isinstance(polynomial_2, Polynomial): return False if self.degree != polynomial_2.degree: return False for i in range(self.degree + 1): if self.coefficients[i] != polynomial_2.coefficients[i]: return False return True
maths
def f(x: float) -> float: return 8 * x - 2 * exp(-x)
arithmetic_analysis
def secant_method(lower_bound: float, upper_bound: float, repeats: int) -> float: x0 = lower_bound x1 = upper_bound for _ in range(0, repeats): x0, x1 = x1, x1 - (f(x1) * (x1 - x0)) / (f(x1) - f(x0)) return x1
arithmetic_analysis
def jacobi_iteration_method( coefficient_matrix: NDArray[float64], constant_matrix: NDArray[float64], init_val: list[int], iterations: int, ) -> list[float]: rows1, cols1 = coefficient_matrix.shape rows2, cols2 = constant_matrix.shape if rows1 != cols1: raise ValueError( f"Coefficient matrix dimensions must be nxn but received {rows1}x{cols1}" ) if cols2 != 1: raise ValueError(f"Constant matrix must be nx1 but received {rows2}x{cols2}") if rows1 != rows2: raise ValueError( ) if len(init_val) != rows1: raise ValueError( ) if iterations <= 0: raise ValueError("Iterations must be at least 1") table: NDArray[float64] = np.concatenate( (coefficient_matrix, constant_matrix), axis=1 ) rows, cols = table.shape strictly_diagonally_dominant(table) # Iterates the whole matrix for given number of times for _ in range(iterations): new_val = [] for row in range(rows): temp = 0 for col in range(cols): if col == row: denom = table[row][col] elif col == cols - 1: val = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] temp = (temp + val) / denom new_val.append(temp) init_val = new_val return [float(i) for i in new_val]
arithmetic_analysis
def strictly_diagonally_dominant(table: NDArray[float64]) -> bool: rows, cols = table.shape is_diagonally_dominant = True for i in range(0, rows): total = 0 for j in range(0, cols - 1): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant") return is_diagonally_dominant
arithmetic_analysis
def polar_force( magnitude: float, angle: float, radian_mode: bool = False ) -> list[float]: if radian_mode: return [magnitude * cos(angle), magnitude * sin(angle)] return [magnitude * cos(radians(angle)), magnitude * sin(radians(angle))]
arithmetic_analysis
def in_static_equilibrium( forces: NDArray[float64], location: NDArray[float64], eps: float = 10**-1 ) -> bool: # summation of moments is zero moments: NDArray[float64] = cross(location, forces) sum_moments: float = sum(moments) return abs(sum_moments) < eps
arithmetic_analysis
def ucal(u: float, p: int) -> float: temp = u for i in range(1, p): temp = temp * (u - i) return temp
arithmetic_analysis
def main() -> None: n = int(input("enter the numbers of values: ")) y: list[list[float]] = [] for _ in range(n): y.append([]) for i in range(n): for j in range(n): y[i].append(j) y[i][j] = 0 print("enter the values of parameters in a list: ") x = list(map(int, input().split())) print("enter the values of corresponding parameters: ") for i in range(n): y[i][0] = float(input()) value = int(input("enter the value to interpolate: ")) u = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1, n): for j in range(n - i): y[j][i] = y[j + 1][i - 1] - y[j][i - 1] summ = y[0][0] for i in range(1, n): summ += (ucal(u, i) * y[0][i]) / math.factorial(i) print(f"the value at {value} is {summ}")
arithmetic_analysis
def newton_raphson( func: str, a: float | Decimal, precision: float = 10**-10 ) -> float: x = a while True: x = Decimal(x) - (Decimal(eval(func)) / Decimal(eval(str(diff(func))))) # This number dictates the accuracy of the answer if abs(eval(func)) < precision: return float(x)
arithmetic_analysis
def retroactive_resolution( coefficients: NDArray[float64], vector: NDArray[float64] ) -> NDArray[float64]: rows, columns = np.shape(coefficients) x: NDArray[float64] = np.zeros((rows, 1), dtype=float) for row in reversed(range(rows)): total = 0 for col in range(row + 1, columns): total += coefficients[row, col] * x[col] x[row, 0] = (vector[row] - total) / coefficients[row, row] return x
arithmetic_analysis
def gaussian_elimination( coefficients: NDArray[float64], vector: NDArray[float64] ) -> NDArray[float64]: # coefficients must to be a square matrix so we need to check first rows, columns = np.shape(coefficients) if rows != columns: return np.array((), dtype=float) # augmented matrix augmented_mat: NDArray[float64] = np.concatenate((coefficients, vector), axis=1) augmented_mat = augmented_mat.astype("float64") # scale the matrix leaving it triangular for row in range(rows - 1): pivot = augmented_mat[row, row] for col in range(row + 1, columns): factor = augmented_mat[col, row] / pivot augmented_mat[col, :] -= factor * augmented_mat[row, :] x = retroactive_resolution( augmented_mat[:, 0:columns], augmented_mat[:, columns : columns + 1] ) return x
arithmetic_analysis
def newton_raphson( function: str, starting_point: complex, variable: str = "x", precision: float = 10**-10, multiplicity: int = 1, ) -> complex: x = symbols(variable) func = lambdify(x, function) diff_function = lambdify(x, diff(function, x)) prev_guess = starting_point while True: if diff_function(prev_guess) != 0: next_guess = prev_guess - multiplicity * func(prev_guess) / diff_function( prev_guess ) else: raise ZeroDivisionError("Could not find root") from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess) < precision: return next_guess prev_guess = next_guess
arithmetic_analysis
def intersection(function: Callable[[float], float], x0: float, x1: float) -> float: x_n: float = x0 x_n1: float = x1 while True: if x_n == x_n1 or function(x_n1) == function(x_n): raise ZeroDivisionError("float division by zero, could not find root") x_n2: float = x_n1 - ( function(x_n1) / ((function(x_n1) - function(x_n)) / (x_n1 - x_n)) ) if abs(x_n2 - x_n1) < 10**-5: return x_n2 x_n = x_n1 x_n1 = x_n2
arithmetic_analysis
def f(x: float) -> float: return math.pow(x, 3) - (2 * x) - 5
arithmetic_analysis
def lower_upper_decomposition( table: ArrayLike[float64], ) -> tuple[ArrayLike[float64], ArrayLike[float64]]: # Table that contains our data # Table has to be a square array so we need to check first rows, columns = np.shape(table) if rows != columns: raise ValueError( f"'table' has to be of square shaped array but got a {rows}x{columns} " + f"array:\n{table}" ) lower = np.zeros((rows, columns)) upper = np.zeros((rows, columns)) for i in range(columns): for j in range(i): total = 0 for k in range(j): total += lower[i][k] * upper[k][j] lower[i][j] = (table[i][j] - total) / upper[j][j] lower[i][i] = 1 for j in range(i, columns): total = 0 for k in range(i): total += lower[i][k] * upper[k][j] upper[i][j] = table[i][j] - total return lower, upper
arithmetic_analysis
def bisection(function: Callable[[float], float], a: float, b: float) -> float: start: float = a end: float = b if function(a) == 0: # one of the a or b is a root for the function return a elif function(b) == 0: return b elif ( function(a) * function(b) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval.") else: mid: float = start + (end - start) / 2.0 while abs(start - mid) > 10**-7: # until precisely equals to 10^-7 if function(mid) == 0: return mid elif function(mid) * function(start) < 0: end = mid else: start = mid mid = start + (end - start) / 2.0 return mid
arithmetic_analysis
def f(x: float) -> float: return x**3 - 2 * x - 5
arithmetic_analysis
def lamberts_ellipsoidal_distance( lat1: float, lon1: float, lat2: float, lon2: float ) -> float: # CONSTANTS per WGS84 https://en.wikipedia.org/wiki/World_Geodetic_System # Distance in metres(m) # Equation Parameters # https://en.wikipedia.org/wiki/Geographical_distance#Lambert's_formula_for_long_lines flattening = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude b_lat1 = atan((1 - flattening) * tan(radians(lat1))) b_lat2 = atan((1 - flattening) * tan(radians(lat2))) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius sigma = haversine_distance(lat1, lon1, lat2, lon2) / EQUATORIAL_RADIUS # Intermediate P and Q values p_value = (b_lat1 + b_lat2) / 2 q_value = (b_lat2 - b_lat1) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) x_numerator = (sin(p_value) ** 2) * (cos(q_value) ** 2) x_demonimator = cos(sigma / 2) ** 2 x_value = (sigma - sin(sigma)) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) y_numerator = (cos(p_value) ** 2) * (sin(q_value) ** 2) y_denominator = sin(sigma / 2) ** 2 y_value = (sigma + sin(sigma)) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
geodesy